系列海洋寡糖衍生物的制备及其抗2型糖尿病作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(Diabetes Mellitus, DM)是一种常见的代谢性疾病,其发病率在发达国家和发展中国家都在逐年增加,中国已经成为世界糖尿病发病人数最多的国家。糖尿病主要分为1型(胰岛素依赖性糖尿病,IDDM)和2型(胰岛素非依赖性糖尿病,NIDDM)。其中2型糖尿病占糖尿病患者的90%以上,为典型的多基因疾病。2型糖尿病主要与两种生理缺陷有关,分别是胰岛素分泌缺陷和胰岛素抵抗。胰岛素抵抗主要发生在脂肪、肝脏和骨骼肌中,这些组织的细胞中含有大量的胰岛素受体,它们能结合胰岛素从而在调节葡萄糖代谢稳态上发挥重要作用,尤其骨骼肌中的胰岛素抵抗是2型糖尿病的主要致病因素。防治2型糖尿病胰岛素抵抗所致的代谢异常,及改善胰岛素抵抗或增加胰岛素敏感性药物的研发具有重要意义。然而,现有的抗2型糖尿病药物多存在着继发性失效、副作用大及容易诱发低血糖等缺陷,因此研发低毒且能改善胰岛素抵抗的长效药物十分必要。海洋独特的环境造就了众多结构多样和功能独特的活性物质,海洋糖类化合物以其资源丰富、低毒和活性广泛而备受关注。大量研究表明,各种有机铬配合物具有改善糖代谢和调节血脂的作用。在前期研究基础上,本研究将各种海洋寡糖与铬离子配合,制备了系列海洋寡糖铬衍生物,通过筛选获得一种具有较好增加胰岛素敏感性的寡糖铬化合物OM2,并对其抗2型糖尿病作用的分子机理进行研究。
     首先运用酸降解方法,以褐藻胶和卡拉胶为原料,成功制备了不同聚合度的褐藻寡糖和卡拉胶寡糖,再将其与Cr3+配合,制备了系列海洋寡糖铬衍生物。利用正交实验对甘露糖醛酸寡糖铬配合物和卡拉胶寡糖铬配合物的制备条件进行了优化,确定其最佳反应条件。通过紫外全波长扫描和红外光谱等分析手段对所得寡糖铬合物进行了结构表征。
     利用C2C12骨骼肌细胞模型和硫磺素荧光法对各种海洋寡糖衍生物进行活性筛选。发现海洋酸性寡糖铬配合物OM2不仅能够在体外阻断胰淀素纤维化还能够激活AMPK信号通路,具有潜在的改善胰岛素抵抗活性。在此基础上,利用遗传性糖尿病转基因db/db小鼠模型进一步评价其在体内抗2型糖尿病效果。研究表明,海洋寡糖OM2无急性降糖作用,不存在一过性血糖降低的危险;不仅能够有效降低血糖、改善血脂代谢、减轻小鼠胰岛素抵抗,而且具有一定的增强胰岛素敏感性的作用。
     在确定OM2具有抗2型糖尿病作用基础上,进一步利用C2C12细胞和db/db小鼠模型分别在细胞和动物整体水平上对OM2提高胰岛素敏感性的作用机制进行了系统研究。结果发现,OM2能够显著增加胰岛素刺激的葡萄糖转运,且效果优于阳性对照药物二甲双胍。ELISA和实时定量RT-PCR实验结果表明,OM2不仅能够通过激活胰岛素信号通路中的关键蛋白IR、Akt和PI3K的的磷酸化来增加胰岛素受体及GLUT4的数量,还能够增加AMPK信号通路中关键蛋白AMPK和ACC的磷酸化水平,调节脂肪代谢,从而发挥其胰岛素增敏作用。免疫印迹法研究发现,OM2还能够在肝脏中通过激活胰岛素信号通路来调节糖原合成和糖异生过程,从而减轻小鼠的高血糖症状。将OM2进行FITC荧光标记后,利用活细胞成像技术研究发现,OM2可以进入C2C12细胞并定位于线粒体,说明其发挥作用可能与提高线粒体功能有关。
     综上所述,本研究成功获得了在体内外都具有较好抗2型糖尿病作用的海洋寡糖铬配合物OM2;并通过作用机制研究阐明其通过激活胰岛素信号通路和AMPK信号通路来调节糖脂代谢、增加胰岛素敏感性,从而改善胰岛素抵抗,为将其开发为新型抗2型糖尿病海洋药物提供了理论依据。
Diabetes mellitus is the most common metabolic disease and its prevalence is increasing in both developed and developing countries year by year. China has become the country with the largest number of diabetes prevalence all over the world. Diabetes mellitus can mainly be divided into type 1 diabetes (insulin dependent, IDDM) and type 2 diabetes (non insulin dependent, NIDDM). More than 90% of diabetes patients suffer from non-insulin-dependent diabetes mellitus (NIDDM, type 2 diabetes) which is a typical polygenic disease. Type 2 diabetes is mainly associated with two principal physiological defects:resistance to the action of insulin and deficiency in insulin secretion. Insulin resistance mainly occurs in fat tissue, liver and skeletal muscles, where cells contain many insulin receptors that can bind insulin to regulate the steady-state of glucose metabolism. Resistance to the actions of insulin in skeletal muscle is a major pathogenic factor in diabetes mellitus. So the pharmaceutical researches on the prevention of metabolic disorder caused by insulin resistance and improvement of insulin sensitivity are very important for the development of anti-type 2 diabetes drugs. However, current drugs for type 2 diabetes therapies often have many defects such as secondary failure, side effects and risk of hypoglycemia, so it is important to develop low toxic and long acting anti-diabetes drugs which can improve insulin resistance. The unique environment of ocean creates many active substances with special structures and functions, especially for the marine polysaccharides which attract much attention for their wide variety of sources, low toxicity and broad activity. Many researches indicated that different kinds of organic chromium complexes can improve glucose metabolism and regulate blood lipid. Based on the former research, series of marine oligosaccharide-chromium derivatives were prepared by complexing oligosaccharides with chromium ion in this research, and one of them named OM2 was found to be able to effectively increase the insulin sensitivity, and its molecular mechanisms of anti-type 2 diabetes were also investigated.
