褐藻糖胶对小鼠乳腺癌的体内外抑制作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:褐藻糖胶(fucoidan)是从海带中提取纯化的一种多糖,其主要组成为褐藻糖、硫酸根,以及少量糖醛酸、半乳糖、木糖。褐藻糖胶具有抗肿瘤、抗病毒、抗凝血、降血脂、降血糖、增强免疫力等生物学功能,使之成为天然海洋药物研究的热点。研究证实,褐藻糖胶对肠癌、乳腺癌、肝癌和白血病等均有明显的抑制作用,并能诱导细胞凋亡,而对正常细胞无毒副作用,但对其具体的作用机制尚未阐明。本研究以小鼠乳腺癌细胞4T1为靶细胞,采用体外培养细胞(体外实验)及建立荷瘤小鼠模型(体内实验)方法从分子水平、细胞水平及动物整体水平探讨褐藻糖胶的抗肿瘤活性及其作用机制,为最终将该药开发成为一种新型的天然抗癌药物奠定基础。
     方法:1.体外实验:体外培养小鼠乳腺癌细胞4T1,采用MTT比色法、荧光染色、流式细胞术(flow cytometry, FCM)、RT-PCR、Western blotting等方法,观察不同浓度褐藻糖胶对4T1细胞增殖和凋亡的影响,探讨褐藻糖胶体外的抗肿瘤活性及其作用机制。2.体内实验:培养4T1细胞接种Balb/c小鼠建立荷瘤小鼠模型,观察褐藻糖胶对荷瘤小鼠移植瘤生长的抑制情况,TUNEL染色检测瘤组织凋亡细胞,Western blot及免疫组化等方法检测褐藻糖胶处理后瘤组织内Bcl-2/Bax、生存素(Survivin)、β连环蛋白(B-catinin)、细胞周期蛋白Cyclin-D1和细胞周期蛋白依赖性蛋白激酶CDK4以及血管内皮生长因子(VEGF)等相关蛋白的表达,探讨褐藻糖胶体内的抗肿瘤活性及其作用机制。
     结果:1.体外实验:褐藻糖胶(0、50、100、200μg/ml)作用4T1细胞48 h后,在荧光显微镜下观察到褐藻糖胶处理组细胞出现典型的凋亡形态学改变:细胞核固缩、有DNA碎片;RT-PCR及Western blot结果显示,随褐藻糖胶浓度的增加,Bcl-2 mRNA和蛋白表达均下降、Bax mRNA和蛋白表达升高,导致Bcl-2/Bax比值下降;凋亡抑制蛋白Survivin表达增加;线粒体膜电位下降,细胞色素C由线粒体向细胞浆释放增加,Caspase-3的活化率逐渐增加,明显高于对照组(P<0.05);MTT比色结果显示褐藻糖胶能抑制4T1细胞增殖;细胞周期分析表明,经50、100、200μg/ml褐藻糖胶处理48h后,G1期4T1细胞数明显增加,呈明显的G1期阻滞;Western blot结果显示随褐藻糖胶浓度增加,β-catinin、CyclinD1和细胞周期依赖激酶CDK4表达逐渐减少(P<0.05)。另外,褐藻糖胶处理后,VEGF表达也出现减少(P<0.05)。2.体内实验:结果显示褐藻糖胶能抑制荷瘤小鼠移植瘤的增长;TUNEL染色显示褐藻糖胶明显促进肿瘤组织内细胞凋亡;Western blot结果显示Bcl-2/Bax比值降低和Survivin的表达下降;免疫组化检测到β-catinin、CyclinD1、CDK4和VEGF的表达减少,肿瘤组织微血管密度降低;癌灶在肺部的转移率下降。
     结论:褐藻糖胶能明显诱导4T1细胞凋亡和细胞周期G1期阻滞,抑制小鼠肿瘤生长和肺转移,这些作用可能与Bcl-2/Bax降低、Survivin表达下降、Caspase-3激活以及下调Wnt通路中β-catinin、CyclinD1、CDK4的表达和抑制VEGF的生成有关。
BACKGROUND & OBJECTIVE:Fucoidan is a sulfated polysaccharide derived from brown algae that has been reported to perform multiple biological activities, including antitumor activity. Fucoidan could inhibit the growth of tumors, but the mechanism remains unclear. This study aimed to explore the antitumor effects and the related mechanism of fucoidan in vitro and in vivo with mouse breast cancer cell line 4T1 as target cell.
