用户名: 密码: 验证码:
海底输油软管力学响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管线是海洋石油开发的重要组成部分,传统上采用钢管外覆混凝土作为海底管线,腐蚀、悬跨管线静力破坏和疲劳破坏是其失效的主要原因。海底输油软管是由不同功能层组成的复合管线,具有优良的耐腐蚀性、挠性、抗疲劳性以及安装简便、可重复利用等优点,在国外正逐步取代传统钢质海底管线。鉴于国外海底输油软管使用现状和我国渤海、南海进口软管的成功使用案例,石油部门希望国内能自主研制生产相关产品以节省进口软管高额开支。我国橡胶行业参考了钢塑输水复合管线专利,研制开发出适用于石油领域的多层螺旋缠绕钢丝增强橡胶输油软管。这种海底输油软管既不同于国外同名软管产品,也不同于国内输水复合管线,是一种全新的复合管线并且尚未使用,国内外相关研究几乎空白。本课题来源于国家自然科学基金重点项目(50439010)—海底管线的损伤机理和健康诊断研究,受中国胜利油田研究设计院委托,以河北欧亚特种胶管有限公司出品的软管为原型试件,对海底输油软管力学响应进行相关理论与试验研究。
     (1)海底管线悬空机理及悬跨长度研究
     调查资料表明海底管线悬空现象较为普遍,这对海底管线安全运行带来很大隐患。在参阅国内外文献基础上,本文指出导致海底管线悬空的四种机理并进行全面分析。以埕岛海域为例,结合我国海底管线实际在位调查数据,本文对比分析了国内外学者提出的各海底管线悬跨长度、悬跨深度经验公式的适用性。
     (2)实际海况中悬跨海底管线外载研究
     实际海况中悬跨海底管线主要受到波流水动力作用。在参阅国内外文献基础上,本文总结了波流水动力对悬跨海底管线的荷载作用形式,指出埕岛海域悬跨海底管线外载体系可简化为潮流对海底管线在水平方向上的恒载和竖直方向上的动载、波浪对海底管线在水平方向上的动载。此外,本文以埕岛海域为例,对比线性Airy波理论、五阶Stokes波理论、椭圆余弦波理论所计算的波浪水质点速度、加速度,指出在计算埕岛海域海底管线波浪力时可采用线性Airy波理论。
     (3)海底输油软管增强层本构关系研究。
     增强层本构关系研究是海底输油软管力学分析的基础。结合软管增强层结构特点,本文对比分析了适用于连续纤维增强层的国内外8种经典预测模型,建议采用我国工程经验公式对材料正轴坐标系下钢丝缠绕增强层单层板面内工程弹性常数进行预测。基于复合材料细观理论,将我国工程经验公式扩展到三维情况:并运用张量理论得到结构柱坐标系下的钢丝缠绕增强层单层板本构方程。
     (4)内压作用下海底输油软管力学响应研究
     海底输油软管的功能荷载之一为内部介质压力。以往对内压作用下钢丝缠绕复合管线的力学研究通常采用薄壳理论,海底输油软管高内压要求使其在构造上为具有多层增强层的厚壁结构,因此不适合采用薄壳理论。本文将软管作为由多层各向异性增强层和多层各向同性橡胶层组成的层合结构,基于三维各向异性弹性理论提出内压作用下软管力学响应的解析解答。采用本文解析法对内压作用下软管的位移场、应变场和应力场进行计算,并对内压作用下软管原型试件进行静载试验研究,本文解析法计算结果与静载试验数据在变化趋势上一致,在数值上较为接近。
     (5)内压、横向荷载联合作用下海底输油软管力学响应研究
     实际海况中的悬跨海底输油软管既要承受内部介质压力,还要承受波流水动力横向荷载作用,并且软管挠性特性使其在实际海况中多处于大变形状态。本文采用梁挠曲线初参数方程确定软管在横向荷载作用下的轴向平均应变,并结合无限长小变形软管的三维正交各向异性弹性理论求解过程,提出内压、横向荷载联合作用下软管大变形力学响应的近似解析解答。采用本文解析法对内压、横向荷载联合作用下的软管力学响应进行计算并作以相关分析。海底输油软管的特殊材料和特殊结构使其等效轴向弹性模量不易确定,通过软管原型试件相关静载试验研究,对软管等效轴向弹性模量进行定性分析。
     (6)海底输油软管疲劳损伤初探研究
     实际海况中的悬跨海底输油软管将受到波流水动力动载作用,从而导致软管在服役期间会出现疲劳失效。结合横向周期荷载作用下的软管原型试件疲劳试验,基于复合材料细观损伤理论对软管进行微观损伤机理分析。海底输油软管具有特殊的应用领域,结合软管原型试件疲劳试验,提出软管端部鼓包、软管端部渗漏、软管自身渗漏三种失效准则。基于Rosen剪切滞后模型、结合Cox连续纤维荷载传递公式,对软管端部鼓包失效形式进行相关理论分析:基于线弹性断裂理论对软管端部渗漏失效形式进行相关理论分析;基于唯象损伤理论对软管自身渗漏失效形式进行相关理论分析。
     (7)大变形海底输油软管动力响应初探研究
     实际海况中的悬跨海底输油软管常受到波流水动力的动载作用,并且软管挠性特性使其处于大变形状态。本文将悬跨软管作为各向同性Bernoulli-Euler弹性曲梁,基于连续介质力学有限变形理论,并考虑软管内部流体运动情况,提出动载作用下悬跨软管大变形动力响应的泛定方程组并对其进行相关分析。
Submarine pipeline is an important part of marine petroleum development. Traditionally, concrete encapsulated steel pipe is used as submarine pipeline, and corrosion, spanning pipeline static breakdown and fatigue breakdown are the main causes of its failure. As a composite pipeline consisting of different functional layers, with the advantages of excellent corrosion resistance, flexibility, fatigue resistance, easy installation, repeated use, etc., submarine oil pipeline is gradually replacing traditional steel submarine pipeline in foreign countries. In view of the use status of submarine oil pipeline in foreign countries and the successful use of imported flexible pipe in Bohai Sea and South Sea of China, petroleum department hopes to independently develop and produce relevant products, in order to save the high-expenditure of imported flexible pipe. Under the demand of field of petroleum, based on GAN Guo-gong's steel-plastic composite water transmission pipeline patent, Chinese rubber industry has developed multilayer spiral-wound steel wire reinforced rubber flexible pipe that is applicable to the field of petroleum. Such submarine oil pipeline is neither different from the flexible pipe of the same name produced abroad, nor different from domestic composite water transmission pipeline, but is a brand-new composite pipeline; moreover, it hasn't been really used, for there are nearly gaps in domestic and overseas relevant researches. This topic is sourced from submarine pipeline damage mechanism and health diagnosis, the State Key Program (50439010) of National Natural Science Foundation, and is entrusted by Research and Design Institute of China Shengli Oil Field to carry out relevant theoretical and experimental researches on the mechanical response of submarine oil pipeline by taking the flexible pipe manufactured by Hebei Ouya Special Rubber Hose Co., Ltd. as prototype specimen.
     (1) Researches on spanning mechanism and spanning length of submarine pipeline
     Investigation data shows that the spanning phenomenon of submarine pipeline is rathercommon and brings the hidden trouble for submarine pipeline's safety run. Based on domestic and overseas literatures, this paper presents the 4 main spanning mechanisms of submarine pipeline with the through comprehensive analysis. Combined with the actual location survey data of Chinese submarine pipeline, taking Chengdao sea area as an example, this paper carries out compartive analysis upon the empirical formulae for the spanning length amd spanning depth of submarine pipelines that were proposed by domestic and overseas scholars.
     (2) Researches on external load of spanning submarine pipeline under acutal sea condition
     Spanning submarine pipeline mainly bears wave-flow hydrodynamic force under acutalsea condition. Based on domestic and foreign literatures, this paper summarizes forms of load of spanning submarine pipeline by wave-flow hydrodynamic force, and presents that the external load system of spanning pipeline in Chengdao sea area can be simplified as horizontal constant tide load and vertical dynamic tide load and horizontal dynamic wave load. Besides, taking Chengdao sea area as an example, through comparative analysis of the velocities and accelerations of wave water particles calculated by using Airy wave theory, five-order Stokes wave theory and cnoidal wave theory, this paper presents that Airy wave theory can be used for calculating the wave forces of submarine pipeline in Chengdao sea area.
     (3) Researches on constitutive relation for reinforced layers of submarine oil pipeline.
     Researches on constitutive equation of steel wire wound reinforced single-layer is thefoundation for the mechanical analysis of submarine oil pipeline. According to the features of reinforced layers of flexible pipe, this paper contrastively analyzes domestic and overseas 8 classic prediction models that are applicable to continuous fiber reinforced layer. It is recommended that Chinese engineering empirical formula should be used for predicting the engineering elastic constant in steel wire wound reinforced single-layer under ortho-axis coordinate system of material. Based on the microscopic theory of composite material, Chinese engineering empirical formula is expanded to 3D case; based on tensor theory, constitutive equation of steel wire wound reinforced single-layer board under cylindrical coordinate system of structure is obtained.
