中国海桑属红树植物遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用ISSR(inter-simple sequence repeats)分子标记技术,对分布于我国的海桑属植物共6 个种的遗传多样性和遗传结构进行了研究,并探讨了种群遗传多样性水平与环境因子间的相关性。本文还采用ISSR 分子标记对海桑属植物的系统亲缘关系进行了研究。研究结果如下:
    1. 对4 个海桑种群共86 个个体进行了遗传变异分析。11 条ISSR 引物共扩增出 239 条带,其中194 条具多态性,多态位点百分率为81.17%。在种群水平上多 态位点百分率为40.59-50.21%,平均为45.71%。Nei 的基因多样性、Shannon 信息指数在物种水平上分别为:0.2103 和0.3256,在种群水平上分别为0.1468 和0.2210。依据Gst 值,遗传变异发生在种群内的个体间占69.83%,30.17% 的遗传变异发生在种群间。种群间平均遗传一致度为0.9011。依据Nei(1972) 的遗传距离对不同种群进行UPGMA 聚类,聚类结果为横山种群(HS)和东 寨港种群(DZG)聚在一起,万宁种群(WN)和琼海(QH)种群聚为一起。 从基因流来看,估测的种群间的基因流为0.5787。Mantel 检验表明遗传距离与 地理距离之间有一定的正相关,但不显著。种群遗传多样性与环境因子间的相 关性分析表明:海桑的种群遗传多样性水平与各环境因子间相关性均不显著。
    2. 对6 个拟海桑种群共57 个个体进行了遗传变异分析。11 条ISSR 引物共扩增 出161 条带,其中131 条具多态性,多态位点百分率为81.37%。在种群水平 上多态位点百分率为19.25-71.43%,平均为40.58%。Nei 的基因多样性、 Shannon 信息指数在物种水平上分别为:0.2081 和0.3501,在种群水平上分 别为0.1340 和0.2023。依据Gst 值,遗传变异发生在种群内的个体间占 64.37%,35.63%的遗传变异发生在种群间。种群间平均遗传一致度为0.8982。 依据Nei(1972)的遗传距离对不同种群进行UPGMA 聚类,将种群分为二组: 来自琼海(QH)和东阁(DG)的种群聚为一类;东寨港引种栽培的人工种 群LJW、SJ、MP 与文昌保护站种群(TW)聚为另一类。Mantel 检验表明遗 传距离与地理距离相关性不显著。种群遗传多样性与环境因子间的相关性分 析表明:拟海桑种群的遗传多样性水平与土壤pH、电导率呈一定的正相关, 与土壤总氮量、总磷量、有效磷含量呈一定的负相关,但相关性均不显著。
The genetic diversity and genetic structure of six mangrove species of the genusSonneratia distributed in China were assessed by means of inter-simple sequence repeats (ISSR)markers. The correlation between population genetic diversity and environmentall factors wereanalyzed through correlation analysis. Additionally, inter-simple sequence repeats (ISSR)DNA polymorphisms were utilized to distinguish taxa and relationships within thegenus Sonneratia. The main results obtained from the dissertation study are asfollows.
    1. Leaf samples of eighty-six individuals from three Sonneratia caseolaris natural populations, as well as one introduced population in Hainan Island, China were collected. Eleven ISSR primers gave rise to 239 discernible DNA fragments of which 194 (81.17%) were polymorphic. The percentage of polymorphic bands at the population level was from 40.59% to 50.21%, 45.71% on average. The Nei’s gene diversity and Shannon’s information index were 0.2103 and 0.3256 respectively at the species level, 0.1468 and 0.2210 respectively at the population level. Based on Nei’s Gst value, 69.83% genetic variance was resided among individuals within populations, 30.17% genetic variance was resided among populations. The genetic identity between populations was 0.9011 on average. UPGMA cluster analysis based on Nei’s genetic distance divided the populations into two main groups: Wanning population (WN) and Qionghai population (QH) formed one group, Hengshan population (HS) and Dongzhai Harbor population
    (DZG) were in the other group. The Mantel test showed that genetic distance was correlated positively with geographical distance, but not significantly. The correlation analysis showed that no significant relation was observed between population genetic diversity level and environmental factors.2. Leaf samples of fifty-seven individuals from three Sonneratia paracaseolaris natural populations, as well as three introduced populations in Hainan Island, China were collected. Eleven ISSR primers gave rise to 161 discernible DNA fragments of which 