     METHODS:In vitro, fluorescent staining, flow cytometry, RT-PCR and Western blot were performed to analyze the cell cycle and apoptosis of mouse breast cancer 4T1 cells after treatment of fucoidan at different concentrations (0,50,100,200μg/ml). In vivo, therapy experiments were conducted on Babl/c mice bearing breast cancer. The tumor volume and weight were measured. The number of apoptotic cells in tumor tissues was assessed by TUNEL immunostaining. Western blot were used to detect the expression of Bcl-2, Bax, and Survivin in excised tumors. Immunohistochemical assays were used to detect the expression of Wnt/β-catenin signaling agents in tissues.
     RESULTS:When treated with fucoidan for 48h,4T1 cells showed typical apoptotic morphologic changes including chromatin condensation and DNA fragment. Along with the increase of fucoidan concentration, Bcl-2 expression was decreased, Bax expression was increased, and the ratio of Bcl-2 to Bax was significantly decreased (P<0.05). The expression of Survivin in 4T1 Cells was decreased when treated with fucoidan (P<0.05). Mitochondrial transmembrane potential was decreased and cytosyl cyt-C proteins increased in 4T1 cells after 48 h treatment of fucoidan detected by Western blot. When treated with fucoidan (50、100,200μg/ml) for 48 h, the activated Caspase-3 in 4T1 cells were significantly higher than that in control 4T1 cells (P<0.05).Moreover, the expression of VEGF was decreased when treated with fucoidan. In addition, the proportion of 4T1 cells at G1 phase was significantly increased with an apparent G1 phase arrest when treated with fucoidan (50,100,200μg/ml) for 48 h. In the progress of cell cycle arrest induced by fucoidan, the expression of B-catenin, cyclin-D1 and phosphorylated CDK4 were down-regulated (P<0.05).Intraperitoneal injection of fucoidan in subcutaneous breast cancer models reduced the tumor volume, induced apoptosis, inhibited angiogenesis in tumor tissue and decreased pulmonary metastases.
     CONCLUSION:Fucoidan could induce apoptosis and G1 phase arrest in 4T1 cells, possibly by decreasing the expression of Bcl-2/Bax and Survivin, activating Caspase-3, down-regulating the expression of B-catenin, cyclin-D1 and phosphorylated CDK4. Fucoidan also could inhibit tumor angiogenesis by down-regulating the expression of VEGF. These findings indicate that crude fucoidans inhibited mouse breast cancer growth in vitro and in vivo.These data suggest that fucoidan may serve as a potential therapeutic agent for breast cancer.
引文
1. Thompson CB. Apoptosis in the pathgenesis and treatment of disease[J]. Science.1995; 267(5203):1456-1462.
    2. Glaser KB, Mayer AM. A renaissance in marine pharmacology:from preclinical curiosity to clinical reality[J]. Biochem Pharmacol.2009; 78(5):440-448.
    3. Cooper EL. Drug Discovery, CAM and Natural Products[J]. Evid Based Complement Altemat Med.2004;1(3):215-217.
    4. Blunt JW, Copp BR, Hu WP, et al. Marine natural products[J]. Nat Prod Rep.2009; 26(2): 170-244.
    5. Chittchang M, Gleeson MP, Ploypradith P, et al. Assessing the drug-likeness of lamellarins, a marine-derived natural product class with diverse oncologicai activities [J]. Eur J Med Chem. 2010; 45(6):2165-2172.
    6. Kylin H. Biochemistry of sea algae[J]. Physiol. Chem,1913;83:171-197.
    7.许凤清,吴皓.海带多糖的研究进展[J].中国中医药信息杂志.2005;6(12):106-108.
    8.吴茜芮,吴克,蔡敬.海带岩藻多糖的分离与部分性质研究[J].食品与发酵工业.2001;27(10):39-42.
    9.张全斌,徐祖洪.褐藻多糖硫酸酯化学研究的进展[J].中国海洋药物.1996;15(4):38-41.10.施志仪,郭亚贞,王造.海带褐藻糖胶的药理活性[J].上海水产大学学报.2000;9(3):268-271.
    11. Yamasaki-Miyamoto Y, Yamasaki M, et al. Fucoidan induces apoptosis through activation of caspase-8 on human breast cancerMCF-7 cells [J]. J Agric Food Chem.2009; 57(18):8677-8682.