     (4) Researches on mechanical response of submarine oil pipeline under internal pressure
     One of functional loads of submarine oil pipeline is internal medium pressure. Previousmechanical researches on steel wire wound composite pipeline under internal pressure generally adopt thin-shell theory. The high internal pressure requirements of submarine oil pipeline make itself a thick-wall structure with multiple reinforced layers, therefore, thin-shell theory is not applicable. This paper adopts flexible pipe as a laminated structure consisting of multiple anisotropic reinforced layers and multiple isotropic rubber layers, and based on 3D anisotropic elastic theory, derives analytic solutions for mechanical response of flexible pipe under internal pressure. The present analytic method is used for computing the displacement, strain and stress of flexible pipe under internal working pressure, and the static loading test and researches upon the flexible pipe prototype specimens under internal pressure is carried out. The calculated values by present method basically coincided with the static loading test results in changing trend, and are close to them in value.
     (5) Researches on mechanical response of submarine oil pipeline under combined action of internal pressure and transverse load
     Spanning submarine oil pipeline has to bear both internal medium pressure and wave-flow hydrodynamic force transverse load under acutal sea condition, and the flexibility characteristics of flexible pipemake itself mostly be in the state of large deformation under acutal sea condition. This paper adopts initial parameter equation of beam deflection curve to determine the axial mean strain of flexible pipe under transverse load, and combined with the 3D anisotropic elastic solutions for infinite small deformation flexible pipe, derives approximate analytic solutions for the mechaincal response of large deformation flexible pipe under combined action of internal pressure and transverse load. By using the present analytic method, this paper computes the mechanical responses of flexible pipe under combined action of internal pressure and transverse load and carries out relevant analysis. The special material and structure of submarine oil pipeline make it difficult to determine its equivalent axial elastic modulus. Through the static loading test and researches of flexible pipe prototype specimens, the qualitative analysis of the equivalent axial elastic modulus of flexible pipe is carried out.
     (6) Preliminary researches on damage fatigue of submarine oil pipeline
     The spanning submarine oil pipeline bears dynamic load of wave-flow hydrodynamic force under actual sea, which causes fatigue failure to flexible pipe throughout the service life. Combined with the fatigue test of flexible pipe prototype specimens under transverse cyclic load, and based on the microscopic damage theory of composite material, this paper carries out relevant micro-analysis upon the damage mechanism of flexible pipe. Submarine oil pipeline has special application fields. Combined with the fatigue test of flexible pipe, this paper presents thee failure criteria including flexible pipe bulging near end, flexible pipe leakage near end and flexible pipe body leakage. Based on Rosen shear-lag model, according to Cox continuous fiber load transfer formula, this paper carries out relevant theoretical analysis upon the failure modes of flexible pipe bulging near end; based on linear elastic fracture theory, this paper carries out qualitative theoretical analysis upon the failure modes of flexible pipe leakage near end; based on phenomenological damage theory, this paper carries out relevant theoretical analysis upon the failure modes of flexible pipe body leakage.
     (7) Preliminary researches on large deformation dynamic response of submarine pipeline
     Submarine oil pipeline generally bears dynamic load under acutal sea condition. Thispaper simplifies spanning flexible pipe as isotropic Bernoulli-Euler elastic curved beam, and based on finite deformation theory of continuous medium mechanics, and in consideration of the effect of internal fluid motion on flexible pipe itself, derives the governing equations of dynamic response of spanning large deformation flexible pipe under dynamic load and carries out relevant analysis.
引文
[1]陆文法,李林普,高明道.近海导管架平台[M].北京:海洋出版社,1992.
    [2]武科.滩海吸力式桶形基础承载力特性研究[D].大连:大连理工大学[博士学位论文],2007.
    [3]张志勇.海洋工程发展环境分析与市场投资预测[J].海洋工程,2005(237):28-30.
    [4]金伟良.海洋工程中的若干力学问题[J].科技通报,1997(2):86-92.
    [5]曹惠芬.世界深海油气钻进装备发展趋势[J].海洋工程,2005(237):24-27.
    [6]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报,2000,8(1):40-45.
    [7]栾茂田等.长江口深水航道治理工程大圆筒结构整体稳定性分析[R].大连理工大学岩土工程研究所研究报告(提交中交第四航务工程勘察设计院),2003年8月.
    [8]刘振纹.软土地基上桶形基础稳定性研究[D].天津:天津大学[博士学位论文],2002.
    [9]邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报,2000,40(6):631-637.
    [10]陈铁云等.海洋工程结构力学[M].大连:大连理工大学出版社,1991.
    [11]软管在海底管道中应用的可行性研究[Z].大连:大连理工大学建设工程学部,2003.
    [12]李军,王洪彬.影响海底管道寿命的主要因素及防范建议[J].石油工程建设,2007,33(2):35-38.
    [13]John B H.海底管道设计原理.董启贤译[M].北京:石油工业出版社,1988.
    [14]肖文功.海底管道悬空隐患治理技术研究及应用[J].中国海洋平台,2004,19(6):36-39.
    [15]许文兵.平湖油气田海底输油管线临时修复方法[J].中国海洋平台,2003,18(2):37-40.
    [16]彭秋柏,黄庙由.国内外钢丝编织胶管的发展概况[J].世界橡胶工业,2006(7):44-49.
    [17]张广鑫.加强质量管理,提高钢丝缠绕胶管质量[J].广东橡胶,2001(8):16-20.
    [18]我国橡胶管材行业市场分析[EB/OL].广州畅业橡胶石油设备有限公司,[2008,04,8].http://www.gzchangye.cn/jgnews/3123.htm.
    [19]未来胶管市场高端产品唱主角[EB/OL].http://www.zgrgw.com/new_view.asp?id=1059.
    [20]Rilsan~(?) Polyamide 11 Offshore Flexible pipe[EB/OL].http://www.zgrgw.com/new_view.asp?id=1059.
    [21]Chris Braithwaite.Exporting Excellence[J].Oil &.Gas Supply Chain,2007(9).
    [22]郑朝霞.国内外管道运输情况综述[J].物流技术,2003,25(2):10-11.
    [23]李翔.钢丝缠绕增强塑料复合管粘弹性力学行为研究[D].杭州:浙江大学[博士学位论文],2008.
    [24]朱彦聪.钢丝缠绕增强塑料复合管外压失稳研究[D].杭州:浙江大学[硕士学位论文],2007.
    [25]魏世丞,韩庆,魏绪钧.复合材料管研究现状[J].材料导报,2003,17(9):64-67.
    [26]刘雄亚.复合材料管的研究和应用[J].纤维复合材料,1994,(4):42-47.
    [27]完颜华,邵文忠.塑料管道及其应用[J].甘肃科技,2003,19(7):62-63.
    [28]李海林,于新海,董国胜.非金属复合管道的发展及应用[J].化工施工技术,2000,22(4):7-10.
    [29]刘厚俊,张玉凤,霍立兴.聚乙烯压力管道裂纹快速扩展性及止裂性研究进展[J].焊接学报,2002,23(4):87-91.
    [30]安昶.夹砂玻璃钢管的特性及其应用[J].建材技术与应用,2006,(6):14-16.
    [31]李梧,金谦.铝塑复合管发展前景与质量分析[J].化学建材,1999,(5):23-25.
    [32]白木.铝塑复合管的应用和市场前景[J].轻金属,2004,(11):62-63.
    [33]Juganson E J et al.Method for the fabrication of tube products[R].The United States,No.4005741.
    [34]Pignocco A J,Kachik R H.Method of production a refractory lining in a cylinder or tube[R].The United States,No.4048352.
    [35]Klaus K,Michael S.Strong flexible laminar thermoplastic pipe[R].Deutschland,1991,DE3942353.
    [36]卢玉斌.钢丝缠绕增强塑料复合管力学性能研究[硕士学位论文][D].杭州:浙江大学,2006.
    [37]吕龙云等.球墨铸铁/塑料复合管的研究与发展[J].防腐蚀工程,2000,16(1):24-27.
    [38]董鹃.国外新兴的复合材料和先进制造技术在油田中的应用[J].纤维复合材料,2003,45(2):45-47.
    [39]张劲等.新兴的非金属材料在油气田中的应用[J].国外油田工程,2001,17(5):43-47.
    [40]李艳玫,时志洋.钢带增强塑料埋地管的发展与应用[J].化学建材,2006,22(6):18-19,35.
    [41]塑料压力管道领域的新技术—克拉压力管[J].南水北调与水利科技,2004,2(4):28.
    [42]史佩栋.高密度聚乙烯与铝合金的夹层管[J].新型建筑材料,1996,(5):36-39.
    [43]凌振军.复合玻纤风管在我国的应用[J].节能,2000,(7):14-17.
    [44]李俊寿,尹玉军,马玉峰.SHS陶瓷村管技术的研究现状[J].2005,19(8):72-75.
    [45]符寒光,杜建铭.陶瓷内衬复合铜管的自蔓延高温合成[J].江西有色金属,2002,16(2):38-41.