131 (81.37%) were polymorphic. The percentage of polymorphic bands at the population level was from 19.25% to 71.43%, 40.58% on average. The Nei’s gene diversity and Shannon’s information index were 0.2081 and 0.3501 respectively at the species level, 0.1340 and 0.2023 respectively at the population level. Based on Nei’s Gst value, 64.37% genetic variance was resided among individuals within populations, 35.63% genetic variance was resided among populations. The genetic identity between populations was 0.8982 on average. UPGMA cluster analysis based on Nei’s genetic distance divided the populations into two main groups: Dongge population (DG) and Qionghai population (QH) formed one group, Linjiawan population (LJW)、Miaopu population (MP)、Sanjiang population (SJ) and Touwan population (TW) were in the other group. The Mantel test showed that genetic distance was not correlated with geographical distance. The correlation analysis showed positive relations between populaton genetic diversity level and soil pH value and soil conductivity; negative correlations between population genetic diversity level and soil total nitrogen, total phosphorous, and extractable phosphorous, but none is significantly.3. Leaf samples of one hundred indidivuduals from four Sonneratia alba natural populations, as well as one introduced population in Hainan Island, China were collected. Eleven ISSR primers gave rise to 133 discernible DNA fragments of which 103 (77.44%) were polymorphic. The percentage of polymorphic bands at the population level was from 51.88% to 65.41%, 57.74% on average. The Nei’s gene diversity and Shannon’s information index were 0.2271 and 0.3489
    respectively at the species level, 0.1837 and 0.2775 respectively at the population level. Based on Nei’s Gst value, 81.02% genetic variance was resided among individuals within populations, 18.98% genetic variance was resided among populations. The genetic identity between populations was 0.9342 on average. UPGMA cluster analysis based on Nei’s genetic distance divided the populations into two main groups: Sanya population (SY) and Lingshui population (LS) formed one group, Qionghai population(QH)、Wenchang population(WC) and Dongzhai Harbor population(DZ) were in the other group. The Mantel test showed that genetic distance was significantly correlated with geographical distance. The correlation analysis showed a significant positive relation between population genetic diversity level and soil pH value, and no significant relation was observed between the population genetic diversity level and other environmental factors.4. Leaf samples of thirty-nine individuals from two Sonneratia hainanensis natural populations, as well as two introduced populations in Hainan Island, China were collected. Eleven ISSR primers gave rise to 166 discernible DNA fragments of which 142 (85.54%) were polymorphic. The percentage of polymorphic bands at the population level was from 14.46% to 80.12%, 46.24% on average. The Nei’s gene diversity and Shannon’s information index were 0.2329 and 0.3619 respectively at the species level, 0.1538 and 0.2317 respectively at the population level. Based on Nei’s Gst value, 75.89% genetic variance was resided