    12. Sekiva M, Funahashi H, Tsukamura K, et al. Intracel lular signaljng in the induction of apoptosis in a human breast cancer eell liRe by water extract of Mekabu[J]. Int J Clin Oncol.2005; 10(2):122-126.
    13. Zhang Z, Teruya K, Eto H, et al. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways [J]. PLoS One.2011;6(11):e27441.
    14. Kim EJ, Park SY, Lee JY, et al. Fucoidan present in brown algae induces apoptosis of human colon cancer cells[J]. BMC Gastroenterol.2010;10:96.
    15.王红梅,张桂英.吲哚美辛抑制结肠癌移植瘤生长和微血管形成的实验[J].第一军医大学学报.2004;24(2):28-30.
    16. WeidnerN, FolkmanJ, PozzaF, et al. Tumor angiogenesis:a new significant and independent prognostic indicator in early-stage breast carcinoma[J]. Natl Cancer Inst. 1992;84(24):1875-1887.
    17.甄永苏.抗肿瘤约物研究与开发[M].第1版.北京:化学工业出版社,2004.
    18. Steller H. Mechanism and genes ofcellular Suicide[J]. Science.1995; 267(5203):1445-1449.
    19. Maki G, Dive C. Recent advances in understand apoptosis:New therapeutic opportunities in cancer chemotherapy[J]. Trends Mol Med.2003;9(6):251-255.
    20. Itoh H, Noda H, Amano H, et al. Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae[J]. Anticancer Res.1993;13(6A):2045-2052.
    21. Zhuang C, Itoh H, Mizuno T, et al. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii)[J]. Biosci Biotechnol Biochem.1995;59(4):563-567.
    22. Alekseyenko TV, Zhanayeva SY, Venediktova AA, et al. Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga[J]. Bull Exp Biol Med.2007;143(6):730-732.
    23. Philchenkov A, Zavelevich M, Imbs T, et al.Sensitization of human malignant lymphoid cells to etoposide by fucoidan, a brown seaweed polysaccharide[J]. Exp Oncol.2007;29(3):181-185.
    24. Ermakova S, Sokolova R, Kim SM, et al. Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata:structural characteristics and anticancer activity[J]. Appl Biochem Biotechnol.2011;164(6):841-850.
    25. Sekiva M, Funahashi H, Tsukamura K, et al. Intracellular signaling in the induction of apoptosis in ahuman breast cancer cell line by water extract of Mekabu[J]. Int J Clin Oncol.2005; 10(2):122-126.
    26. Oltvai ZN, Milliman CL, Korsmeyeer SJ. Bcl-2 hyterodimenies in vivo with a conserved homology, Bax, that accelerate programmed cell death[J]. Cell.1993;74(4):609-619.
    27.李莉.Bcl-2与细胞凋亡[J].国外医学临床生物化学与检验学分册.1999;20(6):272-274.
    28. Forlugno P, wall NR, Giodini A, et al. Survivin exists in immunochemicauy distinct subcellular pools and is involved in spindle microtubulefunction[J]. J Cell Sci.2002;115(3): 575-585.
    29. Asanuma H, Torigoe T, Kamiguchi K, et al. Sunrivin expression is regulated by coexpression of human epidemal growth factor receptor 2 and epidennal growth factor receptor via phosphatidylinositol 3-kinase/AKT signal pathway in breast cancer cells[J]. Cancer Research. 2005; 65(23):11018-11025.
    30. Pallares J, Martinez-Guitarte JL, Dolcet X, et al. Survivin expression in endometrial carcinoma:a tissue microarmy study with correlation with PTEN and STAT-3[J].Int J Gynecol Pathol.2005;24(3):247-253.
    31. Nasu S, Yagihashi A, Izawa A, et al. Survivin mRNA expression in patients with breast cancer[J]. Anticancer Res.2002;22(3):1839-1843.
    32.毛杰,海健,舒衡平,等.乳腺癌组织中Survivin, P53蛋白的表达与预后的关系[J].中国普外科杂志.2005;14(4):265-268.
    33.付木锋,樊廷俊.Bcl-2家族蛋白与细胞凋亡[J].生物化学与生物物理学报.2002;34(4):389-394.
    34. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science.2004; 305(5684):626-629.
