考虑地下构筑物对地下水渗流阻挡效应的地面沉降性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用室内试验与数值分析相结合的方法研究地下构筑物对多层含水层的渗流阻挡效应及其对城市地面沉降的影响机理;室内试验还用于验证数值分析中的计算参数。将上述构筑物的挡水作用机理的分析方法与试验确定的参数,用于分析上海市近年来的地面沉降加速现象。本研究的主要内容与成果如下:
     1)上海市自20世纪90年代以来出现的沉降加剧现象的主要原因仍然是地下水位的持续下降作用。通过对上海市地面沉降量、地下水开采量以及地下水位三者实测数据的相关性分析发现,目前的沉降量与地下水开采量之间相关性较差;但沉降量与地下水位之间仍具有密切的相关性。
     2)上海市中心区近年的地面沉降与工程建设密切相关。引起沉降的与工程建设相关的因素包括建筑物的附加荷载、工程施工以及地下水位下降。本研究的目的是分析工程建设中引起地下水位下降的因素——地下构筑物的长期挡水作用对上海市中心区地面沉降的影响。
     3)应用室内试验确定单层含水层中地下构筑物在含水层中的插入深度与宽度对地下水渗流的阻挡作用机理。试验结果表明,构筑物下游侧的地下水位变化随构筑物埋深的增加而增大,构筑物最优插入深度比(构筑物对水位下降作用最大的插入深度与所插入土层的厚度之比)约为70%;随着构筑物宽度的增加,下游侧测点水位变化呈增长趋势,上游侧水位变化呈减小趋势。
     4)应用数值模拟确定多层含水层中地下构筑物对多层含水层地下水的阻挡作用以及含水层之间的越流变化规律。数值模拟结果表明,地下构筑物的存在对地下水位、地下水渗流方向、含水层之间的越流变化以及地面沉降量等有较大的影响;相关因素包括构筑物的埋深范围、挡水宽(长)度、以及构筑物与开采井之间的相对位置等。构筑物插入第II含水层的最优插入深度比约为56%。
     5)应用数值模拟的方法分析上海市多层含水层-隔水层交互堆积地层中地下构筑物的存在对上海市特别是中心区的含水层地下水渗流与地面沉降的作用规律。以上海市含水层与隔水层交互堆积的地层为对象,建立三维地下水渗流及一维土体固结相结合的地面沉降计算模型分析构筑物的挡水效应。为了简化问题,计算中考虑了两种极端的情况:①构筑物分布式配置,②构筑物集中式配置;真实情况可能介于两者之间。计算成果如下:
     ①构筑物分布式配置,即材质等效法:将中心城区内含水层内大量的地下构筑物的作用简化为渗透系数和压缩系数降低了的新材料,即等效渗透系数与等效压缩系数。该方法用来模拟大范围地下构筑物对地面沉降的影响。模拟结果表明,第II含水层中的构筑物对上海中心城区的沉降量影响最大,外环内第II含水层中构筑物含量每增加10%,中心城区年均沉降量大约增长32%;而第I含水层及微承压中的构筑物对沉降的影响程度较小,各含水层构筑物含量每增加10%时,中心城区年均沉降量大约增长3%左右。
     ②构筑物集中式配置,即含水层局部挡水法:将局部含水层单元的材质直接替换为构筑物材质,而其它地方仍使用天然地层的材质,即考虑含水层局部挡水效应。该方法用来考虑局部环形构筑物对中心城区的地面沉降作用效应。计算结果表明,如果集中配置区域内构筑物的含量超出某临界值,其所围区域内将产生构筑物挡水引起的附加沉降。构筑物含量的临界值对微承压含水层为65%,第I含水层为62%,第II含水层为58%。
This study was undertaken to evaluate the impact behaviour on groundwater seepage and land subsidence when infrastructures such as deep buiding foundations, underground structures, subway tunnels, underground path structures, were constructed in the multi-aquifer-aquitard system (MAAS) such as in Shanghai. In order to investigate the mechanism of these impacts, laboratory element tests and numerical simulations based on groundwater seepage model were conducted to analysis cutoff behavior on groundwater seepage of infrastructures. Laboratory element tests were also conducted to determine the parameters in numerical simulation. The obtained mechanism based on the laboratory tests and numerical simulation was employed to investigate the patterns of land subsidence in Shanghai via considering the impact of infrastructure in MAAS of Shanghai. Based on the research results, countermeasures of future construction plan of infrastructures in MAAS were proposed. The gist and primary new findings of this dissertation includes:
     1) Land subsidence in Shanghai since 1990 was still related to drawdown of groundwater level. A serious of regression analyses was carried out to investigate the relationship among subsidence, groundwater level of each aquifer, and volume of groundwater withdrawal. The results show that subsidence since 1990 is not correlated with the volume of groundwater withdrawal; however, it is still correlated with the drawdown of groundwater level.
     2) Land subsidence in Shanghai is also correlated with activities of urban construction. Factors resulting in land subsidence during activities of urban construction include additional load during and after structural construction and drawdown of groundwater level, e.g. groundwater pumping during excavation, leaking of underground sturctures. The existence of infrastructure in aquifers in the urban region is a significant reason, which results in the drawdown of groundwater level.
     3) A series of laboratory investigation on the cutoff behavior of an impervious wall in a phreatic aquifer was conducted. Test results show that drawdown of groundwater level at the lower side of the wall increases with the increase of the inserted depth of the wall in soil and increases with the increase of the width the wall. The optimal insertion depth ratio of the wall (ratio of the depth over the thickness of soil layer) is about 70%.
     4) A series of numerical analyses was conducted to investigate the obstruction behaviour of underground structures in MAAS. The analytical results show that the existence of underground structures changes the groundwater level, groundwater flow direction, and the rate of subsidence and causes leakage of groundwater among aquifers through aquitards. Influential factors include depth of infrastucture penetrated into the aquifers, the width of underground structures, and the relative position between infrastructure and groundwater discharge or recharge well. The optimal ratio of penetration depth of infrastructure in aquifer II is about 56%.