among individuals within populations, 24.11% genetic variance was resided among populations. The genetic identity between populations was 0.9253 on average. UPGMA cluster analysis based on Nei’s genetic distance divided the populations into two main groups: two natural populations, Dongge population (DG) and Touwan population (TW), formed one group, two artificial populations, LJW and SJ, were in the other group. The Mantel test showed that genetic distance was significantly correlated with geographical distance. The correlation analysis showed the population genetic diversity level of S.hainanenais had negative correlations with the content of total soil nitrogen, the content of soil organic
    matter and logitude significantly, and no significant relation was observed between the population genetic diversity level and other environmental factors.5. Leaf samples of thirty-nine individuals from three Sonneratia ovata populations in Hainan Island, China were collected. Eleven ISSR primers gave rise to 185 discernible DNA fragments of which 127 (68.65%) were polymorphic. The percentage of polymorphic bands at the population level was from 36.76% to 54.95%, 47.21% on average. The Nei’s gene diversity and Shannon’s information index were 0.1411 and 0.2292 respectively at the species level, 0.1209 and 0.1910 respectively at the population level. Based on Nei’s Gst value, 87.58% genetic variance was resided among individuals within populations, 12.42% genetic variance was resided among populations. The genetic identity between populations was 0.9709 on average. The correlation analysis showed the population genetic diversity level of S.ovata had a negative correlation with the soil conductivity significantly. On the contrary, it had a significant positive correlation with the content of total soil phosphorous. No significant relation was observed between the population genetic diversity level and other environmental factors.6. Leaf samples of forty-five individuals from two Sonneratia apetala populations in Hainan Island and Shenzhen, China were collected. Eleven ISSR primers gave rise to 196 discernible DNA fragments of which 128 (65.31%) were polymorphic. The percentage of polymorphic bands at the population level was 48.47% on average. The Nei’s gene diversity and Shannon’s information index were 0.1556 and 0.2441 respectively at the species level, 0.1403 and 0.2142 respectively at the population level. Based on Nei’s Gst value, 90.15% genetic variance was resided among individuals within populations, 9.85% genetic variance was resided among populations. The genetic identity between populations was 0.9645 on average. The gene flow was 2.2872.7. Genetic relationships in the genus Sonneratia were analyzed using ISSR markers. Sixty-six individuals, representing six taxa of S.caseolaris, S.paracaseolaris, S.alba, S.hainanensis, S.ovata, S.apetala, were sampled in this study. The result