     Alginate oligosaccharides and carrageenan oligosaccharides with different degrees of polymerization were firstly prepared by using acid degradation of alginate and carrageenan, and then series of marine oligosaccharide-chromium derivatives were prepared by complexing oligosaccharides with chromium (Ⅲ) ion. Moreover, the orthogonal experiments were used to optimize the preparation conditions of oligomannuronate-chromium complexes and carrageenan oligosaccharide-chromium complexes, and the optimal reaction conditions were determined in this research. The structure characterization of prepared marine oligosaccharide-chromium derivatives was performed by using full wavelength UV scanning and IR analysis
     Skeletal muscle C2C12 cell model and Thioflavin T fluorescence assay were then used to perform activity screening of different kinds of marine oligosaccharide derivatives. The results indicated that the marine acidic oligosaccharide-chromium complex OM2 could not only inhibit amylin fibrosis in vitro but also activate AMPK signal pathway, which suggested OM2 has potential activity to improve insulin resistance. Based on these results, the hereditary diabetes transgenic db/db mice were used to evaluate the anti-diabetes effect of marine acidic oligosaccharide-chromium complex OM2 in vivo. The results showed that OM2 has no acute hypoglycemic effect and no risk of transient lower blood sugar. OM2 could not only effectively decrease the blood sugar; improve blood lipid metabolism and attenuate insulin resistance in db/db mice, but also have the activity to increase insulin sensitivity to some extent in vivo.
     Based on the results that OM2 has good anti-type 2 diabetes effects, the mechanisms of improving insulin sensitivity by marine acidic oligosaccharide OM2 were then systematically investigated in vitro and in vivo by using skeletal muscle C2C12 cells and db/db mice. The results indicated that the marine acidic oligosaccharide-chromium complex OM2 could significantly increase insulin induced glucose transport, and the actions are more effective than metformin, the positive control drug for type 2 diabetes therapy. Moreover, OM2 was found to be able to activate the phosphorylation of key protein IR, Akt and PI3K in insulin signal pathway to increase the production of IR and GLUT4 by using ELISA and real time quantitative RT-PCR analysis. OM2 could also increase the phosphorylation of AMPK and ACC in AMPK signal pathway to regulate lipid metabolism. So OM2 can activate both the insulin signal pathway and AMPK signal pathway to increase insulin sensitivity. Furthermore, by using western blot assay, marine oligosaccharide OM2 was also found to be able to activate the insulin signal pathway to regulate the glycogen synthesis and gluconeogenesis in liver, and can attenuate the hyperglycemic symptom in diabetes mice. Moreover, fluorescence labeled marine acidic oligosaccharide OM2 was found to be able to localize to the mitochondria after its internalization into skeletal muscle C2C12 cells by using living cell imaging, which suggested that the anti-diabetes effect of marine acidic oligosaccharide OM2 might be related to its improving the functions of mitochondria in skeletal muscle cells.
     In conclusion, marine oligosaccharide chromium complex OM2 which having good anti-diabetes effects in vivo and in vitro were successfully prepared in this research. The marine oligosaccharide OM2 could activate both the insulin signal and AMPK signal pathways to regulate the glucose and lipid metabolism, and increase insulin sensitivity to improve the insulin resistance. Moreover, the researches about improving insulin resistance mechanisms of marine oligosaccharide OM2 can provide the theoretical basis for developing it into new type anti-type 2 diabetes marine drugs.
引文
[1]Harris MI. Definition and classification of diabetes mellitus and the criteria for diagnosis. In:Diabetes Mellitus: A Fundamental and Clinical Text. Philadelphia: Lippincott Williams & Wilkins.2004, p57-467
    [2]Wild S, Oglic G, Green A, Sicree R, King H. Estimates for the year 2000 and projections for 2030: Global Prevalence of Diabetes. Diabetes Care,2004,27:1047-1053
    [3]Szybinski Z. Polish Multicenter Study on Diabetes Epidemiology (PMSDE) 1998-2000. Pol Arch Med Wewn,2001,106:751-758
    [4]Erol A. Insulin resistance is an evolutionarily conserved physiological mechanism at the ellular level for protection against increased oxidative stress.Bioessays,2007,29: 811-818
    [5]Kohen-Avramoglu R, Theriault A, Adeli K. Emergence of the metabolic syndrome in childhood: An epidemiological overview and mechanistic link to dyslipidemia. Clin Biochem,2003,36:413-420
    [6]Lillioja S, Mott DM, Spraul M et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulindependent diabetes mellitus. Prospective studies of Pimalndians. N Engl J Med,1993,329:1988-1992
    [7]郭仪,石岩.葡萄糖转运蛋白4转位与胰岛素抵抗.辽宁中医药大学学报,2007,9(4):63-64
    [8]Haffner SM,Kennedy E, Gonzalez C, et al. A prospective analysis of the HOMA model: the mexico city diabetes study. Diabetes Care,1996,19:1138-1141
    [9]Mueckler M, Caruso C, Baldwin SA, et al. Sequence and structure of a human glucose transporter. Science,1985,229:941
    [10]Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol.2002,3(4):267-77
    [11]Zorzano A, Munoz P, Camps M, et al. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. Diabetes,1996,45:S70-81
    [12]Fink RI, Wallace P, Brechtel G, Olefsky JM. Evidence that glucose transport is rate-limiting for in vivo glucose uptake. Metabolism,1992,41(8):897-902
    [13]Jhun BH, Rampal AL, Liu H, et al. Effects of insulin on steady state kinetics of GLUT4 subcellular distributionin rat adipocytes, Evidence of constitutive GLUT4 recycling. J Biol Chem,1992,267 (25):17710-17715
    [14]Zisman A, Peroni OD, Abel ED, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med,2000,6 (8):924-928
    [15]Mora S, Pessin JE. An adipocentric view of signaling and intracellular trafficking. Diabetes Metab,2002,18 (5):345-356
    [16]Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes,1998,47 (8):1369-1373
    [17]Erol A. Insulin resistance is an evolutionarily conserved physiological mechanism at the cellular level for protection against increased oxidative stress. Bioessays,2007,29: 811-818
    [18]Wilson C, Vereshchagina N, Reynolds B, et al. Extracellular and subcellular regulation of the PI3K/Akt cassette:new mechanisms for controlling insulin and growth factor signalling. Biochem Soc Tans,2000,35:219-221
    [19]Welsh GI, Hers I, Berwick DC, Dell G, Wherlock M, Birkin R, Leney S, Tavare JM. Role of protein kinase B in insulin-regulated glucose uptake. Biochem Soc Trans,2005, 33(2):346-349
    [20]Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension,2007,23:246-254
    [21]Birnbaum MJ. Turning down insulin signaling. J Clin Invest,2001,108:655-659.