    [46]俞洪南,张红兵,潘胜红.SHS复合管在长距离铁矿尾矿管道输送线上的应用[J].矿业快报,2000,345(15):21-22.
    [47]赵强,邹峰,陈勇.高强薄壁复合管(GBF)施工方案[J].山东建材,2004,25(3):49-50.
    [48]白建平,蔡锐,毛永芳.关于GBF高强复合管在施工应用中的探讨[J].山西建筑,2005,31(23):112-113.
    [49]李海林,于新海,董国胜.非金属复合管道的发展及应用[J].化工施工技术,2000,22(4):7-10.
    [50]张玉川.新产品—钢带增强聚乙烯螺旋波纹管[J].特种结构,2005,22(3):30-34.
    [51]程小平.钢骨架增强塑料复合管性能研究[D].杭州:浙江大学[硕士学位论文],2003.
    [52]李志雄.一种加强型多层卷绕镀层钢塑复合管[M].北京:知识产权出版社,2003.
    [53]甘国工.螺旋缠绕钢丝增强体的钢塑复合管[M].北京:知识产权出版社,2002.
    [54]黄泽.连续缠绕全埋式筋材塑料复合管[M].北京:知识产权出版社,2003.
    [55]林秀峰.钢丝缠绕增强塑料复合管强度分析与优化设计[D].杭州:浙江大学[硕士学位论文],2006.
    [56]王者友,蒋学忠.增强材料面面观[J],玻璃钢,2003,(4):22-26.
    [57]杜晓云.供水工程管材的比较[J].科技情报开发与经济,2005,15(10):272-273.
    [58]张双娣.性能优异的夹砂玻璃钢管[J].广东建材,2005,(8):8-9.
    [59]孙惠兰.玻璃钢管的性能分析[J].水利水电技术,2007,(15):34-36.
    [60]李卓球,岳红军.玻璃钢管道与容器[M].北京:科学出版社,1990.
    [61]徐文杰.非金属管道在油田中的应用评价[J].油气田地面工程,2002,21(3):128-129.
    [62]丁明安.新型仿佛管材在油田集输工程中的应用[J].管道技术与设备,2003,(5):42-44.
    [63]潘炯玺,王斌,段予忠.铝塑复合管的现状与发展[J].塑料科技,1998,127(5):42-44.
    [64]李晓东,甘理,王玉瑛.硅烷交联聚乙烯铝塑复合管材的发展概况[J].塑料,1999,28(5):14-16,39.
    [65]金谦,黄家文.铝塑复合压力管的结构剖析及性能影响[J].建筑科学,2001,17(5):50-52.
    [6]原芝泉等.钢塑复合管及其应用[J].工业用水与废水,2002,33(6):49-50.
    [67]王东鹏.钢塑复合管一种新型管材[J].宁夏科技,2002,(2):46-47.
    [68]周宝茂.铜塑复合管给水管技术开发热点产品[J].给水排水技术与产品信息,2004,(5):45-48.
    [69]周南桥,彭响方.塑料复合制品成型技术与设备[M].北京:化学工业出版社,2003.
    [70]魏若奇.金属塑料复合管材的应用与面临的问题[J].化学建材,1996,(2):54-56:
    [71]印慧僧.孔网钢带塑料复合管[J].城市给排水,2000,(6):1-2.
    [72]原芝泉,邢海峰,郭翼东.钢骨架增强塑料复合管及其应用[J].给水排水,2002,28(1):94-96.
    [73]温宗禹,吕俊青.一种新型防腐管材—钢骨架塑料(HDPE)复合管[J].石油工程建设。2000,(2):11-14.
    [74]浑惠德,唐国强,某启东.孔网钢带塑料复合管性能及应用[J].化工标准.计量.质量,2002,(2):38-41.
    [75]叶巧云.孔网钢带塑料复合管在施工中应注意的问题[J].四川建筑,2003,23(5):64-65.
    [76]陈海龙.孔网钢带塑料复合管生产应用浅议[J].甘肃科技,2001,17(4):13.
    [77]黄海峰.孔网钢带塑料复合管的使用与发展[J].安装,2007,(2):47-48.
    [78]王俊良.钢骨架塑料复合管的研制与应用[J].工程塑料应用,2000,28(12):18-19.
    [79]赵永华.钢骨架塑料复合管性能分析与方法研究[J].青海大学学报,2005,23(4):14-25,53.
    [80]高加峰等.钢骨架复合管在纯梁油田的应用[J].油气田地面工程,2002,21(3):76-77.
    [81]宋庆杰等.钢骨架塑料复合管在油田的应用[J].油气田地面工程,2001,19(6):74-76.
    [82]马文琦等.钢骨架塑料复合管浅谈[J].油气田地面工程,2002,21(1):35.
    [83]曹胜先.国内外聚乙烯管材专用料的开发及应用[J].当代石油石化,2002,10(5):38-42.
    [84]唐岩,张新华.聚乙烯管材料的国内外研究发展现状[J].塑料加工应用,2002,24(3):50-52.
    [85]杨贵民.钢骨架塑料复合管的应用[J].新疆石油科技,2003,2(13):46-47.
    [86]胡正隆.超高压钢丝缠绕胶管问世[J].机床与液压,2005,(2):62.
    [87]魏明.预应力混凝土管道用冷拉钢丝的生产特点和应用前景[J].天津冶金,2002,(5):32-34.
    [88]郑津洋等.钢丝缠绕增强塑料复合管力学性能的试验研究[J].中国塑料,2006,20(6):52-85.
    [89]Jinyang Zheng,Yubin Lu,Xiang Li.Experimental investigation on mechanical properties of plastic pipe reinforced by cross-winding steel wire[C].ASME Pressure Vessels and Piping Division Conference.In press,2006.
    [90]王伟,张明月,肖胜君.钢骨架类复合管解决管道腐蚀问题的可行性研究[J].防腐保温技术,2005,13(1):14-16,34.
    [91]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [92]罗文波.高聚物形变热效应非线性粘弹性和银纹化研究[D].华中理工大学[博士学位论文],2001.
    [93]马麦斯捷尔,达穆日,捷捷尔斯.聚合物与复合材料力学[M].北京:新时代出版社,1988.
    [94]张恒,王震鸣,李江.复合材料及其结构的粘弹性力学,复合材料及其结构的力学进展,第三册[M].武汉:武汉工业大学出版社,1992.
    [95]张淳源.粘弹性断裂力学[M].武汉:华中理工大学出版社,1994.
    [96]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [97]Schapery R A.A theory of non-linear thermoviscoelasticity based on irreversible thermodynamics [C].Proeeeding of the 5th US National Congress of Applied Mechanics:ASME.1966.
    [98]SchaPery R A.On thecharacterization of non-linear viscoelastic materials.Polymer Engineering and Science,1969,9(4):295-310.
    [99]杨挺青.非线性粘弹性理论中的单积分型本构关系[J].力学进展,1988,18(1):52-60.
    [100]Findley W N,Lai J S.A modified superposition principle applied to creep of nonlinear viscoelastic material under abrupt changes in state of combined stress.1976,(11):361-380.
    [101]王仁,陈晓红.高分子材料粘弹塑性本构关系研究进展[J].力学进展,1995,25(3):289-302.
    [102]Kitagawa M,Zhou D X,Qiu J.H.Stress-strain curves for solid polylmers.Polymer Engineering and Science,1995,35(22):1725-1732.
    [103]Zhang C T,Moore I D.Nonlinear mechanical response of high density polythylene.Polymer Engineering and Science,1997,37(2):404-413.
    [104]赵荣国,罗文波,张淳源.聚合物应力松弛行为的过应力模型[J].湘潭大学自然科学学报,2001,23(1):37-40.
    [105]向小运,张双寅.复合材料蠕变本构关系及实验测定-Ⅰ本构关系[J].复合材料学报,1992,9(2):31-37.
    [106]向小运,张双寅.复合材料蠕变本构关系及实验测定-Ⅱ实验测定[J].复合材料学报,1993,10(1):97-102.
    [107]刘文辉,张淳源.渐进均匀化方法在粘弹性复合材料的应用[J].湘潭大学自然科学学报,2003.25(4):91-97.
    [108]Bineai L.Fundamentals of polymer physics[M].Beijing:Chemical Industry Press,1999.
    [109]Adey R A,BrebbiaC A.Effcient method of solution of viscoelastic problems[J].Journal of the Engineering Mechanics Division,1973,(99):1119-1127.
    [110]Graham G A C.The correspondence principle of linear viscoelastic theory of mixed boundary value problems involving time-dependent boundary regions[J].Quarterly of Applied Mathermatics,1968,(26):167-174.
    [111]Henriksen M.Nonlinear viscoelastic stress analysis-a finite element approach[J].Computer and Structures,1984,(18):133-139.
    [112]Kennedy T C.Nonlinear viscoelastic analysis of composite plates and shells[J].Composite Structures,1998,(41):265-272.
    [113]郑玉芳.考虑损伤效应的粘弹性/压电智能层合板壳的非线性静动力学研究[D].湖南大学[博士学位论文],2005.
