范氏气体下气枪激发子波信号模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气枪是海上地震勘探重要的人工震源。气枪震源子波信号的特征是影响勘探效果最重要的因素,同时震源子波还是地震资料处理解释中十分重要的参数,特别是叠前处理与地震模型正演和反演中必须输入的关键参数。气枪激发的高频震源子波信号能量强,频带宽,能探测浅部地层精细结构;而气枪激发的低频震源子波信号能远距离探测深部地壳甚至上地幔结构,把海上和陆上地壳、地幔结构联系起来。
     实际应用中,无论是单枪还是气枪阵列激发生成的子波,都可以通过现场实测得到,但通过实测得到的子波,需要耗费大量的人力、物力和财力,要求外部环境条件也较苛刻。气枪子波模型不但能方便的模拟出与实测值一样的子波波形,而且所要花费的成本很低,很大程度上有效的解决了气枪阵列设计过程中的难题,具有实测方法无法相比拟的优势。研究和实例表明,气枪震源性能稳定,激发子波一致性好,不随使用期增长而改变,保证了模拟子波正确性和可靠性。因此,开展气枪子波信号模拟研究有着非常重要的理论意义和实际应用价值。
     本文依据空气枪原理、特性及影响因素,总结了模拟实测子波信号的各种理想气体单枪子波模型。通过分析这些子波模型的模拟子波与实测子波差异问题,探索和发展了新的理想气体单枪子波模型,就是在新的子波模型中引入理想气体条件下的准静态开放式热力学系统。该模型在气枪工作压力较小时,模拟子波接近于实测子波;但是随着气枪工作压力不断增大,模拟子波越来越偏离实测子波,不能准确反映实测子波特性。针对这一问题,展开了工作并分析了原因,认为随着气枪工作压力增大,气枪内气体不再符合理想气体条件,所以用理想气体状态方程会造成很大误差。
     建立了范氏气体单枪子波模型。利用范德瓦尔斯非理想气体理论,把气枪内气体看成与气体实际行为相符合的范氏气体。由此引入比理想气体状态方程精度更高的范德瓦尔斯方程,通过与范氏气体条件下的准静态开放式热力学系统和气体气泡运动方程相结合,建立了范氏气体单枪子波模型。同时由于不同类型气枪激发出来的子波信号存在差异,所以范氏气体单枪子波模型能确定各类气枪参数,模拟相同类型不同容量气枪的子波信号。测试结果显示,增大气枪工作压力时,范氏气体单枪子波模型模拟的子波结果与实测子波偏离很小,仍然保持接近。
     发展和完善了范氏气体GI枪子波模型和范氏气体气枪阵列子波模型。由于范氏气体单枪子波模型能保证模拟子波正确性和可靠性,因此在此基础上建立了这两个子波模型。范氏气体GI枪子波模型是通过设置最高气体喷出量来控制子波信号;范氏气体气枪阵列子波模型是根据无论气枪阵列中的枪与枪间距有多远都会相互影响的思路建立。通过测试表明,这两个子波模型的模拟子波都能很好的与实测子波波形接近。
     根据上述理论和算法,研发了范氏气体气枪子波模拟软件。它能针对野外生产中的实际困难和要达到的目标,高效、准确、快速、节省的实现气枪阵列设计,得到性能优越的海上震源。采用范氏气体气枪子波模拟软件设计气枪阵列,得到的参数运用于海上地震勘探中,取得了很好的效果。
Air-guns are the important artificial seismic source in offshore seismic prospecting. It is the most important factor that wavelet characteristics of air-guns affect the effect of seismic exploration. And the signature is also a very important parameter in seismic data processing and interpretation, which has to be inputted on pre-stack processing and seismic forward and inverse model. High frequency signature stimulated by air-guns prospects fine structure of shallow oceanic crust. Low frequency signature stimulated by air-guns explores deep oceanic crust and upper mantle from far distance.
     In practice, signature stimulated by air-guns or air-gun arrays may be obtained in actual measurement, but the measurements need much manpower, material resources and consume besides good external environment conditions. Not only signature simulated by the air-gun wavelet model can be close to measured signature, but also the air-gun wavelet model expends a little quantity of cost. The wavelet model has solved these questions easily and is superior to wavelet measurement. Researches and examples show that the performance of air-gun source is steady and the wavelet has good compatibility, which is unable to change with the lifetime rise. The wavelet model has these characteristics of validity and authenticity. Therefore, it has important value of the theory and application to study signature simulation.
