低频波浪的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碎波拍是破波带外周期为30秒到5分钟的一种低频波动。大量研究表明,碎波拍对港内波浪的平稳度、系泊船运动、海岸的泥沙输运、海工建筑物的设计都有重要影响。
     本文首先对低频波浪研究进行了简单的回顾,并详细介绍了低频波浪生成机制研究的各种方法。然后通过物理模型实验和数值模拟,在低频波浪生成机制研究领域取得了以下研究成果:
     1.成功设计了研究低频波浪生成机制的物理模型实验,研究由双色波激发产生的低频波浪。实验中采用二阶造波技术,极大的压制了水槽中伪长波的生成;实验地形消除了零水深的海岸线,有效避免了波浪在海岸线处的反射,使得在实验中可以直接观测由波浪破碎点移动产生的离岸方向的自由长波。研究结果表明,在陡坡(1:10)上破碎点移动产生低频波浪这一机理占主导地位,而在缓坡(1:40)上约束长波释放产生的低频波浪更加明显。
     2.进行了双色波在潜堤上传播的物理模型实验。研究了调谐率、平均频率和差频三项因素对低频波浪产生的影响。分析结果表明,三种因素均对低频波浪的产生有重要影响。
     3.通过物理模型实验研究了不规则波在陡坡和缓坡上低频波浪的生成机理,采用小波二阶谱来分析缓坡和陡坡情况下不规则波浪各成份能量之间的传递,分析结果表明与陡坡下相比,低频波浪在缓坡条件下通过非线性传递得到的能量更多,进一步证明了在缓坡上约束长波的释放产生低频波浪的机理占主导因素。
     4.使用一组改进色散关系的Bousenessq方程作为控制方程,通过源函数法进行域内造波。通过与物理模型实验对比,发现该模型可以很好的模拟破碎带以外低频波浪的生成。另外还模拟了长波在缓坡上的传播变形。
Surf beat is a low-frequency wave motion with a period of0.5-5.0min outside the surf zone. The research of surf beat has found that this kind of low-frequency wave motion plays an important role in the harbor tranquility, motions of the moored ships, sediment transport as well as tdesign coastal structures.
     In this thesis, a brief review on the studies of infragravity waves is present first, mainly focusing on the generation mechanisms of infragravity waves. By both experimental and numerical ways, some new aspects of infragravity waves are achieved:
     1. Physical experiments on low-frequency waves are succefully designed, bichromatic wave groups are used to excitate long waves. To supress the generation of spurious long waves in the wave flume, the second-order wave generation theory is adopted. In addtion, the shorelines of the slopes are replaced by horizontal reaches of small depths, which can reduce the reflection of waves near the shoreline significantly. Since free long waves are generated when the primary waves break near this abrupt change in slope, the reflection of long waves is reduced significantly. Therefore, the experiments for the first time make it is possible to directly observe the outgoing breakpoint forced long waves. The results indicate that the mechanics of breakpoint forced long waves dominate over the low-frequency wave field on the steep slope, while the released bound long waves are found to be significant on the mild slope, which are excited by bichromatic wave groups on a steep (1:10) slope and a mild (1:40) slope, are carried out.
     2. Physiccal experiment of bichromatic wave groups propagating on a submerged curvilinear sill is also conducted. In this experiment, the effects of the amplitude modulation, mean frequency(group main frequencies) and difference frequencies(low frequency) on the generation of low-frequency waves and higher harmonics are examined. It is found that the all three factors can signifiantly influence the generation of low-frequency waves.
     3. Nonlinear transformation of random waves over a steep slope (1:10) and a mild (1:40) slope are studied. Two experimental cases of random waves mechanically generated by JONSWAP spectra are used for this purpose. The wavelet-based bispectrum is adopted to study the nonlinear wave-wave interactions. The bispectrum reveals that low frequency waves on the mild slope can gain more energy that that on the steep slope, further verifing that the release mechanics of long waves on mild slops is significant.