    [114]Zienkiewicz O.C.,Wattson M..Some creep effects stress analysis with particular reference to concrete pressure vessel[J].Nuclear Engineering and Design,1966,(4):406-412.
    [115]Zienkiewicz O.C.,Wattson M.,King I.P..International Joumal of Mechanical Seience,1968,(10):807-827.
    [116]White J.L..Finite Elements in Linear Viscoelasticity[C].Proceeding of the 2nd Conference on Matrix Method in Structural Mechanics,1968.
    [117]Argyris J.H.et al..Computer Methods in Applied[J].Mechanics and Engineering,1977,(10):199-246.
    [118]Srinatha H.R.,Lewis R W.A Finite element method for thermoviscoelastic analysis of plane.problems[J].Computer Methods in Applied Mechanics and Engineering,1981,(25).:21-33.
    [119]Schapery R.A..Correspondence and a generalized integral of for large deformation and fracture analysis of viscoelastic modia[J].International Journal of Fracture,1984,(25):195-223.
    [120]Lai J.,Bakker A..3-D Schapery representation for non-linear viscoelasticity and finite element inplementation[J].Computational Mechanics,1996,(18):182-191.
    [121]朱智春.固体火箭发动机药柱结构寿命预估研究[D].北京航空航天大学[博士学位论文],1997.
    [122]沈亚鹏,王晓明,梁汉梁.用Total Lagragina法的三维粘弹性大变形问题的有限元分析[J].航空学报,1989,(7):357-393.
    [123]李录贤,沈亚鹏.粘弹性大变形动力响应的有限元分析[J].计算结构力学及其应用,1994,1(14):349-355.
    [124]杨挺青,罗文波,徐平等.粘弹性理论与应用[M].北京:科学出版社,2004.
    [125]Alderson K L,Evans K E.Failure mechanisms during the transverse loading of filament-wound pipes under static and low velocity impact conditions[J].Composites,1992,(23):167-173.
    [126]null D,Legg M J,Spencer B.Failure of glass/polyester filament wound pipe[J].Composites,1978,(9):17-24.
    [127]Xia M,Takayanagi H,Kammochi K.Analysis of transverse loading for laminated cylindrical pipe[J].Composite Structures,2001,(53):279-285.
    [128]Guedes.Stress analysis of transverse loading for laminated cylindrical composite pipes:An approximated 2-D elasticity solution[J].Composites Science and Technology,2006,66(3-4):427-434.
    [129]Soden P D,Leadbetter D,Griggs P R.The strength of a filament wound composite under biaxial loading[J].Composites,1978,(9):247-250.
    [130]Soden P D,Kitching R,Tse P.Experimental failure stresses for ±55° filament wound glass fiber reinforced plastic tubes under biaxial loads[J].Composites,1989,(20):125-135.
    [131]You L,Long S,Rohr L.Elastic-plastic stress field in a coated continuous fibrous composite subjected to thermomechanical loading[J].ASEM Journal of Applied Mechanics,1999,(66):750-757.
    [132]Zhao Y,Pang S S.Stress-strain and failure analyses of composite pipe under torsion[J].ASME Journal of Pressure Vessel Technology,1995,117(3):273-278.
    [133]Rosenow M W K.Wind angle effects in glass fiber-reinforced polyester filament wound pipe[J].Composites,1978,(9):17-24.
    [134]Xia M,Takayanagi H,Kemmochi K.Bending Behavior of Filament-wound Fiber-reinforced Sandwich Pipes[J].Composite Structures,2002,(56):201-210.
    [135]Xia M,Takayanagi H,Kemmochi K.Analysis of Multi-layered Filament-wound Composite Pipes under Internal Pressure[J].Composite Structures,2001,(53):483-491.
    [136]史建华,马玉录,李海林等.玻璃钢内衬钢塑复合管道应力分析[J].热固性树脂,2001,16(4):14-15.
    [137]C S Chouchaoui,O O Ochoa:Similitude study for a laminated cylindrical tube under tensile,torsion,bending,internal and external pressure.PartⅠ:governing equations[J].Composite Structures,1999,(44):221-229.
    [138]C S Chouchaoui,O O Ochoa.Similitude study for a laminated cylindrical tube under tensile,torsion,bending,internal and external pressure.PartⅡ:scale modes[J].Composite Structures,1999,(44):231-236.
    [139]J Q Tarn,Y M Wang.Laminated composite tubes under extension,torsion,bending,shearing and pressuring:a state space approach[J].International Journal of Solids and Structures,2001,(38):9053-9075.
    [140]Nishiwaki T et al.A quasi-three-dimensional lateral compressive analysis method for a composite cylinder[J].Composite Structures,1995,(32):293-298.
    [141]范成磊,方洪渊,万鑫等.玻璃钢-不锈钢衬里复合管道应力变形数值模拟[J].宇航材料工艺,2004,34(4):51-54.
    [142]Wahab M A,Alam M S,Panga S S.Stress analysis of non-conventional composite pipes[J].Composite Structures,2007,79(1):125-132.
    [143]任志敏.钢骨架增强塑料复合管强度与变形分析[D].北京:北京化工大学[硕士学位论文],2003.
    [144]任志敏等.新型钢丝网骨架增强塑料复合管的有限元分析[J].中国塑料,2002,16(11):40-43.
    [145]Kruijer M P,Warner L L,Akkerman R.Analysis of the mechanical properties of a reinforced thermoplastic pipe(PTP)[J].Composites Part A,2006,(36):291-300.
    [146]Xia M.,Takayanagi H.,Kemmochi K..Analysis of filement-wound fiber reinforced sandwich pipe under combined internal pressure and thermomechanical loading[J].Composite Structures,2001,(51):273-283.
    [147]张越等.复合层合管力学模型的研究[J].南京理工大学学报,1999,23(5):446-449.
    [148]杨务滋等.胶管接头扣压成型的力学分析[J].化工设备与管道,2004,41(2):60-62.
    [149]温建明,贺鹏飞,冯奇.钢丝编织胶管在内压作用下的强度分析[J].玻璃钢/复合材料,2002,78(4):11-12,21.
    [150]Z Zhuang.The development of finite element methods for the investigation of dynamic crack propagation in gas pipelines[D].Ireland:Uiversity of Dublin,1995.
    [151]庄茁,Donoghue P E O.能量平衡结合有限元数值计算分析天然气管道裂纹稳定扩展问题[J].工程力学,1997,14(2):59-67.
    [152]史建华等.FRP钢塑复合管道内衬开裂机理研究[J].塑料加工应用,1998,20(4):10-11,46.
    [153]C A Gargiulo,M A Marchetti,A A Rizzo.Prediction of failure envelopes of composite tubes subjected to biaxial loadings[J].Acta Astronautica,1996,39(5):355-368.
    [154]杨余旺等.FRP/PVC复合管应力分析与强度校核[J].南京理工大学学报,1995,19(4):381-384.
    [155]张越,樊新民,孔德仁.复合层合管强度的理论计算[J].弹道学报,2002,14(1):54-57.
    [156]葛涛等.铝塑复合管的强度及流体阻力性能的应用研究[J].塑料加工应用,2001,23(4):9-12.
    [157]赵永华,程小平.钢骨架塑料复合管性能分析与方法研究[J].青海大学学报:自然科学版,2005,23(4):14-25,53.
    [158]Dym C L.Stability.Theory and Its Applications to Structural Mechanics[M].Noordhoff,1974 and Dover Publications,2002.
    [159]Dym C L,Shames I H.Solid Mechanics:A Variational Approach:cGraw-Hill,1973.
    [160]Tennyson R C.Buckling of laminated composite cylinders:a review[J].Composites,1975,6(1):17-24.
    [161]Bert C W.Composite material mechanics:structural mechanics[J].AIAAJ,1974,12(9):1307-1325.
    [162]Leissa W.Study of buckling,post-buckling behavior and vibration of laminated composite plates[C].Progress of 7th Annual Mechanics of Composite
    [163]Kapania R K.A review on the analysis of laminated shells[J].ASME Journal of Pressure Vessel Technology,1989,(111):88-96.
    [164]Cheng S,Ho B P C.Stability of heterogeneous anisotropic cylindrical shells under combined loading[J].AIAAJ,1963,1(4):848-860.
    [165]Ho B P C,Cheng S.Some problems instability of heterogeneous anisotropic cylindrical shells under combined loading[J].AIAAJ,1963,1(7):1544-1549.
    [166]Jones R M.Buckling of circular cylindrical shells with multiple orthotropic layers and eccentric stiffeners[iS.AIAAJ,1968,6(12):2301-2305.
    [167]Card M F.Buckling of axially compressed cylinders with eccentric longitudinal siffeners[J].AIAA/ASME 7th Structures and Materials Conference,1966.
    [168]Tsai J.Effect of heterogeneity on the stability of composite cylindrical shells under axial compression[J].AIAJ,1966,4(6):1055-1062.
    [169]Jones R M,Hennemmann J C F.Effect of pre-buckling deformations on buckling of laminated composite circular cylindrical shells[J].AIAAJ,1980,18(1):110-115.