     According to the principles, behaviors and influential factors of air-guns, various wavelet models of the single air-gun are concluded. Then the new single air-gun wavelet model of Ideal Gas is established from the difference between the modeling wavelet and the measured wavelet. The open quasi-static thermodynamic system in conditions of Ideal Gas is drawn in the new wavelet model. The modeling wavelet is close to the measured wavelet when the air-gun operation pressure is small. But with increase of the operation pressure the modeling wavelet greatly deviates from the measured wavelet. In view of the problem, the author judges that gas in the air-gun does not correspond to the conditions of Ideal Gas with increase of the operation pressure. So there is very big error caused by Ideal Gas Equation of State.
     The single air-gun wavelet model of Van der Waals Gas is established. When gas in the air-guns is regarded as Van der Waals Gas and Van der Waals Equation is drawn, the single air-gun wavelet model of Van der Waals Gas based on the open quasi-static thermodynamic system and the bubble oscillation theory is established. At the same time, the wavelets stimulated by different types of air-guns are non-uniform. The single air-gun wavelet model of Van der Waals Gas can determine various types of air-gun parameters to simulate signature of the same air-guns of different volume. Test results show that the signature simulated by the model remains close to the measured wavelet when the air-gun operation pressure increases.
     The GI gun wavelet model of Van der Waals Gas and the air-gun array wavelet model of Van der Waals Gas are developed. The single air-gun wavelet model of Van der Waals Gas has these characteristics of validity and authenticity, so the two wavelet models are established. The former controls the signature by setting the gas ejection. The latter is established by interaction between air-guns in the air-gun array. Acceptance tests demonstrate that the two models can be close to measured wavelet.
     Based on the theories and algorithms, the air-gun wavelet simulation software of Van der Waals Gas is programmed. Aimed at the difficulty and target in practice, it can efficiently, correctly, sparingly achieve the design of the air-gun arrays and the marine seismic source of predominant performance is obtained. It is good effects that the air-gun array parameters obtained by the design of the air-gun wavelet simulation software of Van der Waals Gas are applied into offshore seismic prospecting.
引文
[1]何汉漪.海上高分辨率技术及其应用[M].北京:地质出版社,2001:52-91
    [2]Laws R. M., Landrφ M., Amundsen L. An experimental comparison of three direct methods of marine source signature estimation[J]. Geophysical Prospecting,1998,46: 353-389
    [3]Pica A., Diet J., Tarantola A. Nonlinear inversion of seismic reflection data in a laterally invariant medium[J]. Geophysics,1990,55:284-292
    [4]Li Y.气枪信号估算及海洋地震资料子波处理[J].石油物探译丛,1989,3:33-44
    [5]Dragoset W. H. A comprehensive method for evaluating the design of air guns and air gun arrays[J]. The Leading Edge,1984,52:52-61
    [6]罗桂纯,葛洪魁,王宝善等.气枪震源激发模式及其应用[J].中国地震,2007,23(3):225-232
    [7]杨光亮,朱元清.气枪震源深部探测子波模拟[J].大地测量与地球动力学,2008,28(6):91-95
    [8]Ziolkowski A. M., Hanssen P., Gatliff R., et al. Use of low frequencies for sub-basalt imaging[J]. Geophysical prospecting,2003,51:169-182
    [9]陈浩林,全海燕,於国平等.气枪震源理论与技术综述(上)[J].物探装备,2008,18(4):211-217
    [10]陈浩林,全海燕,於国平等.气枪震源理论与技术综述(下)[J].物探装备,2008,18(5):300-312
    [11]陈浩林,宁书年,熊金良等.气枪阵列子波数值模拟[J].石油地球物理勘探,2003,38(4):363-368
    [12]狄帮让,唐博文,陈浩林.气枪震源的理论子波研究[J].石油大学学报(自然科学版),2003,27(5):32-35
    [13]周宝华,刘威北.气枪震源的发展与使用分析(上)[J].物探装备,1998,8(1):1-6
    [14]周宝华,刘威北.气枪震源的发展与使用分析(下)[J].物探装备,1998,8(2):1-6