     5) A series of numerical analyses was conducted to analyze behavior of seepage and land subsidence via considering the impact of understructures in MAAS of Shanghai. Since it is difficult to make sure the distribution of understructures and it is also difficult to allocate each understructure in numerical model, following two extreme situations are assumed in this study.
     i) Distributed underground structure: In this situation, the whole aquifer with underground structures is assumed as a uniform material with so-called effective hydraulic conductivity and effective compressibility. This method changes the aquifer with underground structures into another material with lower coefficient of hydraulic conductivity and compressibility. The results revealed that the rate of subsidence in the urban area increased via considering existence of underground structures. When the volume ratio of underground structures in aquifer II increases 10%, subsidence increases about 32%. However, if the volume ratio of underground structures in aquifer I and low-pressure aquifer increases 10%, subsidence increases only about 3%.
     ii) The second assumed situation is so-called concentrated allocation of underground structure in aquifer, which embowels the heavily urbanized area. In this situation, part of soil material in aquifer is directly replaced by structure material to investigate the impact of concentrated infrastructures on the emboweled urban area. Results showed that additional subsidence within the emboweled urban area increases with the increase of volume ratio of underground structure (VROUS). However, when VROUS is controlled within a critical value, additional subsidence in the emboweled urban area can be controlled within the allowable value. The critical value of VROUS for low-pressure aquifer is 65%, for aquifer I it is abot 62%, and for aquifer II it is about 58%.
引文
[1] Poland, J.F. Guidebook to studies of land subsidence due to ground-water withdrawal. Published by the United Nations Educational, Scientific and Cultural Organization, 1984.
    [2]上海市城乡建设和交通委员会.地面沉降监测与防治技术规程(J11371-2009).上海,2009.
    [3]刘杜鹃,叶银灿.长江三角洲地区的相对海平面上升与地面沉降.地质灾害与环境保护,2005,16(4):400-404.
    [4]叶晓宾,何庆成.华北平原地面沉降经济损失报告.北京:中国大地出版社,2006.
    [5] Committee on Ground Failure Hazards Mitigation Research (CGFHMR). Mitigating losses from land subsidence in the United States. National Academy Press, Washington, 1991.
    [6] He, Q.C., Ye, X.B., Liu, W.B., Li, Z.M., and Li, C. Land subsidence in the northern China plain (NCP). In: Zhang, A.G., Gong, S.L., Carbognin, L., and Johnson, A.I. (eds) Proceedings of the Seventh International Symposium on Land Subsidence, Shanghai, China. Shanghai Scientific & Technical Publishers, 2005, 18-29.
    [7]龚士良,李采,杨世伦.上海地面沉降与城市防汛安全.水文地质与工程地质,2008,(4):96-101.
    [8]吴孟杰,赵建康,刘思秀,沈慧珍,徐登财.浙江省地面沉降防治工作管理现状.中国地质矿产经济学会2007年学术年会,2007,621-624.
    [9]三浦哲彦,飯盛喜代春,坂井晃,陶野郁雄.佐賀平野における揚水に伴う地盤沈下と地下水水質への影響.土と基礎,1986,34(11):13-18.
    [10] Don, N.C., Araki, H., Hang, N.T.M., Yamanishi, H., and Koga, K. Modeling groundwater flow and its associated environmental problem in a lowland coastal plain: a first step towards a sustainable development plan. Environment, Development and Sustainability, 2008, 10(2):219-231.
    [11] Phienwej, N., Giao, P.H., and Nutalaya, P. Field experiment of artificial recharge through a well with reference to land subsidence control. Enigineering Geology, 1998, 50(1-2):187-201.
    [12]张阿根,魏子新.中国地面沉降.上海:上海科学技术出版社,2005.
    [13] Zektser, S., Loaiciga, H.A., and Wolf, J.T. Enivironmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environmental Geology, 2005, 47(3):396-404.
    [14] Arizona Land Subsidence Group (ALSG). Land subsidence and earth fissures in Arizona. Report CR-07-C of Arizona Geological Survey, 2007.
    [15] Bankher, K.A. and AI-Harthi, A.A. Earth fissuring and land subsidence in wester Saudi Arabia. Natural Hazards, 1999, 20(1):21-42.
    [16]刘学峰,邵爱武.西安地裂缝与地面沉降分析.地下水,2008,30(6):124-126.
    [17] Zhang, Y., Xue, Y.Q., Wu, J.C., Yu, Z.Y., Wei, Z.X., and Li, Q.F. Land subsidence and earth fissures due to groundwater withdrawal in the Southern Yangtse Delta, China. EnvironmentalGeology, 2008, 55(4):751-762.
    [18] Freeze, R.A. Social decision making and land subsidence. In: Cabognin, L., Gambolati, G., Johnson, A.I. (eds) Proceedings of the Sixth International Symposium on Land Susbisdnece, Ravenna, Italy, 2000, 53-68.
    [19] Xu, Y.S., Zhang, D.X., Shen, S.L., and Chen, L.Z. Geo-hazards with characteristics and prevention mesasures along the coastal regions of China. Natural Hazards, 2009, 49(3):479-500.
    [20] Whittaker, B.N. and Reddish, D.J. Subsidence cccurrence, prediction and control. Elsevier Science Publisher, New York, 1989.
    [21] Kagawa, A., Furuno, K., Kusuda, T., Satoh, K., Sakai, Y., Kamura, K., Kazaoka, O., and Morisaki, M. Land subsidence in artificial islands due to liquefaction caused by the Kobe earthquake in 1995, Japan. In: Cabognin, L., Gambolati, G., and Johnson, A.I. (eds) Proceedings of the Sixth International Symposium on Land Subsidence, Ravenna, Italy, 2000, 45-51.
    [22] Mayuga, M.N. and Allen, D.R. Subsidence in the Wilmington oil field, Long Bearch, California, U.S.A. In: Proceedings of the Second International Symposium on Land Subsidence, Anaheim, U.S.A., IAHS Pubication No. 121, 1976, 66-79.
    [23] Sulak, R.M. Ekofisk field: the first 20 years. Journal of Petroleum Technology, 1991, 43(10):1265-1271.
    [24]别君,黄海军,樊辉,毕世普.现代黄河三角洲地面沉降及其原因分析.海洋地质与第四纪地质,2006,26(4):29-35.
    [25] Rick, G.A. Review of subsidence at Wairakei field, New Zealand. Geothermics, 2000, 29(4-5):455-478.
    [26]吴振祥,简文彬,樊秀峰.福州市地面沉降及防治对策.第一届全国环境岩土工程与土工合成材料技术研讨会论文集,2003,308-311.
    [27] Xue, C.D., Li, B.Z., Wei, H.X., Liu, X., and Li, F. Mechanism analysis of land subsidence in Kunming City Area. In: Proceeding of the Seven International Symposium on Land Subsidence, Shanghai, China. Shanghai Scientific & Techinical Publishers, 2005, 306-316.
    [28]薛禹群,张云,叶淑君,吴吉春,魏子新,李勤奋,于军.我国地面沉降若干问题研究.高校地质学报,2006,12(2):153-160.