    [170]Simitses G J,Shaw D,Sheinman I.Stability of cylindrical shells by various nonlinear shell theories[J].ZAMM,1985,65(3):159-166.
    [171]Simitses G J,et al.The accuracy of Donnell' s equations for axially-loaded,imperfect orthotropic cylinders[J].Computers and Structures,1985,20(6):939-949.
    [172]Zhang J,Xu Y,Wu J.Buckling and post-buckling of antisymmetrically laminated cross-ply shear-deformable cylindrical shells under axial compression[J].Journal of Engineering Mechanics,2003,129(1):107-116.
    [173]Li Y-w,et al..Effect of the thickness variation and initial imperfection on buckling of composite cylindrical shells:Asymptotic analysisi and numerical results by BOSOR4and PANDA2[J].International Journal of Solid and Structures,1997,34(28):3755-3767.
    [174]Khot N S.Buckling and post-buckling behavior of composite cylindrical shells under axial compression[J].AIAAJ,1970,8(2):229-235.
    [175]Khot N S.Post-buckling behavior of geometrically imperfect composite cylindrical shells under compressions.AIAAJ,1970,8(3):357-395.
    [176]Tennyson R C,Hansen J S.Buckling of structures in the theory and practice[M].ThomPson:Cambridge University Press,1983.
    [177]Tennyson R C,Muggeridge D B.Buckling of laminated anisotropic imperfect circular cylinders under axial compression[J].Journal of Spacecraft,1973,10(2):143-148.
    [178]Ferreira A J M,Bathosa J T.Buckling behavior of composite shells[J].Composites Structures,2000,50(1):93-98.
    [179]中国航空研究院.复合材料结构稳定性分析指南[M].北京:航空工业出版社,2002.
    [180]林柏生.缠绕玻璃钢管道轴向强度设计[J].玻璃钢/复合材料,1999(1):8-11.
    [181]王嵘.某型水雷复合材料耐外压壳体制造技术研究[D].武汉:武汉理工大学[博士学位论文],2001.
    [182]王坷展.复合材料圆柱壳稳定性分析及其新算法研究[D].北京:国防科学技术大学[硕士学位论文],2002.
    [183]何煌.编织复合材料圆柱壳的稳定性分析[D].北京:国防科学技术大学[硕士学位论文],2003.
    [184]王晓华.纤维缠绕外压容器稳定性最佳铺层分析[J].抚顺石油学院学报,1997,17(4):22-25.
    [185]郑宗光.程国生.碳纤维缠绕复合材料在潜水外压容器上的应用[J].船舶工程,1997(4):42-44.
    [186]徐孝诚等.三维编织复合材料力学性能分析与预估[J].强度与环境,2000(4):22-29.
    [187]徐孝诚,马斌捷.三维四向整体编织复合材料圆筒壳体临界外压计算及试验验证[J].复合材料学报,2002,19(4):92-95.
    [188]李学斌.正交各向异性圆柱壳的弹性稳定性分析的比较研究[J].舰船科学技术,2000,22(3):2-8.
    [189]周承惆,周建平.复合材料圆柱壳的非线性稳定性[J].复合材料学报,1985,2(1):1-14.
    [190]Ashour H A.Creep buckling of cylindrical panels under multi axial loading[J].Composite Structures,1994,52(1):139-148.
    [191]Huang N N.Creep deflection of viscoelastic laminated cylindrical panels with initial deflection under axial compression[J].Composites:Part B,1999,(30):145-146.
    [192]Cederbaum G,Touati D.Post-bucklinganalysis of imperfect non-linear viscoelastic cylindrical panels[J].International Journal of Non-Linear Mechanicsm,2002(37):757-762.
    [193]Lou Y C,Schapery R A.Viscoelastic characterization of a nonlinear fiber-reinforced plastic[J].Journal of Composite Materials,1971,5(2):208-234.
    [194]王颖坚,王震鸣.正交铺设层合圆柱曲板的蠕变失稳[J].应用数学和力学,1993,14(4):295-300.
    [195]彭凡.考虑蠕变的正交铺设层合柱形曲板的屈曲分析[J].湖南大学学报,1998,25(3):10-15.
    [196]Fizer E,Wess R.Surface treatment of carbon fibers,processing and uses of carbon fiber reinforced plastics[J].VDI-Verlag,1981,45.
    [197]Delmont J.Technology of carbon andgraphite fiber composites[M].V.Nostrand Rinhold,NewYork,1981.
    [198]Fizer E,Wess R..Effect of surface treatment and sizing of C-fibers on the mechanical properties of CFR thermosettingand thermplastic polymers[J].Carbon,1987,25(4):455-564.
    [199]Kozlowski C,Sherwood P M.X-ray photoelectron spectroscopic studies of carbon fiber surface[J].Electrochemical treatment in ammonium salt electrolytes,1986,(24):357-366.
    [200]Monie S J,Superman G,Seeman D J.Titanate coupling agents[C].22ndAnnual Teehnical Conference,SPI,PR/C Institute Washington D C,1977.
    [201]Pape P G,Plueddemann E P.Improvements in Saline Coupling Agents for more Durable Bonding at the Polylmer Reinforcement Interface[C].Annual Technical Conference,1991:1870-1875.
    [202]陈育如.铝锆偶联剂的应用[J].塑料工业,2001,29(6):44-46.
    [203]姜勇,徐声韵,王燕舞.玻璃纤维增强聚丙烯的研制与应用[J].塑料科技,2000(1):7-9.
    [204]Jang B Z.Control of interfacial adhesion in continuou carbon and kevlar fiber reinforced polymer composites[J].Composite Science and Technology,1892(64):333-342.
    [205]Wang F,et al.Ni-fluorinated vapor growth carbon fiber(VGCF) composite films prepared by an electrochemical deposition process[J].Electrochemistry Communications,2004,6(3):242-244.
    [206]Lantelme F,et al.Electrochemical deposition of niobium on vitreous carbon and silicon carbids fibers in fused alkali chlorides[J].Materials Science and Engineering B,1996,39(3):202-207.
    [207]Subramanian RV,Lukubowski J.Interphase resin modification with graphite composites[J].ACS Organic Coatings and Plastics Chemistry Preprints,1979(40):688-697.
    [208]Takayanagi M,Katayose T.N-substituted poly(p-phenylene terephthalamide)[J].Journal of Polymer Seience,1981(19):1133-1145.
    [209]Mobarakeh H S,Brisson J,Ait-kadi A.Ionic interphase of glass fiber/polyamide66composites[J].Polylmer Composites,1998,19(3):264-274.
    [210]薛志云等.玻璃纤维表面的乙烯基单体接枝聚合[J].功能高分子学报,1996,9(2):177-182.
    [211]杨卫疆,郑安呐,戴于策.过氧化物偶联剂在玻璃纤维表面上接枝高分子联的研究[J].华东理工大学学报,1996,.22(4):429-443.
    [212]Wang X,et al.Fracture of aramid fiber/epoxy resin micro composites[J].Journal of Materials Science and Technology,1995,11(4):260-264.
    [213]Jin S,et al.Plasma modified polyaramid fiber surface and fiber/epoxy interface[J].Journl of Adhesion,1996(59):251-263.
    [214]Shker M,et al.Improvement of the interfacial adhesion between kevlar fiber and resin by using R-F plasma[J].Journal of Composites Techologyand Research,1996,18(4):249-255.
    [215]Wang Q,Kaliaguine S,Ait-kadi A.Catalytic Grafting:A new technique for polymer -fiber composites Ⅲ.Polyethylene-plasma-treated Kevlamn fiber composites:Analysis of Fiber Surface[J].Journal of Applied Polymer Science,1993,48(1):121-136.
    [216]Ochiai S,Tanaka M,Tanaka H.A modelin study on rsidual stress-induced interfacial debonding and stress-strain behavior of bonded UD composites[J].Composite Part A:Applied Science and Manufacturing,2002,10(33):1337-1343.
    [217]Geubelle P H,Sottos N R.Simulation of fiber debonding with friction in a model composite push out test[J].International Journal of Solid and Structures,2001,11(38):8547-8562.
    [218]Lim J T,Piggott M R,Bailey W J.Toughness of fiber composites with controlled matrix shrinkage.SAMPE Quarterly,1984(8):25-30.
    [219]Chang J,Bell J P,Josph R.Effects of a controlled modulus interlayer upon the performance of graphite/epoxy composite[J].SAMPE Quarterly,1978,18(3):39-45.
    [220]Rhee H W,Bell J P.Effects of reactive and non-reactive fiber coatings on performance of graphite/epoxy composites[J].Polymer Composites,1991(12):213-225.
    [221]黄玉东,魏月贞.复合材料界面研究现状(中)[J].纤维复合材料,1994,11(1):1-7.
    [222]李学梅.玻璃纤维/还氧复合材料界面性能研究[D].武汉:武汉理工大学[硕士学位论文],2004.
    [223]Cox H L.The elasticity and strength of paperand other fibrous materials[J].J.meeh.phy.solids,1952(3):72-74.
    [224]Dow.Stress and Strain Fields in Short Fiber-Reinforced Composite[J].Fber.Sci.Tech,1974(7):129-130.