    [22]Taguchi A, Wartschow LM, White MF, et al. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science,2007,317:369-372
    [23]Kemp BE, Stapleton D, Campbell DJ, et al. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans,2003,31:162-168
    [24]Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in Type 2 diabetes. Am J Physiol Endocrinol Metab,1999,277:1-10
    [25]Li J, Hu XY, Selvakumar P, Raymond R, et al. Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle. Am J Physiol Endocrinol Metab,2004,287:834-841
    [26]Young LH, Li J, Baron SJ, Russell RR. AMP-activated protein kinase:a key stress signaling pathway in the heart.2005, Trends Cardiovas Med,2005,15 (3):110-118
    [27]Mehnert H. Metformin, the rebirth of a biguanide:mechanism of action and place in the prevention and treatment of insulin resistance. Exp Clin Endocr Diabe,2001,109(Suppl 2):S259-S264
    [28]Raptis SA, Dimit riadis GD. Oral hypoglycemic agents:Insulin secretagogues, alpha-glucosidase inhibitors and insulin sensitizers. Exp Clin Endocr Diabe,2001,109 (2):265-287
    [29]Rai AK, Rai DK. Spectroscopic studies of some antidiabetic drugs. Spectrochim Acta A Mol Biomol Spectrosc,2003,59 (8):1673-1680
    [30]Ahren B. Emerging dipep tidyl pep tidase-4 inhibitors for the treatment of diabetes. Expert Opin Emerg Dr,2008,13(4):593-607
    [31]McIntosh CH, Demuth HU, Pospisilik JA, Pederson R. Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents?. Regul Peptides,2005,128(2):159-165
    [32]Michael L, He Y, Wang ZZ, et al. Recent and emerging Anti-Diabetes Targets. J Med Res Rev,2009,29(1):1251
    [33]屠惠萍,王隽,华正茂,等.糖尿病综合新药Epalrestat的合成.华东师范大学学报,1999,3:104
    [34]康后生,陈敏,李玲,等.依帕司他治疗糖尿病周围神经病变患者的临床观察.临床内科杂志,2006,23(9):460
    [35]Ashizawa N, Aotsuka T. Benzothiazole aidose rdductase inhibitors. Drugs of the future, 1998,23(05):521-529
    [36]中华医学会糖尿病学分会.中国2型糖尿病防治指南(2010年版,讨论稿2010.11.20)
    [37]Tadayyon M, Smith SA. Insulin sensitisation in the treatment of Type 2 diabetes. Expert Opin Investing Drugs,2003,12 (3):307-324
    [38]Mora M, Eduardo Garcia-Fuentes, Jose MG, et al. Changes in Oxidative Stress and Insulin Resistance in Morbidly Obese Patients After Bariatric Surgery. Obesity Surg, 2009,20(3):363-368
    [39]Lasky LA. Selectin-carbohydrate interactions and the Initiate on of the inflammatory response. Annu Rev Biochem,1995,64:113
    [40]张真庆,江晓路,管华诗.寡糖的生物活性及海洋性寡糖的潜在应用价值.中国海洋药物,2003,3:51-57
    [41]杨钊,李金萍,张真庆,管华诗.一种新的褐藻胶寡糖制备方法-氧化降解法.海洋科学,2004,28(7):19-23
    [42]Sun RC, Sun XF, Fowler P, et al. Structural and physicochemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. Eur Polym J,2002, 38(7):1399-1407
    [43]Muramatsu T, Yamada K, Date M, et al. Action of poly (β-D-man nuronate) lyase from Turbo cornutus on oligomeric substrates. Biosci Biotech Bioch,1993,57 (12):1990-1994
    [44]Donati I, Gamini A, Skjak-Braek G, Vetere A. Campa C:Determination of the dyadic composition of alginate by means of circular dichroism:a fast and accurate improved method. Carbohydr Res,2003,338 (10):1139-1142
    [45]Yu GL, Ioanoviciu AS, et al. Structural studies on kappa-carrageenan derived oligosaccharides. Carbohydr Res,2002,337(5):433-44
    [46]于广利.系列硫酸寡糖的制备及其结构与系列分析:[博士论文].中国海洋大学,2004年
    [47]杨钊,张真庆,管华诗,等.一种新的褐藻胶寡糖制备方法-氧化降解法.中国海洋药物杂志,2006,25(3):1-4
    [48]Svanem BI, Strand WI, Ertesvg H, et al. The catalytic activities of the bifunctional Azotobacter vinelandii mannuronan C-5-epimerase and alginate lyase algE7 probably originate from the same active site in the enzyme. J Biol Chem,2001,276 (34):31542-31550
    [49]Wong TY, Preston LA, Schiller L. Alginate lyase:review of major sources and enzyme characteristics, structure-function analysis, biological roles and applications. Annu Rev Microbiol,2000,54:289-340
    [50]赵峡.聚古罗糖醛酸硫酸酯及其寡糖的制备、结构与活性研:[博士论文].中国海洋 大学,2007年
    [51]Philippe P, Kamal B, Frithj K. Oligosaccharide recognition signals and defence reactions in marine plant-microbe interactions. Ecology and Microbiology,1999,2:276-283
    [52]余叔文.植物生理与分子生物学.北京:农业科学出版社,1992:417-431