    [29] Xu, Y.S., Shen, S.L., Cai, Z.Y., and Zhou, G.Y. The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Natural Hazards, 2008, 45(1):123-135.
    [30] Holzer, T.L. and Johnson, A.I. Land subsidence caused by ground water withdrawal in urban areas. Geojournal, 1985, 11(3):245-255.
    [31] Galloway, D., Jones, D.R., and Ingebritsen, S.E. Land subsidence in the United States. U.S. Geological Sruvey Circular 1182, 1999.
    [32] Gambolati, G., Teatini, P., and Ferronato, M. Anthropogenic land subsidence. Earth Science Frontiers, 2006, 13(1):160-178.
    [33] The Joint Academies Committee on the Mexico City Water Supply (CMWS). Mexico city’s water supply: improving the outlook for sustainability. National Academy Press, Washingto, D.C. 1995.
    [34] Figueroa Vega, G.E. Subsidence of the city of Mexico: a historical review. In: Proceedings of theSecond International Symposium on Land Subsidence, Anaheim, U.S.A. IAHS Pubication No. 121, 1976, 35-36.
    [35] Poland, J.F. Land subsidence and aquifer-system compaction, Santa Clara Valley, California, USA. In: Land Subsidence Proceeding of the Tokyo Symposium, Tokyo, Japan. IAHS Pubication No. 88, 1969, 285-294.
    [36] Ben, E.L. Field measurement of aquifer-system compaction, San Joaquin Valley, California, USA. In: Land Subsidence Proceeding of the Tokyo Symposium, Tokyo, Japan. IAHS Pubication No. 88, 1969, 272-284.
    [37] Pavelko, M.T., Hoffmann, J., and Damar, N.A. Interferograms showing land subsidence and uplift in Las Vegas, Nevada, 1992-99. Scientific Investigations Report 2006-5218 of U.S. Geological Survey, 2006.
    [38] Schumann, H.H. and Poland, J.F. Land subsidence, earth fissures and groundwater withdrawal in south-central Arizona, U.S.A. In: Land Subsidence Proceeding of the Tokyo Symposium, Tokyo Japan. IAHS Pubication No. 88, 1969, 295-302.
    [39] Carruth, R.L., Pool, D.R., and Anderson, C.E. Land subsidence and aquifer-system compaction in the Tucson active management area, South-central Arizona, 1987-2005. Scientific Investigations Report 2007-5190 of U.S. Geological Survey, 2007.
    [40] Inaba, Y., Abe, I., Iwasaki S., Aoki, S., Endo, T., and Kaido, R. Reviews of land subsidence researches in Tokyo. In: Land Subsidence Proceeding of the Tokyo Symposium, Tokyo, Japan. IAHS Pubication No. 88, 1969, 87-98.
    [41] Okumura, T. Analysis of land subsidence in Niigata. In: Land Subsidence Proceeding of the Tokyo Symposium, Tokyo, Japan. IAHS Pubication No. 88, 1969, 128-143.
    [42]環境省水大気環境局.平成19年度全国の地盤沈下地域の概況.平成20年.
    [43]何庆成,叶晓滨,李志明,刘文波.我国地面沉降现状及防治战略设想.高校地质学报,2006,12(2):161-168.
    [44]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究.中国地质灾害与防治学报,2005,16(2):1-8.
    [45]薛禹群,吴吉春,张云,叶淑君,施小清,魏子新,李勤奋,于军.长江三角洲(南部)区域地面沉降模拟研究.中国科学D辑:地球科学,2008,38(4):477-492.
    [46] Xue, Y.Q., Zhang, Y., Ye, S.J., Wu, J.C., and Li, Q.F. Land subsidence in China. Environmental Geology, 2005, 48(6):713-720.
    [47] Zhu, X.B., Wu, J.C., Ye, S.J., and Zhao, J.K. The management model of groundwater resources in deep aquifers of the Changjiang Delta (South of the Changjiang River) consider the land subsidence. In: Zhang, A.G., Gong, S.L., Carbognin, L., and Johnson, A.I. (eds) Proceedings of the Seventh International Symposium on Land Subsidence, Shanghai, China. Shanghai Scientific & Technical Publishers, 2005, 647-653.
    [48]李勤奋,王寒梅.上海地面沉降研究.高校地质学报,2006,12(2):169-178.
    [49]龚士良.长江三角洲地质环境与地面沉降防治.中国地质学会2005年学术年会,2005,25-34.
    [50]于军,王晓梅,武健强,谢建宝.苏锡常地区地面沉降特征及其防治建议.高校地质学报,2006,12(2):179-184.
    [51]赵建康,吴孟杰,刘思秀.浙江省杭嘉湖平原地面沉降及监测网络研究.地质灾害与环境保护,2004,15(1):16-20.
    [52]赵建康,吴孟杰,刘思秀,沈慧珍.浙江省滨海平原地下水开采与地面沉降.高校地质学报,2006,12(2):185-194.
    [53]中国地质调查局.华北平原地面沉降调查与监测重要进展(2003-2005).http://old.cgs.gov.cn/NEWS/Geology%20News/2006/20060710/24.pdf,2006.
    [54]天津市地质调查研究院.天津市中心城区地下空间综合地质调查研究报告.2007.
    [55]董克刚,周俊,于强,郑玉萍,徐冬,朱庆川,王淼.天津市地面沉降的特征及其危害.地质灾害与环境保护,2007,18(1):67-70.
    [56]何庆成,刘文波,李志明.华北平原地面沉降调查与监测.高校地质学报,2006,12(2):195-209.
    [57]贾三满,王海刚,罗勇,杨艳,王荣,冯颖.北京市地面沉降发展及对城市建设的影响.城市地质,2007,2(4):19-23.
    [58]贾三满,王海刚,赵守生,罗勇.北京地面沉降机理研究初探.城市地质,2007,2(1):20-26.
    [59]张桂平,洪万才.沧州市地面沉降初探.水资源保护,2003,(2):54-55.
    [60]史洪飞,哈建强,李瑞森,付学功.沧州地下水超采与生态环境演变及控制措施.南水北调与水利科技,2008,6(6):72-77.
    [61]彭建兵,范文,李喜安,王庆良,冯希杰,张骏,李新生,卢全中,黄强兵,马润勇,卢玉东.汾谓盆地地裂缝成因研究中的若干关键问题.工程地质学报,2007,(4):433-440.
    [62]姜规模.西安市地面沉降与地裂缝研究.城市勘测,2005,(3):53-63.
    [63]孙自永,马腾,马军,马瑞,闫春淼.太原市地层空间异质性对地面沉降分布的影响.岩土力学,2007,28(2):399-408.