     4. A set of Boussinesq equations with improved dispersion relationship is used to simulate waves propagating on a mild slope. The source funtion is adopt to generate waves. The resluts show that the numerical model can correctly simulate long wave generation out the surf zone, but fails after wave breaking. The numerical results indicate that free long waves also can excite its higher harmonics.
引文
[1]董国海,王晓林.计算港内长波的数学模型[C]. Proceedings of 1998大连国际海事技术交流会,中国辽宁大连,1998:4.
    [2]冯砚青,陈子燊.长重力波形成机制研究进展[J].海洋通报,2005,(05):85-90.
    [3]Russell P E. Mechanisms for beach erosion during storms [J]. Continental Shelf Research,1993,13 (11):1243-1265.
    [4]Smith G G, Mocke G P. Interaction between breaking/broken waves and infragravity-scale phenomena to control sediment suspension transport in the surf zone [J]. Marine Geology,2002.187 (3-4): 329-345.
    [5]O'Hare T, Huntley D. Bar formation due to wave groups and associated long waves [J]. Marine Geology,1994,116(313-325):
    [6]Masselink G, Russell P. Flow velocities, sediment transport and morphological change in the swash zone of two contrasting beaches [J]. Marine Geology,2006,227 (3-4):227-240.
    [7]Nagai T, Hashimoto N, Asai T, et al. Relationship of a moored vessel in a habour and a long wave caused by wave groups [C]. Proceedings of 24th International Conference on Coastal Engineering, Kobe, Japan,1994:847-861.
    [8]Bowers E C. Harbour resonance due to set-down beneath wave groups [J]. Journal of Fluid Mechanics, 1977,79:71-92.
    [9]Smallman J V, Cooper A J. A mathematical model for set down in harbors [J]. Coastal Engineering, 1989,13:247-261.
    [10]Mei C C, Agnon Y. Long-period oscillations in a harbour induced by incident short waves [J]. Journal of Fluid Mechanics,1989,208:595-608.
    [11]邢至庄,张日向.一种应用在深水中能降低长波透过率的浮式防波堤[J].大连理工大学学报,1996, (02):246-247.
    [12]Hamm L, Madsen P A, Peregrine D H. Wave transformation in the nearshore zone-a review [J]. Coastal Engineering,1993,21 (1-3):5-39.
    [13]Dean R G, Dalrymple R A. Coastal processes with engineering applications [M]. Cambridge University Press,2002.
    [14]Battjes J A. Surf zone dynamics [J]. Annual Review Of Fluid Mechanics,1988,20:257-293.
    [15]List J H. A model for the generation of two-dimensional surf beat [J]. Journal of Geophysical Research, 1992,97 (C4):5623-5635.
    [16]Schaffer H A. Infragravity waves induced by short-wave groups [J]. Journal of Fluid Mechanics,1993. 247:551-588.
    [17]左其华.近岸波浪引起的水流及长波研究进展[J].海洋工程,2003,21(3):115-122.
    [18]Munk W H. Surf beats [J]. Eos Transactions of the American Geophysical Union,1949,30:849-854.
    [19]Schaffer H A. Second-order wavemaker theory for irregular waves [J]. Ocean Engineering,1996,23 (1):47-88.
    [20]Tucker M J. Surf beats:Sea waves of 1 to 5 minutes period [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,1950,202:565-573.
    [21]Longuet-Higgins M S, Stewart R W. Radiation stress and mass transport in gravity waves, with applications to 'surf beats'[J]. Journal of Fluid Mechanics,1962,13:481-504.
    [22]Longuet-Higgins M S, Stewart R W. Radiation stress in water waves:A physical discussion with applications [J]. Deep-Sea Research,1964,11 (4):529-562.
    [23]Battjes J A. Surf-zone dynamics [J]. Annual Review of Fluid Mechanics,1988,20:257-293.
    [24]Huntley D A, Guza R T, Thornton E B. Field observations of surf beat.1. Progressive edge waves [J]. Journal of Geophysical Research,1981,86 (C7):6451-6466.