    35. Castedo M, Ferri K, Roumier T, et al. Quantitation of mitochondrial alterations associated with apoptosis[J]. J Immunol Methods.2002;265(1-2):39-47.
    36.蔡循,陈国强,陈竺.线粒体跨膜电位与细胞凋亡[J].生物化学与生物物理进展.2001;28(1):3-6.
    37. Martinous JC, Desagher S, Antonsson B. Cytoehrome c release from mitochondia:all or nothing[J]. Nat Cell Biol.2000;2(3):41-43.
    38. Cryns V, Yuan J. Proteases to die for[J]. Genes Dev.1998;12(11):1551-1570.
    39.Nasmyth K. Viewpoint:putting the cell in order[J]. Science.1996; 274(5293):1643-1645.
    40. Shiff SJ, Koutsos MI, Qiao L, et al. Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells:effects on cell cycle and apoptosis[J]. Exp Cell Res. 1996;222(1):179-188.
    41. Pishvaian MJ, Byers SW. Biomarkers of WNT signaling[J]. Cancer Biomark.2007;3(4-5): 263-274.
    42. Neth P, Ries C, Karow M, at al. The Wnt signal transduction pathway in stem cells and cancer cells:influence on cellular invasion[J]. Stem Cell Rev.2007;3(1):18-29.
    43. Matono H, Tamiya S, Yokoyama R, et al. Abnormalities of the Wnt/B-catenin signalling pathway induce tumour progression in sporadic desmoid tumours:correlation between B-catenin widespread nuclear expression and VEGF overexpression[J]. Histopathology.2011;59(3): 368-375.
    44. Katanaev VL. The Wnt/Frizzled GPCR signaling pathway[J]. Biochemistry (Mosc).2010; 75(12):1428-1434.
    45. Peifer M, Polakis P, Shou J, et al. Cancer-Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus[J]. Science.2000; 287(5458):1606-1609.
    46. Fearon ER. PARsing the phrase "all in for Axin"-Wnt pathway targets in cancer[J]. Cancer Cell.2009;16(5):366-368.
    47. Bankfalvi A, Terpe HJ, Breukelmann D, et al. Immunoplen typic and prognostic-analysis of E-cadherin and beta-catenin expression during breast carcinOgenesis and tumor progression:a comparative study with CD44[J]. Hjstopathology.1999; 34(1):25-34.
    48. Klemm F, Bleckmann A, Siam L, et al. B-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis[J]. Carcinogenesis.2011;32(3):434-442.
    49. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer:a changing paradigm[J]. Nat Rev Cancer.2009;9(3):153-166.
    51. Zhou P, Jiang W, Weghorst CM, et al. Overexpression of cyclin D1 enhances gene amplification [J]. Cancer Res.1996;56(1):36-39.
    52. Dong Y, Sui L, Sugimoto K, et al. Cyclin D1-CDK4 complex, a possible critical factor for cell proliferation and prognosis in laryngeal squamous cell carcinomas [J]. Int J Cancer.2001;95(4): 209-215.
    53. Yan KX, Liu BC, Shi XL, et al. Role of cyclinDl and CDK4 in the carcinogenesis induced by silica[J]. Biomed Environ Sci.2005;18(5):286-296.
    54. Baker SJ. A role for CDK4 in angiogenesis[J]. Cell Cycle.2010;9(13):2493. 55.Wang XY, Yin Y, Yuan H, ET AL. Musashil modulates mammary progenitor cell expansion through proliferinmediated activation of the Wnt and Notch pathways [J]. Mol Cell Biol.2008; 28(11):3589-3599.
    56. Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways:therapeutic perspective[J]. Clin Cancer Res.2006; 12(17):5018-5022.
    56. Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy[J]. Oncologist. 2004; 9(suppl 1):2-10.
    57. Adams J, Carder PJ, Banks RE, et al. Vascular endothelial growth factor(VEGF)in breast cancer:comparison of plasma, serum, and tissue VEGF and micro vessel density and effects of tamoxifen[J]. Cancer Res.2000;60(11):2989-2994.
    58. Hirakawa S, Brown LF, Kodama S, et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites[J]. Blood.2007;109(3):1010-1017.
    59. Fuckar D, Dekanic A, Stifter S, et al. VEGF-expression is associated with negative estrogen receptor status in patients with breast cancer[J]. Int J Surg Pathol.2006; 14(1):49-55.