    [64]沈孝宇,孙愫文,周国云,林丹,张荣堂.宁波城市地面沉降物理数学模型及沉降预测.中国地质大学学报,1989,14(2):135-144.
    [65]许乃政,姜月华,王敬东,刘红樱,贾军元.我国东南沿海地面沉降类型及其特点.灾害学,2005,20(4):67-72.
    [66]罗树文,吴捷.湛江市区滨海平原地面沉降现状与防治对策.中国地质灾害与防治学报,2006,17(3):98-102.
    [67] Chang, J.C. Natural hazards in Taiwan. GeoJournal, 1996, 38(3): 251-257.
    [68] Liu, C.H., Hung, W.C., Tu, F.L., Ouyang, S., Chen, S.H., Huang, H.P., and Lee, C.C. Integrated investigation of land subsidence due to groundwater pumping in the west Taiwan. In: Zhang, A.G., Gong, S.L., Carbognin, L., and Johnson, A.I. (eds) Proceeding of the Seventh International Symposium on Land Subsidence, Shanghai, China. Shanghai Scientific & Technical Publishers, 2005, 39-52.
    [69]龚士良.台湾地面沉降现状与防治对策.中国地质灾害与防治学报,2003,14(3):24-31.
    [70] Holzer, T.L. and Bluntzer, R.L. Land Subsidence near oil and gas fields, Houston, Texas. Ground Water, 1984, 22(4):450-459.
    [71]许烨霜,沈水龙,蔡正银.从实测数据推测地下水的可开采量.中国土木工程学会第十届土力学及岩土工程学术会议论文集,2007,514-517.
    [72]王海刚.天津市地面沉降现状及预测[硕士学位论文].北京:中国地质大学,2006.
    [73] Miyabe, N. Directions of research on land subsidence. In: Land Subsidence Proceeding of the Tokyo Symposium, Tokyo, Japan. IAHS Pubication No. 88, 1969, 1-11.
    [74] Li, T., Huang, S.L., and Zhou, C.H. Land subsidence prediction by various grey models. Environmental Informatics Archives, 2005, 3:403-410.
    [75]张玉祥.岩土工程时间序列预报问题初探.岩石力学与工程学报,1998,17(5):552-558.
    [76]张序.苏州地面沉降灰色系统预测模型.苏州城建环保学院学报,2000,13(4):53-57.
    [77]张先林.上海市地面沉降动态分析与灰色预测.上海地质,1991(1):42-46.
    [78] Luo, Z.Y., Wei, L., and Xia, J.Z. Grey verhulst prediction of land subsidence. In: Zhang, A.G., Gong, S.L., Carbognin, L., and Johnson, A.I. (eds) Proceedings of the Seventh International Symposium on Land Subsidence, Shanghai, China. Shanghai Scientific & Techiical Publishers, 2005, 609-615.
    [79]王威,陆阳,董克刚.天津市地面沉降的灰色系统-马尔柯夫预测模型应用.城市地质,2008,3(1):41-44.
    [80] Darcy, H. Les frontaines publiques de la ville de Dijon. V. Dalmont, Paris, 1856.
    [81] Dupuit, J. Etudes theoretiques et pratiques sur la mouvement des eaux dans les canaux decouverts et a travers les terrains permeables. Dunod, Paris, 1863.
    [82] Theis, C.V. The relation between the lowing of the piezometric surface and the rate and duration of the discharge of a well using groundwater storage. In: Transactions of the American Geophysical Union, 16th Annual meeting, 1935, Part 2, 519-524.
    [83]薛禹群,叶淑君,谢春红,张云.多尺度有限元法在地下水模拟中的应用.水利学报,2004,(7):7-13.
    [84] Ye, S.L., Xue, Y.Q., Xie C.H. Application of the multiscale finite element method to flow in heterogeneous porous media. Water Resources Research, 2004, 40(9):1-9.
    [85]薛禹群,谢春红.地下水数值模拟.北京:科学出版社,2007.
    [86]张云,薛禹群.抽水地面沉降数学模型的研究现状与展望.中国地址灾害与防治学报,2002,13(2):1-6.
    [87] Gambolati, G. and Freeze, R.A. Mathematical simulation of the subsidence of Venice 1: theory. Water Resources Research, 1973, 9(3):721-733.
    [88] Gambolati, G., Gatto, P., and Freeze, R.A. Mathematical simulation of the subsidence of Venice 2: results. Water Resources Research, 1974, 10(3):563-577.
    [89] Helm, D.C. One-dimensional simulation of aquifers system compaction near Pixley, California 1, constant parameters. Water Resources Research, 1975, 11(3):465-478.
    [90] Bravo, R., Rogers, J.R., and Cleveland, T.G. A new three dimensional finite difference model of ground water flow and land subsidence in the Houston Area. In: Johnson, A.I. (ed) Proceedings of the Fourth International Symposium on Land Subsidence, Houston, U.S.A. IAHS Publication No. 200, 1991, 15-26.
    [91]陈崇希,裴顺平.地下水开采-地面沉降模型研究.水文地质工程地质,2001,(2):5-8.
    [92] Rivera, A., Ledoux, E., and de Marsily, G. Nonlinear modeling of groundwater flow and totalsubsidence of the Mexico city aquifer-aquitard system. In: Johnson, A.I. (ed) Proceedings of the Fourth International Symposium on Land Subsidence, Houston, U.S.A. IAHS Publication No. 200, 1991, 45-58.
    [93] Chen, C.X., Cheng, J.M, Pei, S.P., and Liu, J. Numerical model of land subsidence caused by groundwater abstraction and its countermeasure-by example of Suzhou City. In: Zhang, A.G., Gong, S.L., Carbognin, L., and Johnson, A.I. (eds) Proceedings of the Seventh International Symposium on Land Subsidence, Shanghai, China. Shanghai Scientific & Techiical Publishers, 2005, 672-679.
    [94]冉启全,顾小芸.考虑流变特性的流固耦合地面沉降计算模型.中国地质灾害与防治学报,1998,9(2):99-103.
    [95] Dassargues A. On the necessity to consider varying parameters in land subsidence computations. In: Barends, F.B.J., Brouwer, F.J.J., and Schroder, F.H. (eds) Proceedings of the Fifth International Symposium on Land Subsidence, Hague, the Netherlands. IAHS Publication No. 234, 1995, 259-268.
    [96] Gambolati, G. and Sartobetto, F. A conjugate gradient finite element model of flow for large multiaquifer systems. Water Resources Research, 1986, 22(7):1003-1015.