    showed that the biggest genetic distance was 0.3879 between S.caseolaris and S.alba, the smallest genetic distance was 0.1617 between S.ovata and S. hainanensis. UPGMA cluster analysis based on Nei’s genetic distance divided the 6 species of Sonneratia into three main groups: Group A contained S.caseolaris, Group B contained S.apetala, and Group C included 4 species: S.paracaseolaris, S.alba, S.hainanensis, S.ovata. Group C could be divided into two subgroups, C1: S.paracaseolaris, S.alba and C2: S.hainanensis, S.ovata. UPGMA cluster analysis based on Nei and Li similarity coefficient divided the six species of Sonneratia into two groups: Group A included S.caseolaris, S.paracaseolaris and S.alba; Group B included S.ovata, S.hainanensis and S.apetala. The result is simialr to Ko’s (1993) phylogenetic analysis based on the presence or absence of petals.8. The additivity of ISSR bands in S.paracaseolaris with its putative parents S.alba and S.caseolaris was 57.8%, verifying that S.paracaseloaris is a hybrid at the molecular level. The additivity of ISSR bands in S.hainanensis with its putative parents S.alba and S.ovata was 23.9%, indicating that S.hainanensis is possibly also a species of hybridization origin.9. According to IUCN, S.hainanensis, S. paracaseolaris and S.ovata are all endangered species in China, S.alba is a threatened species. The reaon that has rusulted them into endangered status is mainly people’s economic activities, especially fish-pond and shrimp-pond operations. Furthermore, the lower pollen stainability and lower seed goodness of S.paracaseloaris and S. hainanensis are also reasons for their endangerment. From the study, higher genetic diversity level were detected in the Sonneratia species, so the factors threatened the survival of endangered Sonneratia species are not associatied with their genetic diversity level.10. In that the individual numbers of S. hainanensis, S.paracaseloaris and S.ovata are all rare in the field, so every individual should be protected. Great genetic differentiation has happened among S.paracaseolaris populations, so sampling from more populations is the conservation sample strategy at ex situ conservation. Most genetic variance of S. alba was resided among individuals within
引文
《中国生物多样性保护行动计划》总报告编写组. 中国生物多样性保护行动计划. 北京:中国环境科学出版社,1994,2002,21(3):197-200
    蔡从利,王建波,朱英国. 山羊草属异源多倍体基因组进化的RAPD 分析. 遗传学报,2001,28:158-165
    陈桂珠. 研究保护和开发利用红树林生态系统. 生态科学,1991,11(1):116-119
    陈小勇,宋永昌. 青冈种群克隆多样性及其与环境因子的关系. 植物生态学报,1997,21(4):342-348
    陈玉军,郑松发,廖宝文, 谢德兴,苏润鸿,郑德璋. 珠海市淇澳岛红树林引种扩种问题的探讨. 广东林业科技,2002,18(2):31-36
    陈泽濂. 国产海桑属(Sonneratia Linn.f.)植物的形态解剖. 热带亚热带植物学报,1996,4(2):18-24
    陈忠毅,黄向旭,高蕴璋. 海桑属植物细胞染色体资料. 中国科学院华南植物所研究集刊,1994,9:60-63
    邓传远,林鹏,黎中宝. 海桑属(Sonneratia)红树植物木材结构的比较解剖学研究. 厦门大学学报,2001,40(5):1100-1104
    邓传远,林清贤,林鹏,刘俊杰,陈长平. 海桑属(Sonneratia)6 种红树植物的木材解剖特性及其应用. 福建林业科技,2000,27(3):1-5
    杜金昆,姚颖垠,倪中福,彭惠茹,孙其信. 普通小麦、斯卑尔小麦、密穗小麦和轮回选择后代材料ISSR 分子标记遗传差异研究. 遗传学报, 2002,29(5):445-452
    高蕴璋. 3.海桑科. 见:中国植物志. 北京:科学出版社,1983,52(2):111-115
    高蕴璋. 307.海南海桑. 见:傅立国主编. 中国珍稀濒危植物. 上海:上海教育出版社,1989,307-309
    高蕴璋. 海桑属的新分类群. 植物分类学报,1985,23(4):311-314
    高蕴璋. 中国海桑属小志. 热带亚热带植物学报,1993,1(1):11-13
    葛菁萍,杨志伟,林鹏. 红树植物木榄(Bruguiera gymnorrhiza)种群遗传变异与遗传分化的初步研究. 海洋学报,2000,22(4):90-95
    葛颂,洪德元. 遗传多样性及其检测方法. 见:钱迎倩,马克平主编. 生物多样性研究的原理与方法. 北京:中国科技出版社,1994,123-140
    葛颂. DNA 分子标记在保护生物学研究中的应用. 见:邹喻苹,葛颂,王晓东编著. 系统进化学中的分子标记. 北京:科学出版社,2001,140-149
    葛颂. 遗传多样性. 见:蒋志刚,马克平,韩兴国主编. 保护生物学. 杭州:浙江科学技术出版社,1997,11-19
    国家环保局,中国科学院植物研究所. 中国植物红皮书—稀有濒危植物第一册.北京:科学出版社,1992