    [25]Masselink G. Group bound long waves as a source of infragravity energy in the surf zone [J]. Continental Shelf Research,1995,15 (13):1525-1547.
    [26]Symonds G, Huntley D A, Bowen A J. Two-dimensional surf beat:Long wave generation by a time-varying breakpoint [J]. Journal of Geophysical Research,1982,87 (C1):492-498.
    [27]Kostense J K. Measurements of surf beat and set-down beneath wave groups [C]. Proceedings of 19th International Conference on Coastal Engineering, Houston,1984:724-740.
    [28]Nagase S, Mizuguchi M. Laboratory experiment on long wave generation by time-varying breakpoint [C]. Proceedings of 25th International Conference on Coastal Engineering, Orlando, USA,1996: 1307-1320.
    [29]Okayasu A, Matsumoto T, Suzuki Y. Laboratory experiment on generation long waves in the surf zone [C]. Proceedings of 25th International Conference on Coastal Engineering, Orlando, USA,1996: 1321-1334.
    [30]Baldock T E, Huntley D A, Bird P A D, et al. Breakpoint generated surf beat induced by bichromatic wave groups [J]. Coastal Engineering.2000,39 (2-4):213-242.
    [31]Schaffer H A, Svendsen I A. Surf beat generation on a mild-slope beach [C]. Proceedings of 21st International Conference on Coastal Engineering, Torremolinos, Spain,1988:1058-1072.
    [32]Baldock T E, Huntley D A. Long-wave forcing by the breaking of random gravity waves on a beach [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,2002,458 (2025):2177-2201.
    [33]Beji S, Battjes J A. Experimental investigation of wave-propagation over a bar [J]. Coastal Engineering,1993,19 (1-2):151-162.
    [34]Luth H R, Klopman G, Kitou N. Kinematics of waves breaking partially on an offshore bar:Delft, Netherlands:Delft Hydraulics,1994.
    [35]Ohyama T, Nadaoka K. Transformation of a nonlinear-wave train passing over a submerged shelf without breaking [J]. Coastal Engineering,1994,24 (1-2):1-22.
    [36]Baldock T E, Holmes P, Horn D P. Low frequency swash motion induced by wave grouping [J]. Coastal Engineering,1997,32 (2-3):197-222.
    [37]Thornton E B, Calhoun R J. Spectral resolution of breakwater reflected waves [J]. Journal of the Waterways, Harbors and Coastal Engineering 1972,98 (4):443-460.
    [38]Goda Y, Suzuki Y. Estimation of incident and reflected waves in random wave experiments [C]. Proceedings of 15th International Conference on Coastal Engineering, New York,1976:828-845.
    [39]Mansard E P D, Funke E R. Measurement of incident and reflected spectra using a least squares method [J]. National Conference Publication-Institution of Engineers, Australia,1980, (80/1): 95-96.
    [40]Zelt J A, Skjelbreia J E. Estimating incident and reflected wave fields using an arbitrary number of wave gauges [C]. Proceedings of 23th International Conference on Coastal Engineering, New York, 1992:777-789.
    [41]Ottesen Hansen N E. Long period waves in natural wave trains:Techn. Univ. Denmark:Inst. Hydrodyn. and Hydraulic Engng.,1978.
    [42]Ma Y X. Dong G H, Ma X Z. et al. A new method for separation of 2d incident and reflected waves by the morlet wavelet transform [J]. Coastal Engineering,2010,57 (6):597-603.
    [43]Baldock T E, O'Hare T J, Huntley D A. Long wave forcing on a barred beach [J]. Journal of Fluid Mechanics,2004,503:321-343.
    [44]Longuet-Higgins M S, Stewart R W. Changes in the form of short gravity waves on long waves and tidal currents [J]. Journal of Fluid Mechanics,1960,8:565-583.
    [45]Frigaard P, Brorsen M. A time-domain method for separating incident and reflected irregular waves [J]. Coastal Engineering,1995,24 (3-4):205-215.