    [225]Hoope.Theory of mechanical properities of fiber-strengthened material[J].J.mech.phy.solids,1965,4(4):189-198.
    [226]Chamis.Computerized multilevel analysis for multilayered fiber composite[J].Computer and Structures,1973(3):467-482.
    [227]King T R,Walrath D E,Admas D F.Micromechanicals prediction of the shear strength of carbon fiber/epoxy matrix composites:the influence of matrix and inierface strength[J].Journal of Composite Materials,1992(267):558-564.
    [228]Daadbin A,Sumner N D.The effect of the interphase and material properties on load transfer in fiber composite[J].Composites,1992,(23):210-221.
    [229]Whitney J M,Drzal L T.Axi-symmetric stress distribution around an isolated fiber fragment[M].Toughened Composites,ASEM Special Technical Publication,1987.
    [230]Curtin W A,Takeda N.Tensile Strength of Fiber-Reinforced Composites:I Model and Effects of Local Fiber Geometry[J].J.Composite Materials,1998,32(22):2042-2059.
    [231]Henstrnburg R B,Phoenix S L.Interfacial shear strength studies using the single filament-composite test,Part Ⅱ:a probability model and monte carlo simulation[J].Polymer Composites,1989(10):389-408.
    [232]Liu H Y,et al.Simulation of the fiber fragmentation process by a fracture mechanics analysis[J].Composites Science and Technology,1994,52(2):253-260.
    [233]Pegoretti A,et al.Fracture tougness of the fiber-matrix interface in glass-epoxy composites[J].Journal of Materials Science,1996,31(23):6145-6153.
    [234]Nishiyabu K.Assessment of the influence of interfacial properties on stress transfer in composites by a numerial approach[J].Composite Science and Technology,1997,7(8):1103-1111.
    [235]陈陆平,潘敬哲,钱令希.复合材料纤维/基体界面失效问题的参变量有限元数值模拟[J].复合材料学报,1993,1(10):71-75.
    [236]黄玉东,魏月贞.复合材料界面研究现状(中)[J].纤维复合材料,1994,11(1):1-7.
    [237]Farder S D,Hackett R M.A model representation of polymeric composite materials incorporating an elastomeric interface[C].Proceeding of ICC-Ⅳ,1992.
    [238]Suliviangn B J.Determination of mechanical properties of interfacial region between fiber and matrix in organic matrix composites,in controlled interphase in composites[C].Proeeeding of ICC-Ⅲ 1990.
    [239]King T R,Walrath D E,Admas D F.Micromechanicals prediction of the shear strength of carbon fiber/epoxy matrix composites:the influence of matrix and interface strength[J].Jouranal of Composite Materials,1992(267):558-564..
    [240]Termonia Y.Fiber coating as a means to composite for poor adhesion in fiber-reinforced materials[J].Jornal of Material Science,1990(25):103-112.
    [241]Sandi A R,Subramanian R.V..The interfacial regions in interlayer fiber composites[J].Polymer Composites,1991,12(6):377-383.
    [242]Gundel D B,Majumdar B S,Miracle D B.Evaluation of the transverse response of fiber-reinforced composites using a cross-shaped sample geometry[J].Scipta Metallurgica et Materialia,1995,33(12):2057-2065.
    [243]Gundel D B,Warrier S G,Miracle D B.The interface debond stress in single and multiple SiC fiber/Ti-6A1-4V composites under transverse tension[J].Acta Materialia,1997,45(3):1275-1284.
    [244]Wairier S G,Rangaswamy P,Bourke M A M.Assessment of the fiber marix interface bond strength in SiC:Ti-6A1-4V composites[J].Materials Science and Engineering A1999,259(2):220-227.
    [245]叶碧泉,界旭明等.用界面单元法分析复合材料界面力学性能[J].应用数学和力学,1996,4(17):343-345.
    [246]Hsueh C H.Some applications of fiber pullout analysis[J].Journal of Material Science,1990(9):29-34.
    [247]Evans A G,Zok F W,Davis J.The role of inierface in fiber reinforced brittle matrix composites[J].Composites Science and Technology,1991,42(1):3-24.
    [248]Anselmo A D.The effect of an inierphase on the stress and energy distribution in the embedded single fiber test[J].Composites Science and Technology,1992(44):215-226.
    [249]向毅斌.双材料界面断裂韧性的测定方法[J].兵工学报,2002,23(1):112-115.
    [250]王零森,罗雄.复合材料的界面强度及测定方法[J].材料研究学报,1994,4(8):372-377.
    [251]Hashin Z.Thermoelastic properties of fiber composites with imperfect interface[J].Mechanics of materials,1990(8):333-348.
    [252]Sumisio H T.Apparent horizental shear strength of reinforced plastics by short beam method[J].ASTMD 2344-76,1978(36):361-364.
    [253]Chiao C C,Morre R.L..Measurement of shear properties of fiber composites[J].Journal of composites,1976,3(3):161-169.
    [254]Whitney J M.Free-edge effects in the characterization of composite materials[J].ASTM Special Technical Publication,1973(521):167-180.
    [255]Broutman L J.Glass-rein joini strengths and their effect on failure mechanisms in reinforced plastics[J].Polymer Engineering and Science,1966(7):263-272.
    [256]Favre I P,Perrin J.Journal of Material Science,1972(7):1113.
    [257]Kelly A,Tyson W R.Tensile properties of fiber-reinforced metals:copper/tungsten and copper molybdenum[J].Journal of Mechanics Physics Solids,1965(13):329-350.
    [258]Serge F,et al.The local bond strength and its determination by fragmentation and pull-out tests[J].Composites Science and Technology,1997(57):957-964.
    [259]Hui C Y,Phoenix S L,Shia D.The single-filament-composite test:a new statistical theory for estimating the interracial shear strength and Weibull parameters for fiber strength[J].Composites Science and Technology,1997,57(12):1707-1725.
    [260]Miller B,Muri P,Rebenfeld L.A mecrobial method for determination of the shear strength of a fiber/resin interface[J].Composites Science and Technology,1987,28(1):17-32.
    [261]赵唯克.铝塑复合管受力状态讨论及结构优化设计[J].塑料科技,2003(4):8-12.
    [262]董大伟,闫牧夫.复合管金属增强体结构优化设计[J].机械工程师,2003(9):56-59.
    [263]黄华.设计玻纤增强塑料管应注意的问题[J].石油规划设计,1995,6(6):33.
    [264]李学闵.FRP/塑料复合管道设计新方法—限定环向应变设计准则[J].工程塑料应用,1998,26(1):6-10.
    [265]赵唯克.铝塑复合管受力状态讨论及优化结构分析[J].塑料科技,2003,156(4):8-12.
    [266]王宇飞,杨振国.组元材料对三元复合管道性能的影响[J].机械工程材料,2004,28(9):13-15.
    [267]F Richard,D Perreux.A reliability method for optimization of n fiber reinforced composite pipes[J3.Reliability Engineering &.System Safety,2000,68(1):53-59.
    [268]甘国工.螺旋缠绕钢丝增强体的钢塑复合管[P].中国国家发明专利,CN2550090Y.
    [269]卢玉斌等.塑料基金属复合管研究进展[J].化工机械,2005,32(2):125-129.
    [270]Jinyang Zheng,Xiufeng Lin,Yubin Lu.Stress analysisi of palatic pipe reinforced by cross helically winding steel wire[C].USA:Pressure Vessels and Piping Division Conference,American Society of Mechanical Engineers(ASidE),New York.
    [271]王利金,刘锦昆.埕岛油田海底管道冲刷悬空机理及对策[J].油气储运,2004,23(1):44-48.
    [272]肖文功.海底管道悬空隐患治理技术研究及应用[J].中国海洋平台,2004,19(6):36-39.
    [273]孟凡生,徐爱民,李军.滩海海底管线悬空问题治理对策[J].中国海洋平台,2006,21(1):52-54.
    [274]许炯心.黄河三角洲造陆过程中的陆域水沙临界条件研究[J].地理研究,2002,21(2):163-169.
    [275]赵冲久.近海动力环境中粉砂质泥沙运动规律的研究[D].天津大学[博士学位论文],2003.
    [276]杨作升,王涛.埕岛油田勘探开发海洋环境[M].青岛:中国海洋大学出版社,1993.
    [277]冯秀丽等.黄河三角洲埕岛近岸海域悬浮泥沙运动[J].海洋科学,2003,27(12):66-70.
    [278]仲德林,刘建立.埕岛油田海区海底地形变化及预防措施[J].海岸工程,2001,20(3):14-18.
    [279]吴世迎,申宪忠.黄河三角洲五号桩海区泥沙冲淤变化的初步研究[J].海洋与海岸带开发,1991,8(4):57-63.
    [280]李金洪,孙富旺.埕岛油田海底天然气管道掩埋状况勘测及其影响因素分析[J].海岸工程,2002,21(3):19-29.
    [281]工程地质手册[M].北京:中国建筑工业出版社,1987.