    胡宝忠,刘娣,胡国富,姜述君,张阿英. 羊草遗传多样性的研究. 植物生态学报,2001,25(1):83-89
    胡志昂,王洪新. 研究遗传多样性的基本原理和方法. 见:钱迎倩,马克平主编. 生物多样性研究的原理与方法. 北京:中国科技出版社,1994,117-122
    黄桂玲,黄庆昌. 中国红树植物的营养器官结构与生态适应(I). 生态科学,1989,8(2):100-105
    黄桂玲,黄庆昌. 中国红树植物的营养器官结构与生态适应(II).中山大学学报,1990,29(2):94-101
    黄陵,詹潮安. 粤东沿海无瓣海桑育苗技术. 林业实用技术,2003a,(4):23
    黄陵,詹潮安. 粤东沿海引种无瓣海桑试验研究. 林业实用技术,2003b,(5):7-8
    黄庆昌,黄桂玲,杨曼玲. 红树植物地上根端的发育、结构与生态适应. 植物学报,1994,36(8):592-596
    黄生. 秋茄(Kandelia candel)的区域性种群(population)遗传结构. 生物多样性,1994,2(2):68-75
    解炎,汪松. 国际濒危物种等级新标准. 生物多样性,1995,3(4):234-239
    黎中宝,林鹏, 林益明. 不同盐度的桐花树种群的遗传多样性和遗传分化. 海洋科学,2001b,25(2):4-7
    黎中宝,林鹏,邓传远. 三种不同生境桐花树种群的遗传多样性和遗传分化. 台湾海峡,2000,19(3):329-385
    黎中宝,林鹏,林益明,邓传远. 两种不同生境的白骨壤种群的遗传结构. 台湾海峡,2001d, 20(1):72-76
    黎中宝,林鹏,林益明. 不同潮位的桐花树(Aegiceras corniculatum)亚种群的遗传结构. 厦门大学学报(自然科学版),2001c,40(5):1107-1111
    黎中宝,林鹏. 白骨壤种群不同年龄级的遗传多样性和遗传分化. 厦门大学学报(自然科学版),2001e,20(1)103-109
    黎中宝,林鹏. 不同纬度地区桐花树种群的遗传多样性研究. 集美大学学报(自然科学版),2001a,6(1):39-45
    黎中宝,林鹏. 桐花树种群遗传变异与环境变量的关系. 生态学报,2002,22(11):1912-1916
    李丹,彭少麟. 三个不同海拔梯度马尾松种群的遗传多样性及其与生态因子的相关性. 生态学报,2001,21(4):415-421
    李海生,陈桂珠. 生物多样性保护与可持续发展. 广东教育学院学报,2002,22(2):59-62
    李海生,陈桂珠. 中国特有植物海南海桑的生物学特性及其保护. 广东教育学院学报,2003,23(2):48-51
    李进,陈可泳,李渤生. 不同海拔高度川滇高山栎群体遗传多样性的变化. 植物学报,1998,40(8):761-767
    李昴,王可青,葛颂. 不同采样策略对细距菜遗传多样性估算的影响.植物学报,2000,42(10):1069-1074
    李玫,廖宝文,郑松发. 无瓣海桑海滩人工林的生态影响. 上海环境科学,2003,22(8):540-586
    李云,郑德璋,陈焕雄,廖宝文,郑松发,陈相如. 红树植物无瓣海桑引种的初步研究. 林业科学研究,1998,11(1):39-44
    李云,郑德璋,廖宝文,郑松发,陈相如. 无瓣海桑引种育苗试验. 林业科技通讯,1995,(5):21-22
    廖宝文,李玫,郑松发,陈玉军,郑德璋. 外来种无瓣海桑种内、种间竞争关系研究. 林业科学研究,2003,16(4):418-422
    廖宝文,郑德璋,郑松发,李云. 海桑种子发芽条件的研究. 中南林学院学报,1997,17(1):25-31
    林鹏,林益明,林建辉. 红树植物次生木质部的结构与进化.海洋学报,1998,20(4):108-114
    林鹏,卢昌义. 海南岛的红树群落. 厦门大学学报(自然科学版),1985,24(1):116-127
    林鹏. 红树林. 北京:科学出版社,1984,47
    林鹏. 我国药用的红树植物. 海洋药物,1984,(4):45-51
    林鹏. 中国东南部海岸红树林的类群及其分布. 生态学报,1981,1(3):283-290
    林鹏. 中国红树林生态系. 北京:科学出版社,1997
    刘兰芳,唐绍清. 中国红树植物花粉形态. 广西植物,1989,9(3):221-232
    卢昌义,林鹏,叶勇,崔胜辉,汪和海. 红树林抵御温室效应负影响的生态功能. 见:范航清,梁士楚(主编). 中国红树林研究与管理. 北京:科学出版社,1995,33-37
    潘莹,赵桂仿. 分子水平的遗传多样性及其测量方法. 西北植物学报,1998,18(4):645-653
    钱韦,葛颂,洪德元. 采用RAPD 和ISSR 标记探讨中国疣粒野生稻的遗传多样性. 植物学报,2000, 42(7):741-750
    邱芳,伏健民,金德敏,王斌. 遗传多样性的分子检测. 生物多样性,1998,6(2):143-150
    施立明,贾旭,胡成昂. 遗传多样性. 见:陈灵芝主编. 中国的生物多样性. 北京:科学出版社,1993,99-113
    施立明,宿兵,张亚平. 第1 章概论. 见:季维智,宿兵主编. 遗传多样性研究的原理与方法. 杭州:浙江科学技术出版社,1999,1-12
    苏志尧,廖文波. 岭南稀有濒危植物的形成及其生物地理学特征. 中山大学学报(自然科学版),1999,38(6):84-89
    汪小全,邹喻苹,张大明,洪德无,刘正宇. 银杉遗传多样性的RAPD 分析. 中国科学(C辑),1996,26(5):718-724
    王洪新,胡志昴,钟敏等. 盐渍条件下野大豆群体的遗传分化和生理适应:同工酶和随机扩增多态DNA 研究. 植物学报,1997,39(1):34-42
    王瑞江,陈忠毅,陈二英,郑馨仁. 国产海桑属植物的两个杂交种. 广西植物,1999,19(3):199-204
    王瑞江,陈忠毅,黄向旭. 国产红树林植物的染色体计数. 热带亚热带植物学报,1998,6(1):40-46
    王瑞江,陈忠毅. 海桑科的系统进化及地理分布. 广西植物,2002,22(3):214-219
    魏伟. 分子生态学概述. 见:季维智,宿兵主编. 遗传多样性研究的原理与方法. 杭州:浙江科学技术出版社,1999,20-30
    魏伟. 两类豆科植物—锦鸡儿和野大豆分子生态学的研究(博士学位论文). 中国科学院植物研究所
    翁曼丽,谢伟武,伏健民,王斌. 新一代分子标记技术—AFLP. 应用与环境生物学报,1996, 2:424-429
    徐莉, 王禧玲,王戌梅,张林静,岳明,顾峰雪,潘晓玲,赵桂仿. 新疆阜康沙漠红砂种群遗传结构及其与生态因子的耦合关系. 植物学报,2003,45(7):787-794
    于丹,种云霄,涂芒辉,汪小炎,周晓华. 中国水生高等植物受威种的研究. 生物多样性,1998,6(1):13-21
    昝启杰,王伯荪,王勇军,李鸣光. 深圳湾红树林引种海桑、无瓣海桑的生态评价. 植物学报,2003,46(5):544-551
    昝启杰,王勇军,廖宝文,郑德璋. 无瓣海桑、海桑人工林的生物量及生产力研究. 武汉植物学研究,2001,19(5):391-396