    60. Bosari S, Lee AK, Delellis RA, et al. Microvessal quantilation and prognosis in inuasive breast carcinoma[J]. Hum Pathol.1992;23(7):755-761.
    1.施志仪,郭亚贞,王造.海带褐藻糖胶的药理活性[J].上海水产大学学报.2000;9(3):268-271.
    2. Kylin H. Biochemistry of sea algae[J]. Physiol Chem.1913;83:171-197.
    3.许凤清,吴皓.海带多糖的研究进展[J].中国中医药信息杂志.2005;6(12):106-108.
    4.吴茜芮,吴克,蔡敬.海带岩藻多糖的分离与部分性质研究[J].食品与发酵工业.2001;27(10):39-42.
    5.纪明侯.海藻化学[M].北京:科学出版社.1997:318.
    6.张全斌,徐祖洪.褐藻多糖硫酸酯化学研究的进展[J].中国海洋药物.1996;15(4):38-41.
    7.张全斌,徐祖洪.几种褐藻中褐藻多糖硫酸酯的分离及分析[J].海洋科学.1997;3:56-58.
    8.李林,罗琼,张声华.海带中褐藻糖胶的组成分析[J].中国食品学报.2002;1(1):46-49.
    9.程忠玲.褐藻糖胶及其与胶原形成复合物的体外抗凝血性研究[J].功能高分子学报.2003;16(4):557-560.
    10. Poncen M A. Fucoidans from the bmwn seaweed Adeno-cysti utricularis:extractionmethods, antiviral activity and structural studies[J]. Carbohydr Res.2003;338(2):153-165.
    11.李凡.褐藻糖胶体外抗病毒作用研究[J].白求恩医科大学学报.1995;3:255-257.
    12. Shibata H, KimuraTakagi I, Nagaoka M, et al. Inhibitory effect of Cladosiphon fucoidan on the adhesion of Helicobacter pylori to human gastric cells[J]. J Nutr Sci Vitaminol (Tokyo).1999; 45(3): 325-336.
    13. Lutay N, Nilsson I, Wadstrom T, et al. Effect of heparin, fucoidan and other polysaccharides on adhesion of enterohepatic helicobacter species to murine macrophages[J].Appl Biochem Biotechnol. 2011;164(1):1-9.
    14. Shibata H, Iimuro M, Uchiya N, et al. Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils[J]. Helicobacter.2003;8(1):59-65.
    15. Araya N, Takahashi K, Sato T, et al. Fucoidan therapy decreases the proviral load in patients with human T-lymphotropic virus type-1-associated neurological disease[J]. Antivir Ther.2011;16(1): 89-98.
    16. Cumashi A, Ushakova NA, Preobrazhenskaya ME, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology.2007;17(5):541-552.
    17. Nishino T, Yokoyama G, Dobashi K, et al. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities [J]. Carbohydr Res.1989; 186(1):119-129.
    18. Chevolot L, Foucault A, Chaubet F, et al. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity[J]. Carbohydr Res.1999; 319(1-4):154-165.
    19. Chevolot L, Mulloy B, Ratiskol J, et al. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae[J]. Carbohydr Res.2001;330(4):529-35.
    20. Duarte ME, Cardoso MA, Noseda MD, et al. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum[J]. Carbohydr Res.2001;333(4):281-293.
    21. Church FC, Meade JB, Treanor RE, et al. Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor Ⅱ, antithrombin Ⅲ, and thrombin[J]. J Biol Chem.1989;264(6): 3618-3623.
    22. Nishino T, Aizu Y, Nagumo T, et al. Influence of sulfate contene and molecular weight of a fucan sulfate from the brown seaweed Ecklonia Kurome on its antithrombin activity [J]. Thromb Res.1991; 64(6):723-731.
    23.孙炜,千慧铭.昆布多糖对高脂血症大鼠降胆固醇作用及其机理的研究[J].中国中药杂志.2004;29(10):1015-1016.
    24.李德远,王海滨.岩藻糖胶对实验性糖尿病小鼠血糖影响的研究[J].华中农业大学学报.1999;18(2):191-193.
    25.王素贞.褐藻糖胶治疗动脉粥样硬化临床观察[J].康复与疗养杂志.1994;4:173-174.