    [282]海洋调查规范-海洋地质地球物理调查,GB/T 13909-1992[S].中国:中国标准出版社,2007.
    [283]张卫明等.埕岛油田海域海底沉积特征与工程地质特性[J].海洋科学进展,2005,23(3):305-312.
    [284]时连强等.现代黄河三角洲潮滩原状沉积物冲刷试验[J].海洋工程,2006,24(1):46-54.
    [285]刘效国,朱孝强.埕岛海域水深地形特征及冲淤规律探讨[J].黄渤海海洋,2000,18(1):34-39.
    [286]臧启运等.黄河三角洲近岸泥沙[M].北京:海洋出版社,1996.
    [287]高善明等.黄河三角洲形成和沉积环境[M].北京:科学出版社,1989.
    [288]冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,2003.
    [289]缪国平.挠性部件力学导论[M].上海:上海交通大学出版社,1996.
    [290]李平,朱大奎.波浪在黄河三角洲形成中的作用[J].海洋地质与第四纪地质,1997,17(2):39-44.
    [291]边淑华等.淤泥质粉砂海底典型平台桩基冲刷[J].海洋测绘,2006,26(2):23-26.
    [292]陈国平,左其华,黄海龙.波浪作用下桩柱周围局部冲刷研究[J].海洋工程,2000,18(4):21-26.
    [293]胡洪勤.埕岛油田海底管道冲刷及工程治理[J].海洋科学,2005,29(6):13-16.
    [294]马良.海底管道接岸段设计与铺装[J].中国海洋平台,2002,17(6):15-18.
    [295]Robert.E.Randall..海洋工程基础[M].杨槱,包丛喜译.上海:上海交通大学出版社,2002.
    [296]毕家驹.近海力学导论[M].上海:同济大学出版社,1989.
    [297]陈沈良等.黄河三角洲飞雁滩海岸的侵蚀及机理[J].海洋地质与第四纪地质,2005,25(3):9-14.
    [298]陈小英等.黄河三角洲孤东及新滩海岸侵蚀机制研究[J].海岸工程,2005,24(4):1-10.
    [299]白玉川,顾元棪,邢焕政.水流泥沙水质数学模型理论及应用[M].天津:天津大学出版社,2005.
    [300]高冬光.桥涵水文[M].北京:人民交通出版社,2003.
    [301]孙永福,宋玉鹏,边淑华.海洋平台桩基周围冲刷过程及冲刷机理分析[J].中国海洋大学学报,2007,37(4):636-640.
    [302]冯秀丽,沈渭铨,杨荣民.现代黄河口区沉积环境与其沉积物工程性质的关系[J].青岛海洋大学学报,1994,S3增刊:75-83.
    [303]宋红霞等.黄河河口三角洲风暴潮灾害特点及其预防对策[J].海岸工程,2000,19(4):70-74.
    [304]王文介.南海北部的潮波传播与海底沙脊和沙波发育[J].热带海洋,2000,19(1):1-7.
    [305]张效龙,徐家声,陶慧刚.中国海海底沙波对海缆埋设施工的影响分析[J].海岸工程,2006,25(3):39-43.
    [306]栾振东等.地貌形态对海底管线稳定性影响的研究[J].海洋科学,2007,31(12):53-58.
    [307]鲍才旺,姜玉坤.中国近海海底潜在地质类型及其特征[J].热带海洋,1999,18(3):24-31.
    [308]东方1-1海底管线检测与评价资料解释报告[R].青岛:中国科学院海洋研究所,2005.
    [309]埕岛油田天然气集输工程路由调查[R].国家海洋局北海分局,1999.
    [310]阎通,李广雪.埕北海域海底管线冲刷稳定性研究[J].青岛海洋大学学报,1999,29(4):721-726.
    [311]赵光磊.现代黄河三角洲沿岸泥沙运移与岸滩侵蚀态势研究[J].海岸工程,2006,25(2):29-38.
    [312]Shamsher Prakash.土动力学,徐攸在等译[M].北京:水利电力出版社,1984.
    [313]史如平.土木工程地质学[M].大连:大连理工大学出版社,1993.
    [314]杨少丽,沈渭铨.波浪作用下海底粉砂液化的机理分析[J].岩土工程学报,1995,17(4):28-37.
    [315]杨少丽.海底土对波浪等水动力的响应[D].青岛海洋大学,1995.
    [316]许国辉,胡光海.波浪作用下粘质粉砂底床性态变化的试验研究[J].黄渤海海洋,2000,18(1):19-26.
    [317]李安龙等.波浪加载下海底土质特性变化的研究[J].青岛海洋大学学报,2003,33(1):101-106.
    [318]埕岛波浪数据统计资料[R].胜利油田规划设计研究院.
    [319]Schwab W C,Hee H J,Molnia B F.Causes of caried sediment grabity flow types on the Alsek Prodelta,North-east Gulf of Alaska[J].Marine Geotechnology,1991,(7):317-342.
    [320]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991.
    [321]C A Brebbia,S Walker.近海结构动力分析.海洋出版社,1985.
    [322]马良.海底管道在水流作用时诱发的振动效应[J].中国海洋平台,2000,15(2):30-34.
    [323]赵冬岩.海底管道稳定性分析综述[J].中国海上油气(工程),1998,10(5):1-3.
    [324]宋玉鹏,孙永福,刘伟华.海底管线稳定性影响因素分析[J].海岸工程,2003,22(2):78-84.
    [325]高福平,顾小芸,浦群.水动力作用下管道稳定性的试验研究[J].海洋工程,2001,19(2):56-60.
    [326]Mao Y.Seabed scour under pipelines[C].Proc.Of 7th Int.Symp.,OMAE.1988,33-38.
    [327]丁祖荣.流体力学(中册)[M].北京:高等教育出版社,2003.
    [328]吴钰骅,金伟良,毛根海等.海底输油管道底砂床冲刷机理研究[J].海洋工程,2006,24(4):43-48.
    [329]杨兵,高福平,吴应湘等.海流引起海底管道悬空的数值模拟[J].中国造船,2005,46(增刊):221-226.
    [330]B M Sumer,C Truelsen,T Sichmann,et al.Onset of scour below pipelines and self-burial[J].Coastal Engineering,2001,42:313-335.
    [331]Chiew Yee-Meng.Mechanics of local scour around submarine pipelines[J].Journal of Hydraulic Engineering,ASCE,1990,116(4):515-529.
    [332]Philip L,F Liu.Advances in Coastal and Ocean Engineering[M].USA:World Scientific Publishing Co.,Inc.,1995.
    [333]Leeuwenstein W,Bijker E A,Peerbolte E B,Wind H G.The natural self-burial of submarine pipelines[C].Proc.4th International Conf.,BOSS,1985,(2):717-728.
    [334]Fangjun Li,Liang Cheng.Numerical model for local scour under offshore pipelines[J].Journal of Hydraulic Engineering,ASCE,1999,125(4):400-406.
    [335]Dongfang Liang,Liang Cheng.Numerical modeling of flow and scour below a pipeline in currents-Part I-Flow simulation[J].Coastal Engineering,2005,52:25-42.
    [336]Dongfang Liang,Liang Cheng.Numerical modeling of flow and scour below a pipeline in currents-PartII-Scour simulation[J].Coastal Engineering,2005,52:43-62.
    [337]Mao Y.Seabed scour under pipelines[C].Proc.Of 7th Int.Symp.,OMAE.1988,33-38.
    [338]Chao J L,Hennessy P V.Local scour under ocean outfall pipe-lines[J].Water Pollution Control Fed,1972,4(7):1443-1447.
    [339]B M Sumer,Richard J S,W A Torum.Scour around coastal structures:a summary of recent research[J].Coastal Engineering,2001,44:153-190.
    [340]阎通,李广雪.埕北海域海底管线冲刷稳定性研究U].青岛海洋大学学报,1999,29(4):721-726.
    [341]Dag Myrhaug,Havard Rue.Scour below pipelines andaround vertical piles in random waves[J].Coastal Engineering,2003,48:227-242.
    [342]浦群,李坤.管线振荡绕流对砂床的冲蚀[J].力学学报,1999,31(6):677-681.
    [343]秦崇仁,彭亚.波浪作用下海底裸置管道周围的冲刷[J].港工技术,1995,(3):7-12.
    [344]潘冬子,王立忠,潘存鸿等.推进波作用下海底管线周围局部冲刷试验研究[J].海洋工程,2007,25(4):27-32.
    [345]Dag Myrhaug,Muk ChenOng,Cecilie Gjengedal.Scour below marine pipelines in shoaling conditions for random waves[J].Coastal Engineering,2008(1):1-5.
    [346]Bing Yang,et al.Experimental study of vortex-induced vibrations of a pipeline near an erodible sandy seabed[J].Ocean Engineering,2008,35:301-309.
    [347]Fu-Ping Gao,et al.Steady current induced seabed scour around a vibrating pipeline[J].Applied Ocean Research,2006,28:291-298.
    [348]申仲翰.海底管道振动对砂基淘蚀影响的试验研究[J].中国海上油气,2000,12(2):22-28.