    昝启杰,王勇军,王伯荪,张炜银. 深圳福田红树林无瓣海桑+海桑群落钙镁钠的累积和循环. 福建林业科技,2002b,29(1):1-5
    昝启杰,王勇军,王伯荪. 深圳福田红树林无瓣海桑+海桑群落N、P、K 累积和循环. 广西植物,2002a,22(4):331-336
    张凤仙,刘梅芳. 海桑属果胶的研究. 中国科学院华南植物所集刊,1994,9:116-119
    张宏达,陈桂珠,刘治平,张社尧. 深圳福田红树林湿地生态系统研究. 广州:广东科技出版社,1997
    张宏达. 植物的特有现象与生物多样性. 生态科学,1997,16(2):9-17
    张乔民,温孝胜. 红树林潮滩沉积速率测量与研究. 热带海洋,1996,15(4):57-61
    张玉兰,王开发,李珍,刘兰芳. 我国海桑属花粉形态研究及其古生态环境意义. 海洋地质与第四纪地质,1997,17(2):47-52
    赵萌莉,林鹏. 分子标记技术在红树植物遗传多样性研究中的应用. 内蒙古农业大学学报,2002,23(1):112-114
    郑文教,林鹏. 盐度对红树植物海莲幼苗的生长和某些生理生态特性的影响. 应用生态学报(自然科学版),1992,3(1):9-14
    郑文教,林鹏. 盐度对秋茄幼苗的生长和水分代谢的效应. 厦门大学学报(自然科学版),1990,29(5):575-579
    钟才荣,李海生,陈桂珠. 无瓣海桑的育苗技术. 广东林业科技,2003,19(3):68-70
    钟章成. 植物种群生态适应机理研究. 北京:科学出版社,2000,9-14
    周涵韬,林鹏. 海桑属红树植物遗传多样性和引种关系研究. 海洋学报,2002, 24(5):98-106
    周世良,叶文国. 夏腊梅的遗传多样性及其保护. 生物多样性,2002,10(1):1-6
    Abeysinghe P D, Triest L, Greef B D, Koedam N, Hettiarachi S. Genetic and geographic variation of the mangrove tree Bruguiera gymnorrhiza in Sri Lanka. Aquatic Botany, 2000, 67: 131-144
    Ainooche M L, Bayer R J. On the origins of the tetraploid Bromus species (section Bromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA. Genome, 1997, 40: 730-743
    Ajibade S R, Weeden N F, Chite S M. Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica, 2000, 111: 47-55
    Alpert P, Lumaret R, Digusto F. Population structure inferred from allozyme analysis in the clone herb Fragaria chiloensis (Rosaceae). Am J Bot, 1993, 80: 1002-1006
    Anderson E. Hybridization of the habitat. Evolution, 1948, 2: 1-9
    Avise J C. Molecular markers, natural history and evolution. New York: Chapman & Hall, Inc., 1994
    Baker C A, Van Steenis C G G J. Flora Malesiana. 1951, Ser. I. 4: 280-288 Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, Baranger A. Microsatellite polymorphism in Pisum sativum. Plant Breeding, 2001, 120: 311-317
    Buso G S C, Rangel P H, Ferreira M E. Analysis of genetic variability of south American wild rice population (Oryza glumaepatula) with isozymes and RAPD markers. Molecular Ecology, 1998, 7: 107-117
    Bussell J D. The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol Ecol, 1999, 8: 775-789.
    Carlquist S. Comparative wood anatomy. Berlin: Springer-Verlag, 1988, 41-81
    DeMarias B D, Dowling T E, Douglas M E. Origin of Gila seminude through introgressive hybridization: implications for evolution and conservation. Proc Natl Acad Sci USA, 1992, 89: 2747-2751
    Doyle J J, Doyle J L, Brown A H D. Origin, colonization , and lineage recombination in a widespread perennial soybean polyploid complex. Proc Natl Acad Sci USA, 1999, 96: 10741-10745
    Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15
    Duke N C, Jackes B R. Revision of Sonneratia in Australia. Blume, 1987, 32:277-302
    Duke N C. A mangrove hybrid, Sonneratia×gulngai (Sonneratiaceae) from Northeastern Australia. Austrobaileya, 1984, 2(1): 103-105
    Duke N C. A mangrove hybrid, Sonneratia×urama (Sonneratiaceae) from Northern Australia and Southern New Guinea. Australian Systematic Botany, 1994, 7(5): 521-526
    Ellstrand N C, Elam D R. Population genetic consequences of small population size: implications for plant conservation. Ann Rev Ecol Sys, 1993, 24: 217-242.