    [97]鎌田烈,村上雅博,原田和彦.準三次元帯水層モデルによる地盤沈下の解析.地球科學,1973,27(4):131-140.
    [98] Teatini, P., Gambolati, G., and Tosi, L. A new 3-D non-linear model of the subsidence of Venice. In: Proceedings of the Fifth International Symposium on Land Subsidence, Shanghai, China. Shanghai Scientific & Techiical Publishers, 2005, 353-361.
    [99] Gambolati, G. and Teatini, P. A block iterative finite element model for non-linear leaky aquifer systems. Water Resources Research, 1996, 32(1):199-204.
    [100]顾小芸.地面沉降计算的回顾与展望.中国地质灾害与防治学报,1998,9(2):81-85.
    [101]李勤奋,方正,王寒梅.上海市地下水可开采量模型计算及预测.上海地质,2000,(2):36-43.
    [102]魏加华,崔亚莉,邵景力,陈占成,文唐章.济宁市地下水与地面沉降三维有限元模拟.长春科技大学学报,2000,30(4):376-380.
    [103] McDonald, M.G. and Harbaugh, A.W. A modular three-dimensional finite-difference ground-water flow model. USGS, Techniques of Water-Resources Investigations, Book 6, Charpter A1, U.S.A. Government printing Office, Washington, 1988.
    [104]崔小东.MODFLOW和IDP在天津地面沉降数值计算中的应用与开发.中国地质灾害与防治学报,1998,9(2):122-128.
    [105] Onta, P.R. and Gupta, A.D. Regional management modeling of a complex groundwater system for land subsidence control. Water Resources management, 1995, 9(1):1-25.
    [106] Don, N.C., Araki, H., Yamanishi, H., and Koga, K. Simulation of groundwater flow and environmental effects resulting from pumping. Environmental Geology, 2005, 47(3):361-374.
    [107]许烨霜,沈水龙,唐翠萍,姜弘.基于地下水渗流方程的三维地面沉降模型.岩土力学,2005, 26(增):109-113.
    [108] Shen, S.L., Xu, Y.S., and Hong, Z.S. Estimation of land subsidence based on groundwater flow model. Marine Georesources and Geotechnology, 2006, 24(2):149-167.
    [109]沈水龙,许烨霜,陶野郁雄.海洋沉积环境中地下天然气开采引起地面沉降的计算分析.岩石力学与工程学报,2005,24(增2):5389-5394.
    [110]沈水龙,许烨霜,陶野郁雄.海洋沉积环境中深层地下水溶性天然气开采引起的地面沉降.岩石力学与工程学报,2006,25(6):1094-1098.
    [111] Xu, Y.S., Shen, S.L., Hayashi, S., and Cai, Z.Y. Analysis of groundwater withdrawal and land subsidence in Shanghai. Lowland Technology International, 2007, 9(2):2-7.
    [112] Shen, S.L., Xu, Y.S., Cai, Z.Y., and Hayashi, S. 3D-analysis on land subsidence in Shanghai due to withdrawal of groundwater. In: Proceeding International Symposium on Lowland Technology, Saga, Japan, Institute of Lowland Technology, 2006, 247-252.
    [113] Biot, M.A. General theory of three dimensional consolidation. Journal of Applied Physics, 1941, 12(2):155-164.
    [114] Duncan, J. M. and Chang, C. Y. Non-linear analysis of stress and strain in soils, Journal of Soil Mechanics and Foundations Division, ASCE, 1970, 96(5), 1629-1653.
    [115] Roscoe K.H. and Burland J.B. On the generalized stress-strain behaviour of“wet”clay. In: Heyman, J. and Leckie, F.A. (eds) Engineering Plasticity, Cambridge University Press, 1968, 535-609.
    [116] Shen, S.L, Chai, J.C., Hong, Z-S., and Cai, F.X. Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotextiles and Geomemberanes, 2005, 23(6), 463-485.
    [117]张建民,王刚,陈杨.海岸岩土工程的物理与数值模拟方法.岩土力学,2004,25(增2),61-74.
    [118]蔡丰锡.软土地层中双圆盾构法施工引起的应力与变形分析[硕士学位论文].上海:上海交通大学,2006.
    [119] Johnson, J.P., Rhett, D.W., and Siemers, W.T. Rock mechanics of the Ekofisk reservoir in the evaluation of subsidence. Journal of Petroleum Technology, 1989, 41(7):717-722.
    [120] Bear, J. and Corapcioglu, M.Y. Mathematical model for regional land subsidence due to pumping 1: integrated aquifer subsidence equations based on vertical displacement only. Water Resources Research, 1981, 17(4):937-946.
    [121] Li, Y., Rao X., Li, Y., and Chen, G. Study on land subsidence induced by pumping groundwater with three-dimensional finite element of water and soil coupling. In: Zhang, A.G., Gong, S.L., Carbognin, L., and Johnson, A.I. (eds) Proceedings of the Seventh International Symposium on Land Subsidence, Shanghai, China. Shanghai Scientific & Techiical Publishers, 2005, 715-726.
    [122] Ye, S.J., Xue, Y.Q., Wu, J.C., Zhang, Y., Wu, J.F, and Li, Q.F. Study on the groundwater flow model for land subsidence modeling in Shanghai. In: Zhang, A.G., Gong, S.L., Carbognin, L., and Johnson, A.I. (eds) Proceedings of the Seventh International Symposium on Land Subsidence, Shanghai, China, Shanghai Scientific & Techiical Publishers, 2005, 628-634.
    [123] Li, J. Sensitivity Analysis of a viscous model for 1-D subsidence caused by ASR applications. In: Debarry, P. (ed) World Water and Environmental Resources Congress 2003, Philadelphia, U.S.A. ASCE, 2003, 1-10.
    [124] Li, J, and Helm, D.C. Elastic Solutions of 1-D Subsidence due to ASR Applications. In: World Water and Environmental Resources Congress 2001, Orlando, U.S.A. ASCE, 2001, 1-11.
    [125] Hoffmann, J. and Zebker, H.A. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resources Reserch, 2001, 37(6):1551-1566.
    [126]赵慧,钱会,李渊,彭建兵.抽水和建筑荷载双重作用下的地面沉降模型.地球科学与环境学报,2008,30(1):57-59.
    [127]日本国立環境研究所.深層地下水採取における地盤沈下機構解明調査.平成13年度環境省委託研究報告書,日本筑波市,2002.
    [128]日本国立環境研究所.深層地下水採取における地盤沈下機構解明調査.平成14年度環境省委託研究報告書,日本筑波市,2003.
    [129] Sakai, A. Land subsidence due to seasonal pumping of groundwater in Saga Plain, Japan. Lowland Technology International, 2001, 3(1):24-39.