    [15]谢里夫R.E.,吉尔达特L.P.勘探地震学[M].第二版.石油工业出版社,1999:269-273
    [16]Ziolkowski A. A method for calculating the output pressure waveform from an air gun[J]. Geophys. J. R. astr. Soc,1970,21:137-161
    [17]Schulze-Gattermann R. Physical aspects of the "airpulser" as a seismic energy source[J]. Geophysical Prospecting,1972,20:155-192
    [18]Safar M. H. The radiation of acoustic waves from an airgun[J]. Geophysical Prospecting, 1976,24:756-772
    [19]Ziolkowski A. Why don't we measure seismic signatures?[J]. Geophysics,1991,56(2): 190-201
    [20]Rayleigh O. M. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Mag.,1917,34:94-98
    [21]Lamb H. The early stages of submarine explosion[J].Phil.Mag.,1923,45:257-265
    [22]Herring C. Office of scienctific research and development report [R]. No.236(NDRC C4-sr 20-010),1941
    [23]Kirkwood J. G., Bethe H. Progress report on "The pressure wave produced by an underwater explosion I”[R]. Office of Scientific Research and Development Report No. 588,1942
    [24]Keller J. B., Kolodner I. I. Damping of underwater explosion bubble oscillations [J]. J. Appl. Phys.,1956,27:1152-1161
    [25]Flynn H. G Cavitation dynamics I:A mathematical formulation[J]. J. Acoust. Soc. Am., 1975,57:1379-1396
    [26]Vokurka K. Comparison of Rayleigh's, Herring's and Gilmore's models of gas bubbles[J]. Acustica,59:214-219
    [27]Johnson D. T. Understanding air-gun bubble behavior[J]. Geophysics,1994, 59(11):1729-1734
    [28]Ziolkowski A. Measurement of air-gun bubble oscillations[J]. Geophysics,1998,63(6): 2009-2024
    [29]Giles B. F. Pneumatic acoustic energy source[J]. Geophysical Prospecting,1968,16(1): 21-53
    [30]Ziolkowski A., Parkes G, Hatton L., et al. The signature of an air gun array: Computation from near-field measurements including interactions[J]. Geophysics,1982,47(10): 1413-1421
    [31]Giles B. F., Johnston R. C. System approach to air-gun array design[J]. Geophysical Prospecting,1973,21:77-101
    [32]Safar M. H. Efficient design of air-gun arrays[J]. Geophysical Prospecting,1976,24: 773-787
    [33]Ziolkowski A. Comments on "The radiation of acoustic waves from an air gun" [J]. Geophysical Prospecting,1977,25:560-563
    [34]Nooteboom J. J. Signature and amplitude of linear air gun arrays[J]. Geophysical Prospecting,1978,26:194-201
    [35]Brandsaeter H., Farestveit A., Ursin B. A new high-resolution or deep penetration air gun array[J]. Geophysics,1979,44:865-879
    [36]Sinclair J. E., Bhattacharya G. Interaction effects in marine seismic source arrays [J].Geophysical Prospecting,1980,28:323-332
    [37]Johnston R. C. Development of more efficient air gun arrays:Theory and experi- ment[J]. Geophysical Prospecting,1982,30:752-773
    [38]Parkes G. E., Ziolkowski A., Hatton L., et al. The signature of an air gun array: Computation from near-field measurements including interactions - Practical considerations[J]. Geophysics,1984,48(2):105-111
    [39]Vaage S., Ursin B. Haugland K. Interaction between airguns[J]. Geophysical Prospecting, 1984,32:676-689
    [40]Vaage S., Ursin B. Computation of signatures of linear airgun arrays[J]. Geophysical Prospecting,1987,35:281-287
    [41]Laws R., Landrφ M., Amudnsen L. An experimental comparison of three direct methods of marine source signature estimation[J]. Geophysical Prospecting,1988,46:353-389
    [42]Pascouet A. Something new under the water: The bubbleless air gun[J]. The Leading Edge,1991,10(11):79-81
    [43]Landrφ M. Modelling of GI gun signatures[J]. Geophysical Prospecting,1992,40: 721-747
    [44]Ziolkowski A. M. An air-gun model which includes heat transfer and bubble interactions[A]. SEG Expanded Abstracts[C].1982,187
    [45]Ziolkowski A. M., Metselaar G. The pressure wave field of an air-gun array[A].54th Meeting, Society of Exploration Meeting, Expanded Abstracts[C].1984,274-276