    [53]Rina S, Desh D, Anakshi K, et al. A novel pentasaccharide from immunostimulant oligosaccharide fraction of buffalo milk. Biochemca et biophysicaActa,1999,1428 (23):433-441
    [54]管华诗,蓝进,崔英林,等.褐藻酸钠制剂治疗糖尿病的研究.海洋药物,1983,3:153
    [55]薛惟建,杨文,陈琼华.昆布多糖和猴头多糖对实验性高血糖的防治作用.中国药科大学学报,1989,20(6):378-380
    [55]Zhang DD, Ito K, Guan H, et al. The stimulatory activities of polysaccharide compounds derived from algae extracts on insulin secretion in vitro. Biol Pharm Bull,2008(31): 921-924
    [57]赵协民.褐藻酸钠的药用概况.中国海洋药物,1988(4):23-26
    [58]邓槐春.海带多糖的药理作用.中草药,1987,18(2):15
    [59]邓槐春,谈竟光,谢姣娥等.海带多糖抗辐射作用.中华放射医学与防护杂志,1987(7):49-50
    [60]于瑞蓉,周建华,李培秋,等.海藻多糖降脂食品添料降脂作用临床疗效观察.海洋药物,1987(4):28-29
    [61]Chang-Mok. Effects of sea tangle (Laminaria japonica) extract and fucoidan components on lipid metabolism of stressed mouse. J Korean Fisheries Soc,2000,33 (2):124
    [62]Itoh H, Noda H, Amano H, et al. Hntitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res.1993,13(6A):2045-2052
    [63]赖晓芳,沈善瑞.海带多糖生物活性的研究进展.生物技术通讯.2003,14(5):436-437
    [64]宫晓黎,孙晓晖,等.寡聚甘露糖醛酸铁对骨髓造血作用的观察.泰山医学院学报,2001,22(2):129
    [65]Iwamoto Y, Xu X, Tamura T, et al. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytodine production in human mononuclear cells. Biosci Biotech biochem,2003,67(2):258
    [66]Hu XK, Jiang XL, Guan HS, et al. Antitumour activities of alginate-derived oligosaccharides and their sulphated substitution derivatives. Eur J Phycol,2004,39 (1):67-71
    [67]Ma JG, Xin XL, Meng LH, Tonh LJ, et al. The Marine-Derived Oligosaccharide Sulfate (MdOS), a Novel Multiple Tyrosine Kinase Inhibitor, Combats Tumor Angiogenesis both In Vitro and In Vivo. PLoS ONE,2008,3(11):e3774
    [68]Zhang J, Geng MY, Ding J, et al. Oligomannurarate sulfate blocks tumor growth by inhibiting NF-κB activation. Acta Pharm Sin,2010,31:375-381
    [69]陈騉,耿美玉等.褐藻多糖GS201对脑神经细胞生存的影响.中国海洋物,2001,79(1):20-23
    [70]董晓莉,耿美玉,谢俊霞.褐藻酸性寡糖对帕金森病大鼠纹状体、杏仁核多巴胺释放的影响.中国海洋药物,2003,95(5):9-12
    [71]谢俊霞,刘彬.雌激素对电刺激诱发杏仁核多巴胺能释放的影响.生理学报,2001,53(3):170
    [72]Hu JF,.Geng MY, Ding J, et al. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide inhibits the cytotoxicity and aggregation of amyloid beta protein. J Pharmacol Sci,2004 (95):248-255
    [73]Fan Y, Hu J, Ding J, Geng MY, et al. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett,2005, (374) 222-226
    [74]Guo XL, Geng MY, Du G Glucose transporter 1, distribution in the brain and in neural disorders:its relationship with transport of neuroactive drugs through the blood-brain barrier. Biochem Genet,2005, (43) 175
    [75]Wang XJ, Geng MY, Wang LM, et al. Acidic oligosaccharide sugar chain, a marine-derived oligosaccharide, activates human glial cell line-derived neurotrophic factor signaling. Neurosci Lett,2007,417:176-180
    [76]王庭欣,赵文,蒋东升.海带多糖对小鼠免疫功能的调节作用.卫生毒理学杂志,2000,14(2):75
    [77]詹林盛,张新生,吴晓红.海带多糖的免疫调节作用.中国生化药物杂志,2001,22(3): 116
    [78]薛静波,刘希英,张鸿芬.海带多糖对小鼠腹腔巨噬细胞的激活作用.中国海洋杂志,1999,71(3):23
    [79]Kawada A, Hiura, N, Shiraiwa M, et al. Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Lett,1997,408:43
    [80]Natsume M, Kamo Y, Hirayama M, et al. Isolation and characterization of alginate derived oligosaccharides with root growth promoting activities. Carbohydr Res,1994,258:187
    [81]Tomoda, Y, Umemura K, Adachi T. Promotion of Barely Root Elongation under Hypoxic Conditions by alginate lyase-lysate. Biosci Biotech Biochem,1994,58:202
    [82]Iwasaki, K, Matsubara Y. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci Biotech Biochem,2000,64(5):1067
    [83]Radman R, Bucke C, Keshavarz T. Elicitor effects on reactive oxygen species in liquid cultures of Penicillium chrysogenum. Biotechnol Lett,2004,26:147-152
    [84]江琳琳,陈温福,陈晓艺,李宪臻.海藻酸寡糖生物活性研究.大连工业大学学报,2009,(03):157-160
    [85]刘中华,张杰,郭婕.褐藻胶寡糖激发子活性研究.周口师范学院学报,2010,(05)82-84
    [86]陈丽,王淑军,刘泉,等.褐藻寡糖对3种水产致病菌抗菌活性研究.淮海工学院学报(自然科学版),2009,(01):90-92
    [87]陈丽,张林维,薛婉立.褐藻寡糖的制备及抑菌性研究.中国饲料,2007,3:34-36
    [88]窦勇,胡佩红.褐藻胶寡糖制备及抑菌活性研究.广东农业科学,2009,(12):161-164
    [89]孙丽萍,薛长湖,许家超,等.褐藻胶寡糖体外清除自由基活性的研究.中国海洋大学学报,2005,35(5):811-814
    [90]纪明侯.海藻化学(第一版).北京:科学出版社,1997:124.