    [46]Hasselmann K, Munk W, MacDonald G. Bispectra of ocean waves [C]. Proceedings of Proceedings of the Symposium on Time Series Analysis, Brown University,1963:125-139.
    [47]Elgar S, Guza R T. Observations of bispectra of shoaling surface gravity waves [J]. Journal of Fluid Mechanics.1985. vol.161:425-448.
    [48]Herbers T H C, Elgar S, Guza R T. Infragravity-frequency (0.005-0.05 hz) motions on the shelf.1. Forced waves [J]. Journal Of Physical Oceanography,1994.24 (5):917-927.
    [49]Herbers T H C, Elgar S, Guza R T, et al. Infragravity-frequency (0.005-0.05 hz) motions on the shelf.2. Free waves [J]. Journal Of Physical Oceanography,1995,25 (6):1063-1079.
    [50]Ruessink B G. The temporal and spatial variability of infragravity energy in a barred nearshore zone [J]. Continental Shelf Research,1998,18 (6):585-605.
    [51]Ruesink B G. Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions [J]. Journal of Geophysical Research,1998,103 (C6):12795-12805.
    [52]Milligen V B P, Sanchez E, Estrada T, et al. Wavelet bicoherence:A new turbulence analysis tool [J]. Physics of Plasmas,1995,2(8):3017-3032.
    [53]Guza R T, Thornton E B, Holman R W. Swash on steep and shallow beaches [C]. Proceedings of 19th International Conference on Coastal Engineering. Houston,1984:708-723.
    [54]Janssen T T, Kamphuis J W, Dongeren A R V, et al. Observations of long waves on a uniform slope [C]. Proceedings of 27th International Conference on Coastal Engineering. Sydney. Australia.2000: 2192-2205.
    [55]Svendsen I A, Veeramony J. Wave breaking in wave groups [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2001,127 (4):200-212.
    [56]Symonds G, Bowen A J. Interactions of nearshore bars with incoming wave groups [J]. Journal of Geophysical Research,1984,89 (C2):1953-1959.
    [57]Nakaza E, Tsukayama S, Hino M. Bore-like surf beat on reef coasts [C]. Proceedings of 22nd International Conference on Coastal Engineering, Delft, the Netherlands,1990:743-756.
    [58]Madsen P A, Sφrensen O R. Schaffer H A. Surf zone dynamics simulated by a boussinesq type model. Part ii:Surf beat and swash oscillations for wave groups and irregular waves [J]. Coastal Engineering. 1997,32 (4):289-319.
    [59]Madsen P A, Sorensen O R, Schaffer H A. Surf zone dynamics simulated by a boussinesq type model. Part i. Model description and cross-shore motion of regular waves [J]. Coastal Engineering,1997,32 (4):255-287.
    [60]Roelvink J A. Surf beat and its effect on cross-shore profiles[D]:(Ph. D. Dissetation). Delft, the Netherlands:Delft University of Technology,1993.
    [61]Battjes J A, Janssen J P. Energy loss and setup duo to breaking of random waves [C]. Proceedings of The 16th Coastal Engineering Conference, New York,1978:569-588.
    [62]Van Leeuwen P J. Low frequency waves generation due to breaking wind waves[D]:(Ph. D. Dissetation). Delft, the Netherlands:Delft University of Technology,1992.
    [63]董国海,邹志利.海岸碎波拍的计算[J].力学学报,1998,30(1):43-50.
    [64]Dong G H, Ye W Y, Dodd N. Long waves associated with bichromatic waves [J]. China Ocean Engineering,2001,15 (2):281-289.
    [65]Watson G, Peregrine D H. Low frequency waves in the surf zone [C]. Proceedings of 23rd International Conference on Coastal Engineering, Venice, Italy,1992:818-831.
    [66]马小舟,董国海,滕斌.破碎带波浪的数值模拟[J].计算力学学报,2007,(02):203-208.
    [67]马小舟,董国海,滕斌.双色波引起的碎波拍的数值研究[J].海洋学报(中文版),2007,(06):172-176.