    26. Chang M. Effects of seatangle (Laminaria japonica) extract and fucoidan components on lipid metabolism of stressed mouse [J]. Journal of the Korean Fisheries Society.2000; 32(2):124-128.
    27.李德远,徐战,张声华.海带岩藻糖胶对小鼠的高胆固醇血症防治作用[J].食品科学.1999;1:45-46.
    28. Xue CH, Fang Y, LinH, et al. Chemical characters and anlioxidative properties of sulfated polysaccharides from Laminaria japoniea [J]. J Appl Phycol.2001;13(1):67-70.
    29.张全斌,于鹏展.周革非,等.海带褐藻多糖硫酸酯的抗氧化活性研究[J].中草.2003;34(9):824-826.
    30.李春梅,高永林,李敏.海带多糖对实验性高血脂鹌鹑的降脂及抗动脉粥样硬化作用[J].中药材.2005;28(8):676-679.
    31. Cuzzocrea S, Riley D, CaputiA P, et al. Antioxidant therapy:a new pharmacological approach in shock, inflammation, and ischem ia/reperfusion injury[J]. Pharmacol Rev.2001; 53(1):135-139.
    32.李德远,徐战,王海滨,等.岩藻糖胶对实验性糖尿病小鼠血糖影响的研究[J].华中农业大学学报.1999;18(2):191-193.
    33.李福川,唐志红.三种海带多糖的降糖作用[J].中国海洋药物.2000;19(5):12-15.
    34.李德远,徐现波,熊亮,等.海带的保健功效及海带生理活性多糖研究现状[J].食品科学.2002;23(7):151-154.
    35.张春辉,葛银林,耿芳宋,等.褐藻糖胶对人乳腺癌MCF-7细胞增殖与凋亡的影响.肿瘤.2008;28(3):220-223.
    36. Yamasaki-Miyamoto Y, Yamasaki M, et al. Fucoidan induces apoptosis through activation of caspase-8 on human breast cancerMCF-7 cells[J]. J Agric Food Chem.2009;57(18):8677-8682.
    37. Sekiva M, Funahashi H, Tsukamura K, et al. Intracel lular signaljng in the induction of apoptosis in a human breast cancer eell liRe by water extract of Mekabu[J]. Int J Clin Oncol.2005;10(2): 122-126.
    38. Zhang Z, Teruya K, Eto H, et al. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways[J]. PLoS One.2011;6(11):e27441.
    39. Hyun JH, Kim SC, Kang JI, et al. Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells[J]. Biol Phann Bull.2009;32(10):1760-1764.
    40. Kim EJ, Park SY, Lee JY, et al. Fucoidan present in brown algae induces apoptosis of human colon cancer cells [J]. BMC Gastroenterol.2010;10:96.
    41. Philchenkov A, Zavelevich M, Imbs T, et al.Sensitization of human malignant lymphoid cells to etoposide by fucoidan, a brown seaweed polysaccharide[J]. Exp Oncol.2007;29(3):181-185.
    42. Aisa Y, Miyakawa Y, Nakazato T, et al. F ucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways[J]. Am J Hematol. 2005; 78(1):7-14.
    43. Jin JO, Song MG, Kim YN, et al. The mechanism of fucoidan-induced apoptosis in leukemic cells: involvement of, glutathione, and nitric oxide[J]. Mol Carcinog.2010;49(8):771-782.
    44.吴晓曼,罗琼,闩俊,等.褐藻糖胶对人白血病细胞株K562凋亡的影响[J].中国公共卫生.2005;10(21):120-123.
    45. Boo HJ, Hyun JH, Kim SC, et al. Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells[J].2011 Mar 31. doi:10.1002/ptr.3489. [Epub ahead of print].
    46. Park HS, Kim GY, Nam TJ, et al. Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells[J]. J Food Sci.2011;76(3): T77-83.
    47. Ale MT, Maruyama H, Tamauchi H, et al. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo[J]. Int J Biol Macromol.2011;49(3):331-336.
    48. Ennakova S, Sokolova R, Kim SM, et al. Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata:structural characteristics and anticancer activity[J]. Appl Biochem Biotechnol.2011;164(6):841-850.
    49. Riou D, Colliec-Jouault S, Pinczon du Sel D, et al. Antitumor and antiproliferative effects of a fucan extracted from ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line[J]. Anticancer Res.1996;16(3A):1213-1218.