    [130]薛禹群,张云,叶淑君,李勤奋.中国地面沉降及其需要解决的几个问题.第四纪研究,2003,23(6):585-592.
    [131]龚士良.上海城市建设对地面沉降的影响.中国地质灾害与防治学报,1998,9(2):108-111.
    [132]施伟华.建设工程与水资源开发对地面沉降影响分析.上海地质,1999,(4):50-54.
    [133]唐益群,崔振东,王兴汉,卢辰.密集高层建筑群的工程效应环境效应引起地面沉降初步研究.西北地震学报,2007,29(2):105-108.
    [134] Tang, Y.Q., Cui, Z.D., Wang, J.X., Yan, L.P., and Yan, X.X. Application of grey theory-based model to prediction of land subsidence due to engineering environment in Shanghai. Environment Geology, 2008, 55(3):583-593.
    [135] Bear, J. Hydraulics of Groundwater. Mc.Graw-Hill, New York, 1979.
    [136] Istok, J. Groundwater modeling by the finite element method. America Geophysical Union, Water Resources Monograph 13, Washingto D.C., 1989.
    [137] Delleur, J. The handbook of groundwater engineering. Co-published by CRC Press LLC, U.S.A. and Springer-Verlag Gmbh & Co. KG, Germay, 1999.
    [138] Bear, J. Dynamics of fluids on porous media. American Elsevier Publishing Company, New York, 1972.
    [139]钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996.
    [140]朱学愚,谢春红.地下水运移模型.北京:中国建筑工业出版社,1990.
    [141] Powrie, W. and Preene, M. Time-drawdown behaviour of construction dewatering systems in fine soils. Géotechnique, 1994, 44(1):83-100.
    [142] Terzaghi, K. Theoretical soil mechanics. John Wiley & Sons. Inc., New York, 1943.
    [143]毛昶熙.渗流计算分析与控制(第二版).北京:中国水利水电出版社,2003.
    [144]沈水龙,许烨霜.三维地下水渗流分析软件GeoFlow3D Ver.1.00.软件著作权登记号:2004SR12897,2004,中华人民共和国版权局.
    [145] Taylor, D. W. Fundamentals of soil mechanics. John Wiley & Sons Inc. New York, 1948.
    [146] Tavenas, F., Tremblay, M., Larouche, G., and Leroueil, S. In situ measurement of permeability in soft clays. ASCE Special Conference on Use of In-situ Tests in Geotechnical Engineering, Blacksburg, 1986, 1034-1048.
    [147] Kozeny, J. Ueber kapillare leitung des wassers im boden. Sitzungsber. Akad. Wiss. Wien, 1927, 136(2a):271-306.
    [148] Carman, P.C. Flow of gases through porous media. Academic Press, New York, 1956.
    [149] Nakai, T. An isotropic hardening elastoplastic model for sand considering the stress path dependency in three-dimensional stresses. Soils and Foundations, 1989, 29(1): 119-137.
    [150] Chai, J.C., Shen, S.L., Zhu, H.H., and Zhang, X.L. 1D analysis of land subsidence in Shanghai. Lowland Technology International, 2005, 7(1):33-41.
    [151] Ketchum, J.N., Donovan, J.J., and Avery, W.H. Recharge characteristics of a phreatic aquifer as determined by storage accumulation. Hydrogeology Journal, 2000, 8(6):579-593.
    [152] Shen, S.L., Tang, C.P., Bai, Y., and Xu, Y.S. Analysis of settlement due to withdrawal of groundwater around an unexcavated foundation pit. In: Underground Construction and Ground Movement, Proceeding of the GeoShanghai Conference, Geotechnical Special Publication 155, 2006, 377-384.
    [153]唐翠萍,许烨霜,沈水龙,王敏华.基坑开挖中地下水抽取对周围环境的影响分析.地下空间与工程学报,2005,1(4):634-637.
    [154] Ding, G.P., Jiao, J.J., and Zhang, D.X. Modelling study on the impact of deep building foundations on the groundwater system. Hydrological Processes, 2008, 22(12):1857-1865.
    [155] Jiao, J.J., Wang, X.S., and Nandy, S. Preliminary assement of the impacts of deep foundations and land reclamation on groundwater flow in a coastal area in Hong Kong, China. Hydrogeology Journal, 2006, 14(1-2):100-114.
    [156] Jiao, J.J., Leung, C.M., and Ding, G.P. Change to the groundwater system, from 1988 to present, in a highly-rubanized coastal area in Hong Kong, China. Hydrogeology Journal, 2008, 16(8):1827-1539.
    [157] Ding, G.P. Impact of deep building foundations on coastal groundwater flow systems [PhD Dissertation]. Hong Kong: The University of Hong Kong, 2006.
    [158] Chai, J.C., Shen, S.L., Miura, N., and Bergado, D.T. A simple method of modeling PVD improved subsoil. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(11):965-972.
    [159] Rubin, Y. Flow and transport in bimodal heterogeneous media. Water Resources Reasearch, 1995, 31(10):2461-2468.
    [160] Winter, C.L. and Tartakovsky, D.M. Mean flow in composite porous media. Geophysical Research Letters, 2000, 27(12):1759-1762.
    [161] Lu, Z. and Zhang, D. On stochastic modeling of flow in multimodal heterogeneous formation. Water Resources Research, 2002, 38(10):1190.
    [162] Zhang, D.X. Stochastic methods for flow in porous media: coping with uncertainties. Academic Press, San Diego, 2002.
    [163] Cardwell, W.T. and Parsons, R.L. Average permeabilities of heterogeneous oil sands. Transactions of American Institute of Mining Engineers, 1945, 34-42.
    [164] Warren, J. and Price, H. Flow in heterogeneous porous media. SPE Journal, 1961, 1(3):153-169.
    [165] Indelman, P. and Dagan, G. Upscaling of heterogeneous formations: general approach and application to isotropic media. Transport in Porous Media, 1993, 12(2):161-183.
    [166] Matheron, G. Eléments pour une théorie des milieux poreus. Masson, Paris, 1967.
    [167] Desbarats, A.J. Numerical estimation of effective permeability in sand-shale formation. Water Resources Research, 1987, 23(2):273-286.
    [168] Dagan, G. Models of groundwater flow in statistically homogeneous porous formations. Water Resources Research, 1979, 15(1):47-63.
    [169] Renard, P. and Marsily, G.D. Calculating equivalent permeability: a review. Advances in Water Resources, 1997, 20(5-6):253-278.