    [68]Hsu T-W, Hsu J R C, Weng W-K, et al. Wave setup and setdown generated by obliquely incident waves [J]. Coastal Engineering,2006,53 (10):865-877.
    [69]Kirby J T. Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents[M]. In:C. Lakhan. Advances in coastal engineering. Amsterdam:Elsevier, 2003:1-41.
    [70]Skotner C, Apelt C J. Application of a boussinesq model for the computation of breaking waves part 1: Development and verification [J]. Ocean Engineering,1999,26 (10):905-925.
    [71]Skotner C, Apelt C J. Application of a boussinesq model for the computation of breaking waves part 2: Wave-induced setdown and setup on a submerged coral reef [J]. Ocean Engineering,1999,26 (10): 927-947.
    [72]Kennedy A B, Chen Q, Kirby J T, et al. Boussinesq modeling of wave transformation, breaking, end runup. I:1d [J]. Journal of Waterway, Port. Coastal, and Ocean Engineering,2000,126 (1):39-47.
    [73]Chen Q, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of wave transformation, breaking, and runup. Ii:2d [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2000,126 (1):48-56.
    [74]Karambas T V, Koutitas C. Surf and swash zone morphology evolution induced by nonlinear waves [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2002,128 (3):102-113.
    [75]Barthel V, Mansard E P D, Sand S E, et al. Group bounded long waves in physical models [J]. Ocean Engineering,1983,10 (4):261-294.
    [76]Battjes J A. Surf similarity [C]. Proceedings of 14th International Conference on Coastal Engineering, Copenhagen, Denmark,1974:466-480.
    [77]Funke E R, Mansard E P D. On the synthesis of realistic sea states [C]. Proceedings of the 17th Coastal Engineering Conference, Sydney. Australia,1980:2974-2991.
    [78]List J H. Wave groupiness variations in the nearshore [J]. Coastal Engineering,1991,15 (5-6): 475-496.
    [79]Dong G, Ma Y, Ma X. Cross-shore variations of wave groupiness by wavelet transform [J]. Ocean Engineering,2008.35:678-684.
    [80]Huang M C. Wave parameters and functions in wavelet analysis [J]. Ocean Engineering,2004,31(1): 111-125.
    [81]Hwung H H, Chiang W S, Hsiao S C. Observations on the evolution of wave modulation [J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2007,463 (2077):85-112.
    [82]Battjes J A, Bakkenes H J, Janssen T T, et al. Shoaling of subharmonic gravity waves [J]. Journal of Geophysical Research,2004,109 (C2):C02009.
    [83]Phillips O M. On the dynamics of unsteady gravity waves of finite amplitude part1. The elementary interactions [J]. Journal of Fluid Mechanics,1960,9:193-217.
    [84]Elgar S, Guza R T. Observations of bispectra of shoaling surface gravity waves [J]. Journal of Fluid Mechanics.1985,161:425-448.
    [85]Hasselmann K. On the non-linear energy transfer in a gravity-wave spectrum part 1. General theory [J]. Journal of Fluid Mechanics.1962,12:481-500.
    [86]Young 1 R, Eldeberky Y. Observations of triad coupling of finite depth wind waves [J]. Coastal Engineering,1998,33:137-154.
    [87]Longuet-Higgins M S. On the statistical distribution of heights of sea waves [J]. Journal of Marine Research,1952,11:245-266.
    [88]Glukhovsikiy B K. Investigation of sea wind waves (in russian) [M]. Leningrad:Gidrometeoizdat, 1996.
    [89]Battjes J A, Groenendijk H W. Wave height distributions on shallow foreshores [J]. Coastal Engineering,2000,40 (3):161-182.
    [90]Goda Y. Random seas and design of maritime structures. [M]. New York:Columbia University Press, 1985.
    [91]宇宙文,丁平兴,孙孚.二阶谱理论及其在海浪研究中的应用.Ⅰ.二阶谱的性质[J].海洋与湖沼,1993,24:553-559.
    [92]Hasselmann K, Munk W, MacDonald G. Bispectra of ocean waves [M]. New York:Wiley,1963.