    50. Haneji K, Matsuda T, Tomita M, et al. Fucoidan extracted from Cladosiphon okamuranus Tokida induces apoptosis of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells[J]. Nutr Cancer.2005;52(2):189-201.
    51. Fukahori S, Yano H, Akiba J, et al. Fucoidan, a major component of brown seaweed, prohibits the growth of human cancer cell lines in vitro[J]. Mol Med Report.2008;1(4):537-542.
    52. Yang M, Ma C, Sun J, et al. Fucoidan stimulation induces a functional maturation of human monocyte-derived dendritic cells[J]. Int Immunopharmacol.2008;8(13-14):1754-1760.
    53.杨晓林.褐藻糖胶的免疫调节作用[J].中国海洋药物.1995;3:9-13.
    54.施志仪.海带褐藻糖胶的药理活性[J].海水产大学学报.2000;3:268-271.
    55. Maruyama H, Tamauchi H, Hashimoto M, et al. Antitumor activity and immune response of Mekabu fucoidan extracted from Sporophyll of Undaria pinnatifida[J]. In Vivo.2003;17(3):245-249.
    56. Choi EM, Kim AJ, Kim YO, et al. Immunomodulating activity of arabinogalactan and fucoidan in vitro [J].J Med Food.2005;8(4):446-453.
    57. Irhimeh MR, Fitton JH, Lowenthal RM. Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells[J]. Exp Hematol.2007;35(6):989-994.
    58. Itoh H, Noda H, Amano H, et al. Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae[J]. Anticancer Res.1993;13(6A):2045-2052.
    59. Itoh H, Noda H, Amano H, et al. Immunological analysis of inhibition of lung metastases by fucoidan (GIV-A) prepared from brown seaweed Sargassum thunbergii [J].Anticancer Res.1995; 15(5B):1937-1947.
    60. Yang M, Ma C, Sun J, et al. Fucoidan stimulation induces a functional maturation of human monocyte-derived dendritic cells[J]. Int Immunopharmacol.2008;8(13-14):1754-1760.
    61. Hu Y, Cheng SC, Chan KT, et al. Fucoidin enhances dendritic cell-mediated T-cell cytotoxicity against NY-ESO-1 expressing human cancer cells[J].Biochem Biophys Res Commun.2010;392(3): 329-334.
    62. Haneji K, Matsuda T, Tomita M, et al. Fucoidan extracted from Cladosiphon okamuranus Tokida induces apoptosis of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells[J]. Nutr Cancer.2005;52(2):189-201.
    63. Nagamine T, Hayakawa K, Kusakabe T, et al. Inhibitory effect of fucoidan on Huh7 hepatoma cells through downregulation of CXCL12[J]. Nutr Cancer.2009;61(3):340-347.
    64. Do H, Pyo S, Sohn EH. Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and depends on up-regulation of scavenger receptor B1 expression in TNF-alpha- and IFN-gamma-stimulated C6 glioma cells[J].J Nutr Biochem.2010;21(8): 671-679.
    65.杨晓林,孙菊云,许汉年,等.褐藻糖胶的免疫调节作用[J].中国海洋药物.1995;14(3):9-13.
    66. Koyanagi S, Tanigawa N, Nakagawa H, et al. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities [J]. Biochem Pharmacol.2003;65(2):173-179.
    67. Lee NY, Ermakova SP, Zvyagintseva TN, et al. Inhibitory effects of fucoidan on activation of epidermal growth factor receptor and cell transformation in JB6 C141 cells [J]. Food Chem Toxicol. 2008; 46(5):1793-1800.
    68. Soeda S, Ishida S, Shimeno H, et al. Inhibitory effect of oversulfated fucoidan on invasion through reconstituted basement membrane by murine Lewis lung carcinoma[J]. Jpn J Cancer Res.1994; 85(11): 1144-1150.
    69. Saitoh Y, Nagai Y, Miwa N. Fucoidan-Vitamin C complex suppresses tumor invasion through the basement membrane, with scarce injuries to normal or tumor cells, via decreases in oxidative stress and matrix metalloproteinases[J]. Int J Oncol.2009;35(5):1183-1189.
    70. Liu JM, Bignon J, Haroun-Bouhedja F, et al. Inhibitory effect of fucoidan on the adhesion of adenocarcinoma cells to fibronectin[J]. Anticancer Res.2005;25(3B):2129-2133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700