    [170]中华人民共和国建设部.建筑地基处理技术规范(JGJ79-2002).北京:中国建筑工业出版社2002.
    [171]龚士良.上海地面沉降研究综述.上海地质,2006,(4):25-29.
    [172]朱锡冰,佴磊,奚建国.上海浦东新区“地下水水量-水位-沉降联合数学模型”应用.中国地质科学院水文地质工程地质研究所,1995.
    [173]门福录.上海粘土流变性质及地面沉降问题初步研究(一).自然灾害学报1999,8(3):117-126.
    [174]门福录.上海粘土流变性质及地面沉降问题的初步研究(二).自然灾害学报1999,8(4):123-132.
    [175]严学新,龚士良,曾正强,俞俊英,沈国平,汪铁骏.上海城区建筑密度与地面沉降关系分析.水文地质工程地质,2002,(6):21-25.
    [176]崔振东,唐益群,卢辰,栾长青,王兴汉.工程环境效应引起上海地面沉降预测.工程地质学报,2007,15(2):233-236.
    [177]介玉新,高燕,李广信.城市建设对地面沉降影响的原因分析.岩土工程技术,2007,21(2):78-82.
    [178]《上海市地质环境图集》编纂委员会.上海市地质环境图集.北京:地质出版社,2002.
    [179] Xu, Y.S., Shen, S.L., and Du, Y.J. Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures. Engineering Geology, 2009, 109(3-4), 241-254.
    [180]上海市建设和管理委员会.地基基础设计规范(DGJ08-11-1999).上海,1999.
    [181]《上海水利志》编纂委员会.上海水利志.上海:上海社会科学院出版社,1997.
    [182]许烨霜.上海市地下水抽取引起地面沉降的计算分析[硕士学位论文].上海:上海交通大学,2006.
    [183]上海市地质处.上海市地面沉降勘查研究报告(1962-1976).1979.
    [184] Chai, J.C., Shen, S.L., Zhu, H.H., and Zhang, X.L. Land subsidence due to groundwater drawdown in Shanghai. Geotechnique, 2004, 54(3):143-148.
    [185]上海市地质调查研究院.进一步控制上海地面沉降措施研究.2000.
    [186]蔡文富,孙永福.上海地下水资源合理开发应用.上海科技建设,1999,(4):9-10.
    [187]刘毅.中国上海地面沉降防治措施及其效果.第六届地面沉降国际讨论会论文选,2000,75-79.
    [188]王维一.上海地下水概况.城市公用事业,1998,12(3):19-21.
    [189]魏子新,杨桂芳,俞俊英.上海市承压含水层系统应力-应变特征及地面沉降防治对策.中国地质灾害与防治学报,2005,16(1):5-8.
    [190]魏子新.上海市第四承压含水层应力-应变分析.水文地质工程地质,2002,(1):1-4.
    [191]龚士良.上海地面沉降影响因素综合分析与地面沉降系统调控对策研究[博士学位论文].华东师范大学,2008.
    [192]龚士良.上海地面沉降现状与控制对策.上海建设科技,1996,(5):11-12.
    [193]上海统计网.http://www.stats-sh.gov.cn/2008shtj/index.asp.
    [194]陈基炜,韩雪培.从上海城市建筑密度看城市用地效率与生态环境.上海地质,2006,(2):30-32.
    [195]王兴汉.软土地区高层建筑群的工程环境效应分析及地面沉降数值模拟[硕士学位论文].上海:同济大学,2006.
    [196]上海市建设委员会.上海八十年代高层建筑.上海:上海科学技术文献出版社,1991.
    [197]上海市建设和管理委员会.岩土工程勘察规范(DGJ08-37-2002).上海,2002.
    [198]陈锦剑.上海软土中桩基变形特性研究[博士学位论文].上海:上海交通大学,2005.
    [199]夏传勇,姚仰平,罗汀.沉桩振动的环境影响评价.北京航空航天大学学报,2003,29(6):539-543.
    [200] Jongmans, D. Prediction of ground vibrations caused by pile driving: a new methodology. Engineering Geology, 1996, 42(1): 25-36.
    [201]凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究.同济大学学报,2002,30(11):1315-1320.
    [202]刘明,黄茂松,李进军.地铁荷载作用夏饱和软黏土的长期沉降分析.地下空间与工程学报,2006,2(5):813-817.
    [203]龚士良,叶为民,陈洪胜,陈宝,杨天亮,万敏.上海市深基坑工程地面沉降评估理论与方法.中国地质灾害与防治学报,2008,19(4):55-60.
    [204]刘建航.侯学渊.盾构法隧道.北京:中国铁道出版社1991.
    [205]唐益群,叶为民,张庆贺.上海地铁盾构施工引起地面沉降的分析研究.地下空间,1995,15(4):250-258.
    [206]沈培良,张海波,殷宗泽.上海地区地铁隧道盾构施工地面沉降分析.河海大学学报(自然科学版),2003,31(5):556-559.
    [207]黄绍铭,高大钊.软土地基与地下工程(第二版).北京:中国建筑工业出版社,2005.
    [208] Lee, J.Y., Yi, M.J., Moon, S.H., Cho, M., Won, J.H., Ahn, K.H., and Lee, M.J. Causes of the changes in groundwater levels at. Daegu, Korea: the effect of subway excavations. Bulletin of Engineering Geology and the Environment, 2007, 66(3):251-258.
    [209] Roberts, T.O.L., Botha, C.P., and Welch, A. Design and operation of a large dewatering system in Dubai. In: 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 2009, 5-9.
    [210] Powrie, W. and Roberts, T.O.L. Case history of a dewatering and recharge system in chalk. Géotechnique, 1995, 45(4):599-609.
    [211] Powrie, W., Roberts, T.O.L., and Moghazy, H.E.D. Effects of high permeability lenses onefficiency of wellpoint dewatering. Géotechnique, 1989, 39(3):543-547.
    [212] Powrie, W. and Preene, M. Equivalent well analysis of construction dewatering systems. Géotechnique, 1992, 42(4):635-639.
    [213] Preene, M., Roberts, T.O.L., Powrie, W., and Dyer, M.R. Groundwater control: design and practice, CIRIA Report C515. Construction Industry Reasearch and Information Association, London, 2001.
    [214]骆祖江,李朗,姚天强,罗建军.松散承压含水层地区深基坑降水三维渗流与地面沉降耦合模型.岩土工程学报,2009,28(11):1947-1951.
    [215]王建秀,吴林高,朱雁飞,唐益群,杨坪,娄荣祥.地铁车站深基坑降水诱发沉降机制及计算方法.岩土工程学报,2009,28(11):1947-1951.