    [349]Sumer B M,Fredse J.Self-burial of pipelines at span shoulders[J].Int.J.Offshore Polar Engineering.1994,4(1):30-35.
    [350]Sumer B M,et al.Sinking/floatation of pipelines and other objects in liquefied soil under waves[J].Coastal Engineering,1999,38(2):53-90.
    [351]孙永福,宋玉鹏,孙惠风等.潮流作用下海洋平台桩基冲刷过程及冲刷深度计算[J].海洋科学进展,2007,25(2):178-183.
    [352]曲立清,周益人,杨进先.波流共同作用下大型桥墩周围局部冲刷实验研究[J].水运工程,2006,(4):23-27.
    [353]焦爱萍,张耀先.桥墩局部冲刷分析及防护对策[J].人民黄河,2003,25(7):21-22.
    [354]齐梅兰,崔广臣,张世伟.桥墩基础施工河床局部冲刷研究[J].水动力学研究与进展,2004,19(1):1-5.
    [355]朱炳祥.国内桥墩局部冲刷研究的主要成果[J].中南公路工程,1986,(3):39-45.
    [356]孙宁松,孙永福,宋玉鹏.海洋平台桩基冲刷及影响因素分析[J].海岸工程,2004,23(4):38-44.
    [357]仲德林,刘建立.埕岛油田海上石油平台基础冲刷研究.海岸工程,2003(2):37-43.
    [358]李德镍.波和流联合作用下大直径圆柱的局部冲刷[J].港工技术,2002,(1):1-3.
    [359]王庆珍,李田生,官盛飞.圆柱形桥墩附近三维流场分析研究[J].公路交通技术,2008,(2):47-51.
    [360]周玉利,王亚玲.桥墩局部冲刷深度的预测[J].西安公路交通大学学报,1999,19(4):48-50.
    [361]秦崇仁.波浪水流共同作用下人工岛周围局部冲刷的研究[J].海洋学报,1994,16(3):130-138.
    [362]谢世楞.海上墩式建筑物周围的冲刷问题[R].交通部第一航务工程勘察设计院,1986.
    [363]Horbich J B,Robert E S,Wayne A D.Seafloor Scour Design Guidelines for Ocean-founded Structures[R].New York:Marcel Dekker Inc.,1998.
    [364]M R Babu,S N Rso,V Sundar.A simplified instrumentation for measuring scour in silty clay around a vertical pile[J].Applied Ocean Research,2002(24):355-360.
    [365]Qadar A,Ansari S A.Bridge Pier Scour Equations-An Assessment[C].Hydraulic Engineering Proceedings of the 1994 Conference:61-67.
    [366]Zitiert,et al.Status of requirements for the certification of the Q7 monopile design[R].Germanischer Lloyd WindEnergie Gesellschaft mit beschrankter Haftung (GmbH) Company with Limited Liability:2004.
    [367]D M Sheppard,William M J.Live-bed local pier scour experiments[J].Journal of Hydraulic Engineering ASCE,2006,132(7):635-642.
    [368]Melville B,Colemann S.Bridge Scour[M].USA:Water Resources Publications,2000.
    [369]Sumer B M,et al.Scour around a vertical pile in waves[J],Jorunal of Waterway,Port,Coastal and Ocean Engineering.ASCE,1992,118(1):15-31.
    [370]Atilla B,Magnus L.Analysis of scour around a group of vertical piles in the field[J].Journal of Waterway.port,Coastal and Ocean Engineering,2000,126(4):215-220.
    [371]陈海鸥.波流共同作用下海床上直立大直径圆柱建筑物周围的局部冲刷研究[D].大连理工大学[硕士学位论文],2002.
    [372]Breusers H N C,Nicollet,H W Shen.Local scour around cylindrical piles[J].Jorunal of Hydraulic Research,1977,115:211-252.
    [373]Imberger J,D Alach,J Schepic.Scour behind circular cylinders in deep water[R].Proc.18th Conference on Coastal Engineering,1982:1522-1554.
    [374]王文海,陈雪英.桩柱周围海底冲刷深度计算及动力参数的选取[J].海岸工程,1998,17(1):1-8.
    [375]Sumer B,Fredsoe J.Scour around pile in combined wave and current[J].Journal of Hydraulic Engineering,2001,127(5):403-411.
    [376]Herbich J B.Handbook of Coastal and Ocean Engineering[M].Tokyo:Gulf Publishing Company,1992.
    [377]黄莹,佘昌莲,严仁军.海洋平台桩基的冲刷机理[J].航海工程,2006,(5):85-88.
    [378]Wang Ru-kai,John BH.Combined current and wave-produced scour around a single pile[R].Texas A &.M University,COE Report No.269,1983,3.
    [379]苗文成.埕岛海域海底管道隐患分析及治理[J].石油工程建设,2004(3):48-50.
    [380]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出社,1991.
    [381]王耀先.复合材料结构设计[M].北京:化学工业出社,2001.
    [382]郑传祥.复合材料压力容器[M].北京:化学工业出社,2006.
    [383]河北欧亚特种胶管有限公司[EB/OL].http://www.ouyahose.com/indexc.htm.
    [384]宋迎东,雷友峰,孙志刚等.一种新的纤维增强复合材料细观力学分析[J].南京航空航天大学学报,2003,35(4):435-440.
    [385]魏世垂,韩庆,魏绪钧.复合材料管研究现状[J].材料导报,2003,17(9):64-67.
    [386]祝浩源.试论复合材料管的应用与发展[J].江西化工,1999,(2):4-5,41.
    [387]刘雄亚.复合材料管的研究和应用[J].纤维复合材料,1994,(4):42-47.
    [388]蒋晓斌.高惠临油气管道腐蚀剩余寿命的预测方法[J].2005,21:(4)18-21.
    [389]徐芝纶.弹性力学(上册)[M].高等教育出版社,1996.
    [390]徐芝纶.弹性力学(下册)[M].高等教育出版社,1996.
    [391]夏志皋.塑性力学[M].同济大学出版社,2002.
    [392]薛守义.弹塑性力学[M].北京:中国建材工业出版社,2005.
    [393]徐秉业,刘信声.应用弹塑性力学[M].清华大学出版社,2004.
    [394]Kreyszig E.Advanced engineering mathematics[M].New Yorks:John Wiley &.Sons,2000.
    [395]C S Chouchaoui,O O Ochoa.Similitude study for a laminated cylindrical tube under tensile,torsion,bending,internal and external pressure.Part Ⅰ:governing equations[J].Composite Stuctures,1999:(44),221-229.
    [396]R M Guedes.Stress-strain analysis of a cylindrical pipe subjected to a transverse load and large deflections[J].Composites Structures,2009:(88),188-194.
    [397]华罗庚,吴滋潜,林伟.二阶两个自变数两个未知函数的常系数线性偏微分方程组[M].北京:科学出版社,1979.
    [398]姜家辉.矩阵理论基础[M].大连:大连理工大学出版社,1997.
    [399]高望东,刘淑珍.数值计算方法[M].大连:大连理工大学出版社,1992.
    [400]阳阴盛,林建华.Methematica基础及数学软件[M].大连:大连理工大学出版社,2006.
    [401]杜善义,王彪.复合材料细观力学[M].科学出版社,1998.
    [402]陈传尧.疲劳与断裂[M].华中科技大学出版社,2005.
    [403]张安哥,朱成九,陈梦成.疲劳、断裂与损伤[M].西安交通大学出版社,2006.
    [404]张行等.断裂与损伤力学[M].北京航空航天大学出版社等,2006.
    [405]杨光松.损伤力学与复合材料损伤[M].国防工业出版社,1995.
    [406]汪志诚.热力学统计物理[M].高等出版社,2000.
    [407]Birkenmaier M.Fatigue resistant tendons for cable-stayed construction[C].Zurich:IABSE Proceedings,1980.
    [408]兰成明.平行钢丝拉索疲劳性能理论研究[J].沈阳建筑大学学报,25(1):56-60.
    [409]滕素珍.数理统计[M].大连:大连理工大学出版社,2000.
    [410]Dich.J S.橡胶技术配合与性能测试,游长江等译[M].北京:化学工业出版社,2005.
    [411]张玉龙,孙敏.橡胶品种与性能手册[M].北京:化学工业出版社,2007.
    [412]Bryan Harris.工程复合材料,陈祥宝等译[M].北京:化学工业出版社,2002.
    [413]徐海良,何清华.深海采矿输送管道内流体对管道的作用力分析[J],矿业研究与开发,2004(6):46-49.
    [414]李国琛,M耶纳.塑性大应变微结构力学[M].北京:科学出版社,2003.
    [415]陈至达.杆、板、壳大变形理论[M].北京:科学出版社,1994.
    [416]金明.非线性连续介质力学教程[M].北京:清华大学出版社,北京交通大学出版社,2005.
    [417]李卓球,董文堂.非线性弹性理论基础[M].北京:科学出版社,2006.
    [418]黄义,张引科.张量及其在连续介质力学中的应用[M].北京:冶金工业出版社,2002.
    [419]黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003.
    [420]吕盘明.张量算法简明教程[M].北京:中国科学技术大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700