    [46]Laws R. M., Hatton L., Haartsen M. Computer modeling of clustered airguns[J]. First Break,1990,8(9):331-338
    [47]Landrφ M., Sollie R. Source signature dtermination by inversion[J]. Geophysics,1992, 57(12):1633-1640
    [48]Langhammer J., Landrφ M. Experimental study of viscosity effects on air-gun signatures[J]. Geophysics,1993,58(12):1801-1808
    [49]Langhammer J., Landro M. Temperature effects on airgun signatures[J]. Geophysical Prospecting,1993,41:737-750
    [50]Brocher T. M., Clayton R. W., Klitgord K. D., et al. Multichannel seismic- reflection profiling on the R/V Maurice ewing during the Los Angeles region seismic experiment(LARSE), California[R]. U.S. Geological Survey, Open File Report,1995, 95-228
    [51]Stern T., Okaya D. A., Scherwath M. Structure and strength of a continental transform from onshore-offshore seismic profiling of South Island, New Zealand [J]. Earth Planets Space,2002,54:1011-1019
    [52]Okaya D. A., Henrys S., Stern T. Double-sided onshore-offshore seismic imaging of a plate boundary: "super-gathers" across South Island, New Zealand [J]. Tectonophysics, 2002,355:247-263
    [53]丘学林,陈颙,朱日祥等.大容量气枪震源在海陆联测中的应用:南海北部试验结果分析[J].科学通报,2007,52(4):463-469
    [54]丘学林,赵明辉,叶春明等.南海东北部海陆联测与海底地震仪探测[J].大地构造与成矿学,2003,27(4):295-3007
    [55]Avedik F., Renard V., Allenou J. P., et al. "Single bubble" air-gun array for deep exploration[J]. Geophysics,1993,58(3):366-382
    [56]Ziolkowski A., Hanssen P., Gatliff R., et al. Use of low Frequency for sub-basalt imaging[J]. Geophysical Prospecting,2003,51:169-182
    [57]李庆忠.走向精确勘探的道路[M].北京:石油工业出版社,1994:12-31
    [58]余寿朋.高分辨率地震勘探[M].北京:石油工业出版社,1993:1-34
    [59]Langhammer J., Landrφ M. High-speed photography of the bubble generated by an airgun[J]. Geophysical Prospecting,1996,44:153-173
    [60]Schoenberger M., Mifsud J. F. Hydrophone streamer noise[J]. Geophysics,1974,39(6): 781-793
    [61]Barndsaeter H., Farestveit A., Ursin B. A new high-resolution or deep penetration airgun array[J]. Geophysics,1979,64(5):965-879
    [62]陈浩林,於国平.气枪震源单枪子波计算机模拟[J].物探装备,2002,12(4):241-244
    [63]刘兵.气枪震源子波数值模拟及其应用[D].山东青岛:中国海洋大学,2005
    [64]王云峰.高分辨率空气枪阵列及子波研究[J].中国海上油气(地质),1996,10(6):395-401
    [65]陈孝格.海上气枪震源地震子波研究的进展[J].中国海上油气(地质),1994,8(1):60-65
    [66]陈浩林,全海燕,刘军等.基于进场测量的气枪阵列模拟远场子波[J].石油地球物理勘探,2005,40(6):703-707
    [67]31972-D. Energy source catalog[S]. Stafford Texas:INPUT/OUTPUT,INC.2004
    [68]2721723-1. Sleeve gun operation and maintenance[S]. Stafford Texas:INPUT/OUTPUT, INC.2003
    [69]Sercel,INC. Marine source[OL]. http://www.sercel.com,2006-09
    [70]於国平,姜海.2000psi和6000psi空气枪工作性能的比较[J].物探装备,2001,11(4):257-262
    [71]罗桂纯,王宝善,葛洪魁等.气枪震源在地球深部结构探测中的应用研究进展[J].地球物理学进展,2006,21(2):400-407
    [72]王云峰.海上高分辨率地震采集[J].中国海上油气(地质),1995,(4):263-270
    [73]翟鲁飞.论地震生产中气枪震源的沉放深度[J].石油天然气学报(江汉石油学院学报),2006,8(4):246-248
    [74]陈浩林,全海燕,刘军等.基于近场测量的气枪阵列模拟远场子波[J].石油地球物理勘探,2005,40(6):703-707
    [75]赵庆献,王立明,杨蜀冀等.“探宝号”船可变阵列震源的实现及应用[J].1995.92-100
    [76]赵秀鹏.海洋气枪震源组合及子波模拟[J].油气地质与采收率,2004,11(4):36-38
    [77]丛岩.胜利701气枪震源船改造设计[J].中国海洋平台,2003,18(4):34-37
    [78]吴忠良,赵庆献,胡家赋.海上地震系统低频响应与电缆噪音[J].海洋技术,2002,21(1):42-45
    [79]杨怀春,高生军.海洋地震勘探中空气枪震源激发特性研究[J].石油物探,2004,43(4):323-326
    [80]钱慧石,丁乐俊.常用气枪工作原理介绍[J].物探装备,2008,18(2):94-96
    [81]唐杰,王宝善,葛洪魁等.大容量气枪震源的试验与模拟研究[J].中国地震,2009,25(1):1-10
    [82]倪成州,陈浩林,牛宏轩.基于近场测量气枪阵列远场子波模拟软件研究物探装备[J].2008,18(1):11-17
    [83]於国平,魏学进.海洋地震空气枪系统子波测试标准及方法[J].物探装备,2001,11(1):21-26
    [84]周宝华.国产震源船空压机总排量及气枪阵列的确定方法[J].石油物探装备,1995,5(2):33-34
    [85]赵建,汪鸿振,朱物华.关于空泡动力学方程精确度的分析[J].中山大学学报(自然科学版),1994,33(1):13-18
    [86]佘德平,吴继敏,李佩等.低频信号在玄武岩地区深层成像中的应用研究[J].河海大学学报(自然科学版),2006,34(1):83-87
    [87]黄淑清,聂宜如,申先甲.热学教程(第二版)[M].北京:高等教育出版社,2000:17-305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700