    [91]袁华茂,宋金明.卡拉胶寡糖与衍生物的制备及生物活性研究:[博士论文].中国科学院研究生院,2005年
    [92]囤景鑫,姚子昂,吴海歌,刘媛媛.拉胶寡糖活性的研究进展.化学与生物工程2008, 25(11):8-10
    [93]Yuan HM, Song JM, AI XG, et al. Immunomodulation and antitumor activity of co-carrageenan oligosaccharides. Cancer Lett,2006,243(2):228-234
    [94]李翊,王海青.卡拉胶寡糖对放射损伤的防护作用.中华放射医学与防护杂志,2005,25(2):116-117
    [95]陈海敏,严小军,王峰,等.λ-卡拉胶寡糖体外对血管生成的抑制作用.药学学报,2007,42(6):595-600
    [96]Yuan H, Zhang WW, Li XG, et al. Preparation and in vitro antioxidant activity of λ-carrageenan oligosaccharides and their oversulfated, acetylated and phosphorylated derivatives. Carbohydr Res,2005,340(4):685-692
    [97]Ducros V. Chromium metabolism. Biol Trace Ele Res,1992,32:65
    [98]莫民帅,钟才高,谢锦尧,张洪霞.三价铬与六价铬化合物对L-02肝细胞毒性的比较.实用预防医学,2005,12(1):41-43
    [99]杨晓霞.铬研究进展.中国地方病学杂志,1998,17(3):170
    [100]蒋国彦.实用糖尿病学(第1版).北京:人民卫生出版社,1996:123
    [101]张磊,曹毓,彭龙玲,等.海藻多糖铬络合物降糖作用的实验研究.四川生理科学杂志,2002,24(2):69-71
    [102]Vladeva SV, Terzieva DD, Arabadjiiska DT. Effect of chromium on the insulin resistance in patients with type Ⅱ diabetes mellitus. Folia Med (Plovdiv),2005,47 (3-4):59-62
    [103]Jovanovic L, Gutierrez, Peterson CM. Chromium supplementation for women with gestational diabetes mellitus. J Trace Elem Exp Med,1999,12(2):91-97
    [104]Ravina A, Slezak L, Rubal A, Mirsky N. Clinical use of the trace element chromium(Ⅲ) in the treatment of diabetes mellitus. J Trace Elem Exp Med,1995,8:183-190
    [105]陶海鹏,俞华珊,王爱群.铬叶绿酸钠的合成及临床试用初探.华西药学杂志,1999,14(2):102
    [106]赵晓华,李兴.加铬复合纤维对2型糖尿病大鼠治疗作用观察.营养学报,2000,22(4):312
    [107]汪成,长乱绪,赵书清,等.葡萄糖酸铬合成方法的研究.化学与粘合,2001,(5):213
    [108]Davis CM, Vincen JB. Synthetic multinuclear chromium assembly activates insulin receptor kinase activity: functional model for Low-Molecular-Weight Chromium-Binding substance. Inorg Chem,1997,26(32):5316
    [109]Ghosh T, Chattopadhyay K, Marschall M, et al. Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation. Glycobiology, 2009,19(1):2-15
    [110]Melo FR, Pereira MS, Monteiro RQ, et al. Sulfated galactan is a catalyst of antithrombin-mediated inactivation of alpha-thrombin. Biochim Biophys Acta,2008, 1780(9):1047-1053
    [111]McCarthy B. Antivirals-an increasingly healthy investment. Nat Biotechnol,2007, 25(12):1390-1393
    [112]Zhang C, Yang F, Zhang XW, et al. Grateloupia longifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-1 endothelial cells. Br J Pharmacol,2006,148(6):741-751
    [113]Liu B, Liu WS, Han BQ, Sun YY. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World J Gastroenterol,2007, (13):725-731
    [114]Lu XJ, Chen XM, Fu DX, et al. Effect of Amorphophallus Konjac oligosaccharides on STZ-induced diabetes model of isolated islets. Life Sci,2002, (72):711-719
    [115]Zhang R, Zhou J, Jia Z, et al. Hypoglycemic effect of Rehmannia glutinosa oligosaccharide in hyperglycemic and alloxan-induced diabetic rats and its mechanism, J Ethnopharmacol,2004, (90):39-43
    [116]Lorenzo A, Razzaboni B, Weir GC, Yankner BA. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature,1994,368:756-760
    [117]Hoppener JW, Lips CJ. Role of islet amyloid in type 2 diabetes mellitus. Int J Biochem Cell Biol,2006,38(5-6):726-736
    [118]Ritzel RA, Bulter PC. Replication increases beta-cell vulnerability to human islet amyloid polypeptide-induced apoptosis. Diabetes,2003,52(7):1701-1708
    [119]Ancsin JB. Amyloidogenesis:historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid,2003,10:67-79
    [120]Jaikaran ET, Nilsson MR, Clark A. Pancreatic beta-cell granule peptides form heteromolecular complexes, which inhibit islet amyloid polypeptide fibril formation. Biochem J,2004,377:709-716
    [121]Susan P, Rebecca LH, Tsoi C, et al. Proteoglycans synthesized and secreted by pancreatic islet β-cells bind amylin. Arch Biochem Biophy,2003,413(2):182-190