    [93]Chung J, Powers E J. The statistics of wavelet-based bicoherence [C]. Proceedings of Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.98TH8380), Philadelphia,1998:141-144.
    [94]Larsen Y, Hanssen A. Wavelet-polyspectra:Principles and properties [C]. Proceedings of Signal Processing X Theories and Applications. Proceedings of EUSIPCO 2000. Tenth European Signal Processing Conference,2000:797-800 vol.2.
    [95]Larsen Y, Hanssen A, Pecseli H L. Analysis of non-stationary mode coupling by means of wavelet-bicoherence [J].2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221),2001:3581-4 vol.6.
    [96]Gurley K, Kijewski T, Kareem A. First-and higher-order correlation detection using wavelet transforms [J]. Journal of Engineering Mechanics,2003,129:188-201.
    [97]Baldock T E, Holmes P, Bunker S, et al. Cross-shore hydrodynamics within an unsaturated surf zone [J]. Coastal Engineering,1998,34 (3-4):173-196.
    [98]Madsen P A, Sorensen O R. Bound waves and triad interactions in shallow water [J]. Ocean Engineering,1993,20:259-388.
    [99]Madsen P A, Schaffer H A. Higher-order bossinesq-type equations for surface gravity waves: Derivation and analysis [J]. Roy Soc of London Phil Tr A,1998, A356:3123-3184.
    [100]Gobbi M F, Kirby J T, Ge W. A fully nonlinear boussinesq model for surface waves. Part 2. Extension to o(kh)4 [J]. Journal of Fluid Mechanics,2000,405:181-210.
    [101]Wei G, Kirby J T, Grilli S T, et al. A fully nonlinear boussinesq model for surface-waves.1. Highly nonlinear unsteady waves [J]. Journal of Fluid Mechanics,1995,294:71-92.
    [102]"Nwogu O. Alternative form of boussinesq equations for nearshore wave propagation [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,1993,119 (6):618-638.
    [103]Gobbi M F, Kirby J T, Wei G. A fully nonlinear boussinesq model for surface waves. Part 2. Extension to o(kh)4 [J]. Journal of Fluid Mechanics,2000,405:181-210.
    [104]Shi F, Dalrymple R A, Kirby J T, et al. A fully nonlinear boussinesq model in generalized curvilinear coordinates [J]. Coastal Engineering,2001,42 (4):337-358.
    [105]Kennedy A B, Kirby J T, Chen Q, et al. Boussinesq-type equations with improved nonlinear performance [J]. Wave Motion,2001,33 (3):225-243.
    [106]Shi F Y, Dalrymple R A, Kirby J T, et al. A fully nonlinear boussinesq model in generalized curvilinear coordinates [J]. Coastal Engineering,2001,42 (4):337-358.
    [107]Chawla A, Kirby J T. A source function method for generatino of waves on currents in boussinesq models [J]. Applied Ocean Research,2000,22 (2):75-83.
    [108]GE WEI J T K, STEPHAN T. GRILLI,AND RAVISHANKAR SUBRAMANYA. A fully nonlinear boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves [J]. Journal of Fluid Mechanics,1995,294:71-92.
    [109]Wei G, Kirby J T, Sinha A. Generation of waves in boussinesq models using a source function method [J]. Coastal Engineering,1999,36 (4):271-299.
    [110]Chawla A, Kirby J T. A source function method for generation of waves on currents in boussinesq models [J]. Applied Ocean Research,2000,22 (2):75-83.
    [111]Berkhoff J C W, Booy N, Radder A C. Verification of numerical wave-propagation models for simple harmonic linear water-waves [J]. Coastal Engineering,1982,6 (3):255-279.
    [112]邱大洪.波浪理论及其在工程中的应用[M].高等教育出版社,1985.
    [113]Korteweg D.J. d V G. On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves [J]. Philosophical Magazine, Series 5,1895,39:422-443.
    [114]Le Mehaute B. Introduction to hydrodynamics and water waves [M]. New York:Springer-Verlag, 1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700