    Esselman E J, Li J, Crawford D J, Winduss J L, Wolfe A D. Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Mol Ecol, 1999, 8: 443-451
    Fang D Q, Roose M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet, 1997, 95: 408-417
    Farnsworth E J, Ellison A M. The global conservation status of mangroves. AMBIO, 1998, 26: 328-334
    Frankham R, Loebel D A. Modeling problems in conservation genetics using captive Drosophila populations: Rapid genetic adaptation to captivity. Zoo Biology, 1992, 11: 333-342
    Ge X J, Sun M. Population genetic structure of Ceriop tagal (Rhizophoraceae) in Thailand and China. Wetland Ecology and Management, 2001, (9): 203-209
    Ge X J, Sun M. Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrsinaceae) using allozyme and intersimple sequence repeat (ISSR) analysis. Mol Ecol, 1999, 8: 2061-2069
    Godwin I D, Aitken E A B, Smith L W. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophresis, 1997, 18: 1524-1528
    Goodall J A, Stoddart J A. Techniques for the electrophoresis of mangrove tissue. Aquatic Botany, 1989, 35: 197-207
    Grant P R, Grant B R. Hybridization of bird species. Science, 256: 193-197
    Grant P R, Grant B R. Phenotypic and genetic effects of hybridization in Darwin’s finches. Evolution, 1994, 48: 297-316
    Grant V. The Evolutionary Process: A Critical Study of Evolutionary Theory (2nd ed.). New York: Columbia University Press, 1991 Hamrick J L, Godt M J W. Allozyme diversity in plant species. In: Brown A H D, Clegg M T,
    Kahler A L, Wier B S eds. Plant population genetics, breeding, and genetic resource. Sunderland, Massachusetts: Sinauer Associates, 1990, 43-63
    Hamrick J L, Linhart Y B, Mitton J B. Relationship between life history characteristics and electophorestically detectable genetic variation in plant. Ann Rev Ecol Syst, 1979, 10: 173-200
    Hamrick J L. Gene flow and distribution of genetic variation in plant populations. In: Urbanka K. Differentiation patterns in higher plants. New York: Academic press, 1987: 53-67
    Hao G, Lee D H, Lee J S, Lee N S. A study of taxonomical relationships among species of Korean Allium sect. Sacculiferum (Alliaceae) and related species using inter-simple sequence repeat (ISSR) markers. Bot Bull Acad Sin, 2002, 43: 63-68
    Hartl D L, Clark A G. Principles of population genetics. 2nd. ed. Sunderland, MA.: Sinauer Associates, 1989, 125
    Iruela J, Rubio J I, Cubero J I, Gil T M. Phylogenetic analysis in genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl Genet, 2002, 104: 643-651
    Jian S G, Shi S H, Zhong Y, Tang T, Zhang Z H. Genetic diversity among South China Heritiera littoralis detected by inter-simple sequence repeats (ISSR) analysis. J Genet Mol Biol, 2002, 13: 272-276
    Kijas J M H, Fowler J C S, Thomas M R. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome, 1995, 38: 349-355
    Kimura M (石绍业译). 分子进化中性理论. 哈尔滨:东北林业大学出版社,1991
    Lakshmi M, Kajalakshmi S, Parani M, Anuratha C S, Parida A. Molecular phenology of mangroves I: Use of molecular markers in assessing the intraspecific genetic variability in the mangrove species Acanthus ilicifolius Linn (Acanthaceae). Theor Appl Genet, 1997, 94: 1121-1127
    Lakshmi M, Rajalakshmi S, Parani M, Anuratha C S, Paride A. Molecular phylogeny of mangroves I. Use of molecular markers in assessing the intraspecific genetic variability in the mangrove species Acanthus ilicifolius Linn.(Acanthaceae). Theor Appl Genet, 1997, 94: 1121-1127
    Levinson G, Gutman G A. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Mol Biol Evol, 1987, 4: 203-221
    Lewontin R C, Hubby J L. A molecular approach to the study of genetic heterozygosity in natural poulations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics, 1972, 54: 595-609
    Lynch M. The genetic interpretation of inbreeding and outbreeding depression. Evolution, 1991, 45: 622-629
    Maguire T L, Peakall R, Saenger P. Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.). Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet, 2002, 104: 388-398
    Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research, 1967, 27: 209-220.