    [122]戴芳.胰淀素、胰岛淀粉样蛋白沉积与2型糖尿病.国外医学:内分泌学分册,2001,21(3):125-127
    [123]刘明,辛现良,耿美玉.胰淀素及2型糖尿病新药开发.临床荟萃,2006,21(2):141-143
    [124]Petersen KF, Dufour S, Savage DB, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Pro Nal Acad Sci U S A,2007, 104(31):12587-12594
    [125]Peter RS, Barbara BK. Glucose transporters and insulin action-Implications for Insulin Resistance and Diabetes Mellitus. N Engl J Med,1999,341(4):248-257
    [126]Mertz W. Chromium: History and nutritional importance. Boil Trice Elem Res,1992,32: 3-8
    [127]Glinsman W. Effect of trivalent chromium on glucose tolerance. Metabolism,1996, 15:510-520
    [128]Mertz W. Chromium research from a distance from 1959 to 1980. J Am College Nuty, 1998,17(6):544
    [129]Anderson RA. Chromium as an essential nutrient for humans. Regul Toxico Pharmacol, 1997,26:35-41
    [130]Anderson RA. Chromium, glucose intolerance and diabetes. J Am College Nuty,1998,17 (6):548
    [131]Bandwar RP, Rao CP. Transition metal-saccharide chemistry and biology: An emerging field of multidisciplinary interest. Current Sci,1997,72 (11):788-796
    [132]Rao CP, Kaiwar SP. Transition metal-saccharide chemistry:synthesis, speatroscopy, electrochemistry and magnetic studies of chromium(Ⅲ)-hexose complexes and their in vitro interaction with DNA. Polyhedron,1994,13 (12):1895-1906
    [133]Kaiwa SP, Rao CP. Soluble complexes of early first-row transition-metal ions with D-glucose. Carb Res,1992,237:203-210
    [134]陈秀敏,傅德贤,欧阳藩.魔芋葡甘露寡糖铬(Ⅲ)络合物的制备及其对小鼠血糖的影响.中国生化药物杂志,2003,24(1):1-3
    [135]邓毅,尹龙萍,赵爱华,徐朝晖,马丽萍,贾伟.黄芪多糖铬络合物的合成及其降血糖活性的初步研究.食品科学,2007,28(6):317-320
    [136]Tadayyon M, Smith SA. Insulin sensitisation in the treatment of Type 2 diabetes. Expert Opin Investing Drugs,2003,12 (3):307-324
    [137]Mora M, Eduardo Garcia-Fuentes, Jose M G, et al. Changes in Oxidative Stress and Insulin Resistance in Morbidly Obese Patients After Bariatric Surgery.Obesity Surgery, 2009,20(3):363-368
    [138]刘斌,王长云,管华诗,等.海藻多糖褐藻胶生物活性及其应用研究新进展.中国海洋药物,2004,23(6):36-41
    [1]Ikeda A, Takemura A, Ono H. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohyd Polym,2000,42(4):421-425
    [2]纪明侯.海藻化学.北京:科学出版社,1997,208-233
    [3]张真庆,江晓路,管华诗.寡糖的生物活性及海洋性寡糖的潜在应用价值.中国海洋药物,2003,22(3):51-56
    [4]郭丽民,张汝学,贾正平。寡糖的药理作用和机制研究进展.中成药,2006,28(9):1353-1356
    [5]张世平,张宏绪.葡萄糖酸铬及其制备方法,中国发明专利,1997,CN1162590A
    [6]Han F, Yao W B, Yang X B, et al. Experimental study on anticoagulant and antiplatelet aggregation activity of a chemically sulfated marine polysaccharide YCP. Int J Bio Macrom,2005,36(4):201-207
    [7]Guan H S. Low molecular weight sulfated polysaccharides and uses thereof. USP 5646130, 1997
    [8]Liu GG, Borjihan G, Baigude H, et al. Synthesis and anti-HIV activity of sulfated astragalus polysaccharide. Polym Advan Technol,2003,14(7):471-476
    [9]赵峡,付海宁,于广利,等.固相酸解法制备古糖酯寡糖及其电喷雾质谱分析.高等学校化学学报,2008,29(7):1344-1348
    [10]刘冰.寡糖及其配合物对糖尿病的作用研究:[博士学位论文].中国海洋大学,2004.
    [11]Morris ER, Rees D, Thom D. Characterization of polysaccharide structure and interactions by circular dichroism. Order-disorder transition in the calcium alginate system. J Chem Soc Chem Commun,1973,245-246
    [12]Haug A, Larsen B, Smidsroed O. A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem. Scand,1966,20(1):183-190
    [13]Anzai H, Uchida N, Nishide Eiichi. Determination of D-mannuronic to L-guluronic acids ratio in acid hydrolysis of alginate under improved conditions. Nippon Suisan Gakk,1990, 56(1):73-81
    [14]李军平,于淑娟.糖类物质与金属离子配合物的研究进展.中国生化药物杂志, 2005,26(1):59-61
    [15]张密林,刘文彬,高绪国.海藻酸铬的制备方法.中国专利,03109751
    [16]邓毅,尹龙萍,赵爱华,等.黄芪多糖铬配合物的合成及其降血糖活性的初步研究.食品科学,2007,28(6):317-320
    [17]陈秀敏,傅德贤,欧阳藩.魔芋葡甘露寡糖铬(Ⅲ)配合物的制备及其对小鼠血糖的影响.中国生化药物杂志,2003,24(1):1-3
    [18]胡春霞.功能配合物的合成及相关性能研究:[博士论文].曲阜师范大学,2001.