    [216]陈幼雄.井点降水设计与施工.上海:上海科学普及出版社2004.
    [217] Mair, R.J. Tunnelling and geotechnics. New Horizons-46th Rankine Lecture, Géotechnique, 2008, 58(9):695-736.
    [218]张冬梅,黄宏伟,杨峻.衬砌局部渗流对软土隧道地表长期沉降的影响研究.岩土工程学报,2005,27(12):1430-1436.
    [219]郑永来,李美利,王明洋,杨林德.软土隧道渗漏及地面沉降影响研究.岩土工程学报,2005,27(2):243-247.
    [220] Johnson, I.A., Frobel, R.K., Cavalli, N.J., Frobel, R.K. (eds) Hydraulic Barriers in Soil and Rocks. ASTM Special Technical Publication 874, American Society for Testing and Matericals, Philadelphia, 1984.
    [221] Nash, J.M. and Dale, M.J. Geology and hydrogeology of natural tunnel erosion in superficial deposits in Hong Kong. Geology of Surficial Deposits in Hong Kong, Geological Society of Hong Kong, 1984, Bull 1:61-72.
    [222] Foster, S.S.D., Morris B.L., Lawrence A.R., and Chilton, J. Groundwater impacts and issures in development cities: an introductory review. In: Chilton J. (ed) Groundwater in the urban environment: selected city profile, Balkema, Rotterdam, the Netherlands, 1999, 3-18.
    [223] Pokrovsky D.S., Rogov, G.M., and Kuzevanov K.I. The impact of urbanization on the hydrogeological conditions of Tomsk, Russia. In: Chilton J. (ed) Groundwater in urban environment: selected city profiles, Balkema, Rotterdam, the Netherlands, 1999, 217-223.
    [224]许劼,王国权,李晓昭.城市地下空间开发对地下水环境影响的初步研究.工程地质学报,1999,7(1):15-19.
    [225] Kontanz, P.O.,赵鹤平(译).地下隧道和输水建筑物对地下水流动的影响.地理科学进展,1989,(3):29-31.
    [226] Pope, R.G. and Ho, C.S. Effect of piles and caissons on groundwater flow. Hong Kong Engineering, 1982, 10(11):25-27.
    [227] Brassington R. Field hydrogeology. Wiley, Chichester, UK, 1998.
    [228]古本一司,三木博史.地下構造物の地下水流動阻害要因について.基礎工,2002,30(4):34-37.
    [229] Geotechnical Control Office (GCO). Mid-levels study, report on geology, hydrology and soilproperties. Hong Kong, 1982.
    [230]曹洪,骆冠勇,廖建三,林本海,周小文.广州城区地下空间开发对地下水环境的影响研究.岩石力学与工程学报,2006,25(增2):3347-3356.
    [231]王军辉,韩煊,周宏磊,张在明.地下结构对渗流场阻隔问题的解析-半解析法.水文地质工程地质,2009,(2):13-18.
    [232]朱俊高,陆晓平.大面积地面沉降研究现状.地质灾害与环境保护,2001,12(4):74-78.
    [233]龚士良.上海地下水流场变化及对地面沉降发展的影响.水资源与水工程学报,2009,20(3):1-6.
    [234] Marsland, A. Model experiments to study the influence of seepage on the stability of a sheeted excavation in sand. Géotechnique, 1953, 3(6):223–241.
    [235] Liu, J., Feng, X.T., and Ding, X.L. Stability assessment of the Three-Gorges Dam foundation, China, using physical and numerical modeling-Part I: physical model tests. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5):609-631.
    [236]丁春林,周顺华,张师德.基于离心试验的承压水基坑变形稳定影响因素.同济大学学报(自然科学版),2005,33(12):1586-1591.
    [237]丁春林,孟晓红.承压水基坑离心模型试验与现场实测分析.同济大学学报(自然科学版),2008,36(1):22-26.
    [238]赵陈鹏.轨道交通9号线宜山路站基坑降水对地面沉降的影响及室内模型试验研究[硕士学位论文].上海:同济大学,2007.
    [239] Lourenco, S.D.N., Sassa, K., and Fukuoka, H. Failure process and hydrologic response of a two layer physical model: implications for rainfall-induced landslides. Geomorphology, 2006, 73(1-2):115-130.
    [240] Vauclin, M., Khanji, D., and Vachaud, G. Experimental and Numerical Study of a transient, two-dimensional unsaturated-saturated water table recharge problem. Water Resources Research, 1979, 15(5):1089-1101.
    [241] Ataie-Ashtiani, B., Volker, R.E., and Lockington, D.A. Numerical and experimental study of seepage in unconfined aquifers with a periodic boundary condition. Journal of Hydrology, 1999, 222(1-4):165-184.
    [242] Chapuis, R.P. Overdamped slug test in monitoring wells: review of interpretation methods with mathematical, physical and numerical analysis of storativity influence. Canadian Geotechnical Journal, 1998, 35(5):697-719.
    [243] Chapuis, R.P. and Chenaf, D. Slug tests in a confined aquifer: experimental results in a large soil tank and numerical modeling. Canadian Geotechnical Journal, 2002, 39(1):14-21.
    [244] Chapuis, R.P. and Chenaf, D. Effects of monitoring and pumping well pipe capacities during pumping tests in confined aquifers. Canadian Geotechnical Journal, 2003, 40(6):1093-1103.
    [245] Simpson, M.J., Clement, T.P., and Gallop, T.A. Laboratory and numerical investigation of flow and transport near a seepage-force boundary. Ground Water, 2003, 41(5):690-700.
    [246] Chen, C.X., Wan, J.W., and Zhan, H.B. Theoretical and experimental studies of coupled seepage-pipe flow to a horizontal well. Journal of Hydrology, 2003, 281(1-2):163-175.
    [247] Britt, S.L. Testing the in-well horizontal laminar flow assumption with a sand-tank well model.Ground Water Monitoring and Remediation, 2005, 25(3):73-81.
    [248]孙振岳,张嘎,张建民,李国和,郑瑞华.水井抽水引起地基沉降的离心模型试验研究.土木工程学报,2008,41(4):67-72.
    [249]日本地盤工学会.土質試験:基本と手引き(第一回改訂版).東京:地盤工学会,2001.
    [250] ASTM. Standard test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeater (D5084). In 2002 Annual Book of ASTM Standards. Vol. 04.09. American Society for Testing and Materials, Philadephia, Pa., 2002.
    [251] Concrete Society Woring Party. Permeablity testing gsite concrete: a review of method and experience. Conrete Society technical report No. 31, Concrete Society, Camberiey, UK, 1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700