    Martin J P, Sanchez-Yelamo M D. Genetic relationships among species of the genus Diplotaxis (Brassicaceae) using inter-simple sequence repeat markers. Theor Appl Genet, 2000, 101: 1234-1241
    Merrell D J. (黄瑞复等译)生态遗传学. 北京:科学出版社,1991
    Millar C I and Libby W J. Strategies for conserving clinal, ecotypic, and disjunct population diversity in widespread species. In: Falk D A and Holsinger K E eds. Genetics and conservation of rare plants. New York: Oxford University Press, 1991,149-170
    Muller J, Hou-Liu S Y. Hybrid and chromosomes in the genus Sonneratia (Sonneratiaceae). Blumea, 1966, 14(2): 337-343
    Muller J. A palynological study of the genus Sonneratia(Sonneratiaceae). Pollen et Spores, 1969, 11: 223-298
    Nagoka T, Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet, 1997, 94: 597-602
    Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269-5273
    Nei M. Genetic distance between populations. Amer Naturalist, 1972,106: 283-292 Nei M. Molecular population genetics and evolution. Amsterdam: North Holland Co. 1975
    Parani M, Rao C S, Mathan N, Anuratha C S, Narayanan K K, Parida A. Molecualr phylogeny of mangroves III Parentage analysis of a Rhizophora hybrid using random ampliedpolymorphic DNA and restriction fragment length polymorphism markers. Aquatic Botany, 1997, 58:165-172
    Primack R B, Duke N C, Tomlinson P B. Floral morphology in relation to pollination ecology in five Queensland coastal plants. Austrobaileya, 1981, 4: 346-355
    Qian W, Ge S, Hong D Y. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet, 2001, 102: 440-449
    Rieseberg L H. Hybrid origins of plant species. Annual Review of Ecology and Systematics,1997, 28: 359-389
    Rohlf F J. NTSYSpc: numerical taxonomy and multivariate analysis system, version 2.02,Exeter Software, Setauket, N Y. 1998
    Rosetto M, McNally J, Henry R J. Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae. Theor Appl Genet, 2002, 104: 61-66
    Schapcott A. The patterns of genetic diversity in Carpentaria acuminata (Arecaeae), and rainforest history in northern Australia. Mol Ecol, 1998, 7: 833-847
    Schnabel A, Hamrick J L. Organization of genetic diversity within and among populations of Gleditsia triacanthos L. Am J Bot, 1990, 77: 1060-1069
    Schwarzbach A E, Ricklefs R E. The use of molecular data in mangrove plant research. Wetland Ecology and Management, 2001, 9: 195-201
    Shi S H, Huang Y L, Tan F X, He X J, Boufford D E. Phylogenetic analysis of the Sonneratiaceae and its relationship to Lythraceae based on ITS sequences of nrDNA. J Plant Res, 2000, 113: 253-258
    Smith J F, Burke C C and Wagner W L. Interspecific hybridization in natural populations of Cyrtandra (Gesneriaceae) on the Hawaiian Islands: evidence from RAPD markers. Plant systematics and evolution. 1996, 200: 61-77
    Smouse P E, Long J C, Sokal P R. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool, 1986, 35: 627-632
    Sokal R R, Rohlf F J. Biometry. New York: Freeman and Company, 1995
    Stafford-Deitsch J. Mangrove: the forgotten habitat. London: Immel Publishing Ltd., 1996, 129-130.
    Sun M, Wong K C, Lee J S Y. Reproductive biology and population genetics of a vivparous mangrove species, Kandelia candel (Rhizophoraceae). Am J Bot, 1998, 85: 1631-1637
    Tautz D, Renz M. Simple sequence are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res, 1984,12: 4127-4138
    Tilkman D et al. Habitat destruction and the extinction debt. Nature, 1994, 371: 65-66
    Tomlinson PB. The botany of mangroves. Cambridge: Cambridge University Press, 1986, 371-372
    Tsumura Y, Ohba K, Strauss S H. Diversity and inheritance of inter-simple sequence repeat polymorphism in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor Appl Genet, 1996, 92: 40-45
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acid Research, 18: 7213-7218
    Williams J G K, Kubelik A R, Livak K J, Raaafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research, 1990,18:6531-6535
    Wolfe A D, Liston A. Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis D E, Soltis P S, Doyle J J. eds. Molecular systematics of plants II: DNA sequencing. Boston: Kluwer Academic Publishers, 1998, 43-86
    Wolfe A D, Randle C P. Relationships within and among species of the holoparasitic genus Hyobanche (Orobanchaceae) inferred from ISSR banding patterns and nucleotide sequences. Syst Bot, 2001, 26:120-130
    Wolfe A D, Xiang Q Y, Kephart S R. Assessing hybridization in natural population of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol, 1998a, 7:1107-1125
    Wolfe A D, Xiang Q Y, Kephart S R. Diploid hybrid speciation in Penstemon (Scrophulariaceae). Proc Natl Acad Sci USA, 1998b, 95: 5112-5115
    WRI,IUCN and UNEP. Global Biodiversity Strategy:Guldelines for Action to Save, Study and Use Earth’s Biotic Wealth Sustainablity and Equitably. Washington ,D.C. : WRI
    Wright S. Evolution in Mendelian populations. Genetics, 1931, 16: 97-159
    Yeh F C, Boyle T, Yang R C, Ye Z, Mao J X. POPGENE version 1.31. University of Alberta and

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700