    [19]赵峡.聚古罗糖醛酸硫酸酯及其寡糖的制备、结构与活性研:[博士论文].中国海洋大学,2007年。
    [1]Shanmugam M, Mody K H. Heparinoid-active sulphated polysaccharides from marine algaeas potential blood anticoagulant agents. Curr Sci India,2000,79(12):1672-1683
    [2]Toida T, Chaidedgumjorn A,Linhardt RJ. Structure and bioactivity of sulfated polysaccharides. rends Glycosci and Glycot,2003,15(81):29-46
    [3]Ryoichi S, Kazuhiro F, Kunio M, Furukawa M, et al. Stimulation of Hepatocyte Growth Factor Production by Heparin-derived Oligosaccharides. J B iochem,2007,141(5): 653-660
    [4]Liu H, Geng M, Ding J, et al. Multiple and multivalent interactions of novel anti-AIDS drug candidates. Glycobiology,2005,15 (5):501-510
    [5]傅晓妍.新琼寡糖的酶法制备和化妆品功效的初步评价:[硕士学位论文].中国海洋大学,2006
    [6]杨波.海洋硫酸半乳聚糖特异性降解、寡糖和糖脂的制备与序列分析及其寡糖芯片的构建:[博士学位论文].中国海洋大学,2009
    [7]Hatada Y, Ohta Y, Horikoshi K. Hyperproduction and Application of Agarase to Enzymatic Enhancement of Antioxidant Activity of Porphyran. J Agric Food Chem,2006, 54(26):9895-9900
    [8]Ma C, Lu X, Shi C, et al. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem,2007,282(6):3747-3754
    [9]Michel G, Chantalat L, Fanchon E,et al. The iota-camageenase of Alteromonas fords. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. J Biol Chem,2001,276(43):40202-40209
    [10]Quatrano RS, Caldwell BA. Isolation of a unique marine bacterium capable of growth ona wide variety of polysaccharides from macroalgae. Appl Environ Microbiol,1978,36 (6):979-981
    [11]Barbeyron T, Michel G, Potin P, et al. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem,2000, 275(451):35499-35505
    [12]Yu G, Guan H, Ioanoviciu AS, et al. Structural studies on kappa-carrageenans derived oligosaccharide. Carbohydr Res,2002,337(5):433-440
    [13]于广利.系列硫酸寡糖的制备及其结构与系列分析:[博士学位论文].中国海洋大学,2004
    [14]毛文君.琼胶的分子修饰及其结构研究:[博士学位论文].中国海洋大学,2000
    [15]赵峡,付海宁,于广利,等。固相酸解法制备古糖酯寡糖及其电喷雾质谱分析.高等学校化学学报,2008,29(7):1344-1348
    [16]Smith, D.B., Cook W.H. and Neal J.L.. Physical studies on carrageenin and carrageenin fractions. Arch Biochem Biophys,1954,53:192-204
    [17]吕志华,赵峡,于广利,等.硫酸多糖电泳方法的研究.中国生化药物杂志,,2002,23(1):17-1
    [18]Yu GL, Zhao X, Yang B, Guan HS, et al. Sequence Determination of Sulfated Carrageenan-Derived Oligosaccharides by High-Sensitivity Negative-Ion Electrospray Tandem Mass Spectrometry. Anal Chem,2006,78:8499-8505
    [19]纪明侯.海藻化学(第一版).北京:科学出版社,1997,124
    [20]胡春霞.功能配合物的合成及相关性能研究:[博士论文].曲阜师范大学,2001年
    [21]Duckworth, M.,and Yaphe, W. The structure of agar, part I.Fractionation of a complex mixrure of polysaccharides. Carbohydr.Res.,1971,16:189-197
    [22]T.Enoki, H.Sagawa, T.Tominaga, E.Nisiyama, N.Koyama, T.Sakai, F.GYu, K.Ikai,I.Kato. Drugs, food or drinks with the use of algae-derived physiologically active substances. U.S.Patent,2003,0105029 A
    [23]Weinberger F, Richard C,Kloareg B, Kashman Y, Hoppe H, Friedlander M. Structure-activity relationships of oligoagar elicitors towards Gracilaria conferta. J.Phycol.,2001,37:418-426
    [24]Hai Min Chen, Xiao Jun Yan. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochimica Biophysica Acta, 2005,1722:103-111
    [25]I. Kato, T. Enoki, H. Sagawa. Anti-inflammatory effects ofagaro-oligosaccharides. Food Dev,2001,36:65-71
    [26]Bertozzi CR, Kiessling LL. Chemical glycobiology.Science,2001,291(5512):2357-23648
    [27]Zhang W, Liu M, Yu GL, et al. Sequence and Structure Analysis of K-Carrageenan-derived Oligosaccharides by 2D NMR. J Phycology,2010,46:831-83
    [28]Yang B, Yu GL, Chai WG, et al. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS J,2009,276:2125-2137
    [29]郝翠,于广利,赵峡,等.K-卡拉胶固相酸降解及其寡糖结构分析.中国海洋大学学报,2010,40(5):19-22
    [1]Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science,2005, 307(5708):384-387
    [2]Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase:role in metabolism and therapeutic implications. Diabetes Obes Metab,2006,8 (6):591-602
    [3]解雪芬,朱毅.AMPK与代谢综合征.基础医学与临床,2006,(1): 27-34
    [4]Zhou G, Myers R, L i Y, et al. Role of AMP-activated protein kinase in mechanism of metform in action. J Clin Invest,2001,108 (8):1167-1174
    [5]Cooper GJS, Willis AC, Clark A, et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A,1987, 84:8628-8632
    [6]朱铁虹,尹潍,张卫华,等.胰淀素对优降糖刺激大鼠胰岛素分泌作用的影响及其机制.中华内科杂志,1999,38(4):248-250
    [7]Westermark P, Wernstedt C, Wilander E, et al. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A,1987,84(11):3881-3885
    [8]Hiddinga HJ,Eberhardt NL. Intracellular amyloidgenesis by human islet amyloid polypeptide induces apoptosis in COS 21 cells J. Am J Pathol,1999,154 (4):1077-1088
    [9]冯波,李传琼.2型糖尿病血胰淀素、胰升糖素样肽水平及胰岛功能变化的探讨.中华内分泌代谢杂志,1998,14(1):44-45
    [10]Gebre MS,Olofsson C, Mulder H, et al. Amyloid polypeptide in the islets of langerhans:friend or foe?. Diabetologia,2000,43:687-695
    [11]Janson J, Ashley RH, Harrison D, et al. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes,1999,48 (3):491-498
    [12]LeVine HD. Thioflavine T interaction with synthetic Alzheimer's disease-amyloid peptides: detection of amyloid aggregation insolution. Protein Sci,1993, (2):404-410
    [13]Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science,2003,300:486-489
    [14]Hu JF, Geng MY, Ding J. Acidic Oligosaccharide Sugar Chain, a Marine-Derived Acidic Oligosaccharide, Inhibits the Cytotoxicity and Aggregation of Amyloid Beta Protein. J Pharmacol Sci,2004,95(2):248-255
    [15]耿美玉,辛现良,管华诗,等.褐藻酸寡糖在抗痴呆、抗糖尿病中的应用.中国专利,200410023827.0,2004.03.24
    [16]管华诗,吕志华,于广利,等.聚甘露糖醛酸硫酸盐在制备防治糖尿病药物中的应用.中国专利,200610044195.53,2006.05.18
    [17]管华诗,吕志华,于广利,等.褐藻酸寡糖硫酸盐在制备防治糖尿病药物中的应用.中国专利,200610044581.4,2006.05.26
    [18]管华诗,吕志华,于广利,等.古罗糖醛酸寡糖硫酸盐在制备防治糖尿病药物中的应用.中国专利,200610044583.3,2006.05.26
    [19]赵峡,于广利,郝翠,等.一种具有抗Ⅱ型糖尿病活性的海洋寡糖化合物.中国专利,200910177710.0,2009.09.18
    [20]于广利,赵峡,郝翠,等.一种具有防治胰岛素抵抗作用的海洋寡糖铬配合物.中国专利,200910177711.5,2009.09.18
    [1]Rees DA, Alcolado JC. Animal models of diabetesmellitus. Diabetic Med,2005, 22:359-370
    [2]王宝金,代解杰.糖尿病动物模型的研究进展.上海实验动物科学,2003,23(2):1116-1118
    [3]周敏,柴可夫.实验性2型糖尿病动物模型研究及其进展.浙江中医学院学报,2001,25(5):79-81
    [4]Luo J, Quan J, Tsai J, et al. Nongenetic mouse models of non-insulin-dependent diabetes mellitus. Metabolism,1998,47:663-668
    [5]Lenzen S, Patten U. Alloxan:history and mechanism of action. Diabetologia,1988,31: 337-342
    [6]嵇扬,张癸荣,王文俊.建立四氧嘧啶糖尿病模型的研究.中医药学刊,2003,21(7):1125-1126
    [7]Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest,1969,48:2129-2139
    [8]刘学政,萧鸿.链脲佐菌素致大鼠糖尿病模型的研究.锦州医学院学报,2001,22(4):11-14
    [9]Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med,1976,119:85-90
    [10]Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature,1994,372:425-432
    [11]Lee GH, Proenca R, Montez JM, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature,1996,379:632-635
    [12]ColemanD L, Hummel KP. Hyperinsulinemia in pre-weaning diabetes (db)mice. Diabeologia,1974,10:607-610
    [13]田小芸,刘志红,郭啸华.糖尿病小鼠C57BL/KsJ (db/db)的繁殖性能与生长发育的观察.中国比较医学杂志,2003,13(3)145:
    [1]Bernal MC, Weng S, Finck BN, et al. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat Med,2003,9(8): 1069-1075
    [2]Arakawa K, Ishihara T, Aoto M, et al. Actions of novel antidiabetic thiazolidinedione, T-174, in animal models of non-insulin-dependent diabetes mellitus (NIDDM) and in cultured muscle cells. Br J Pharmacol,1998,125(3):429-436
    [3]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT Method. Methods,2001,25:402-408
    [4]Towler MC, Hardie DG. AMP-Activated Protein Kinase in Metabolic Control and Insulin Signaling. Cir Res,2007,100:328-341
    [5]Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann NY Acad Sci, 2002,967:217-235
    [6]Saha AK and Ruderman NB. Malonyl CoA and AMP-activated protein kinase:an expanding partnership. Mol Cell Biochem,2003,253:65-70
    [7]Holloszy, JO and Hansen PA. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol,1996,128:99-193
    [8]Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem,1999,274(4):1865-1868
    [9]Kim YB, Nikoulina SE, Ciaraldi TP, et al. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest,1999,104(6):733-741
    [10]Nikoulina SE, Ciaraldi TP, Mudaliar S, et al. Potential role of glycogen synthase kinase 3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes,2000,49:263-271
    [11]Ring DB, Johnson KW, Henriksen EJ, et al. Selective glycogen synthase, kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes,2003,52:588-595
    [12]Guioniea O, Clottesb E, Stafforda K, et al. Identification and characterisation of a new human glucose-6-phosphatase isoform. FEBS Letters,2003,551:159-164
    [13]Lowell BB, and Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science, 2005,307:384-387
    [14]郝杰杰.2型糖尿病线粒体损伤和修复机制:[博士论文].中国科学院研究生院,2009年
    [15]Kosegawa I, kataymaa S, Kikuehi C, et al. Metoforming decreases Blood Pressure and obesity in OLETF rats via improvement of insulin resistance. HyPertens Res,1996, 19(1):37-42
    [16]Manzh-W, Zhu M, Nomay, et al. Impaired B-cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceridemia in OLETF rat, a model of spontaneous NIDDM. Diabetes,1997,46:1718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700