武汉市城市湖泊湿地退化与植被恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市湿地具有重要的生态系统服务功能,然而城市化和基础设施建设等人类活动不断加剧,导致湿地景观面积萎缩,结构破碎,功能下降,严重影响区域可持续发展。湿地保护与恢复已成为当前区域生态可持续发展中所面临的重要问题。木研究在遥感和地理信息系统的支持下,研究了武汉市湿地资源的景观格局变化、湿地植物生物多样性特征,并分析了不同类型湿地资源的退化机制,重点研究了武汉市城市湿地资源的保护与恢复策略。主要结果如下:
     (1)武汉市城市湿地景观变化
     以1991-2007年四个时期的Landsat TM影像为基本数据,分析了城市化背景下武汉市湿地景观17年间的动态变化规律。结果表明,武汉市湿地景观逐年减少,平均年减少量为2751.42hm2,年下降率为1.38%。其中1991-1996年湿地景观的年变化率高于武汉市湿地景观近17年间的平均变化率,与建设用地面积相对应。研究时间范围内,自然湿地大量减少,人工湿地略有增加;湖泊湿地是武汉市湿地景观的主要类型,是湿地景观面积减少的直接因素;人工湿地的增加并未改变武汉市湿地面积下降的趋势;城市化进程的加快使得武汉市湿地景观表现出最大斑块占湿地景观面积比和分维数逐渐下降、破碎度升高的趋势。
     (2)武汉市湿地植物多样性特征
     武汉市城市湖泊湿生植物资源丰富,本研究共记录武汉市城市湖泊湿地维管束植物82科231属361种(含变种和变型),其中被了植物是主要类型。禾本科(G-ramineae)、菊科(Compositae)、豆科(Leguminosae)和莎草科(Cyperaceae)为优势科。各科在属水平上的分布则比较分散。
     武汉市湖泊湿地植物属的地理成分复杂,兼有地带性、隐域性和起源上部分古老性的特点,但特有属、种匮乏。其中蕨类植物种类较少,具有非常明显的隐域性特征;种子植物多样性较高,分属于14种地理分布类型,世界分布、泛热带分布和北温带分布3种类型占绝对优势,表现出明显的亚热带湿地植物区系特征。湿地植物生活型中以一年生和多年生草本居多。本文将水分做为武汉市湖泊湿地植物生态适应型的主导因子进行分类调查,结果显示,中生植物的种类(164种)位居首位,占所有种数的45.4%,表明武汉市湖泊湿地维管束植物群落的演替方向为中生植物群落。
     武汉地区湖泊湿地外来入侵物种普遍存在。外来入侵种包含在12科17属24种内,占全部外来物种(15科23属31种)的77.4%;剩余总数的22.6%基本都是人为引进栽培种。外来植物已经对武汉市湖泊湿地植物的生物多样性和生态系统稳定性构成了极大的威胁。
     (3)武汉市湿地生态系统退化特征与机制
     本文从武汉市23个典型城市湖泊湿地的生物退化特征、生境退化特征以及功能退化特征三方面来进行研究,运用综合聚类分析对获取的数据进行处理,重点调查的23个城市湖泊湿地依据退化程度的存在较大差异,可分为三大类,退化程度轻微的湖泊湿地有竹叶海湿地、严东湖湿地、北太子湖湿地、清潭湖湿地,退化程度中度的湖泊湿地有南太子湖湿地、野芷湖湿地、塔子湖湿地、黄家湖湿地、汤逊湖湿地、野湖湿地、青菱湖湿地、龙阳湖湿地、沙湖湿地、南湖湿地、张毕湖湿地、严西湖湿地、墨水湖湿地、北湖湿地、东湖湿地、五加湖湿地、三角湖湿地,退化程度中度的湖泊湿地有内沙湖湿地、紫阳湖。
     城市化是人类对湿地干扰的重要标志,主要表现为湖泊湿地外环境的土地利用方式的改变。农田的覆盖率和建设用地的覆盖率是退化程度不同的湖泊湿地之间最主要的差别,退化程度越高的湖泊湿地,湖泊周边建设用地覆盖率越高,农田覆盖率越低。退化原因主成分分析表明,围垦、侵占湖泊和外源污染是造成武汉市城市湖泊湿地退化的主要原因。
     (4)武汉市湖泊湿地分类保护模式
     所调查的26个湖泊湿地维管束植物的丰富度指数、多样性指数、生态优势度及均匀度指数具有类似的变化趋势,其中内沙湖和外沙湖各项指数最低,而位于郊区的严西湖和汤逊湖等均有较高的多样性,多样性指数存在空间上的差异性,地域性较为明显。湿地典型植物的优势度与丰富度有所差异,变化趋势大体相同,这与总体湿地植物物种丰富度及优势度的特征基本一致。
     严东湖湿地植物群落沿水分梯度的分布规律充分表明,季节性积水生境的各个群落多样性指标均高于其他生境群落。
     按照物种丰富度、多样性、优势度、均匀度、湿地植被群丛数目,以及典型湿地植物的物种所占比例、丰富度和优势度的差异,将调查涉及的26个典型湖泊湿地分为原生植被湖泊、次生植被湖泊、人工植被湖泊和退化植被湖泊4类。原生植被湖泊应建立相对严格的湿地保护区,优先保护原有湿地植被。次生植被湖泊最多,城市发展区内的次生植被湖泊应建立30-100m的植被缓冲带,促进植被自然恢复和发育;而农业区的次生植被湖泊应引导和规范湖泊周围的农业生产模式,以减少人类活动干扰。人工植被湖泊应通过建立城市湿地公园,人工促进植被的近自然恢复。而退化植被湖泊则应尽快采用生态工程法促进湿地植被生境改善,并积极开展近自然湿地植被重建与恢复。
     (5)武汉市典型湿地植物选择及恢复模式
     本文在对武汉市26个典型城市湖泊湿地高等植物调查的基础上,采用TWINS PAN分类与DCA排序相结合的方法分析了严东湖湿地植物群落的类型和结构,并确定将梁子湖(1998-2002)、东湖(1992-1993)和严东湖湿地植物群落作为武汉市湖泊湿地典型植物群落,指导武汉市湖泊湿地的植被恢复和重建。在武汉地区典型湿地植物其不同的应用价值评价的基础上,结合各湖泊湿地功能特征、环境状况,将所调查湖泊分为生态保护型、景观美化型、经济生产型和综合效益型四种类型分别探讨其恢复模式,并各选择一个典型湖泊,来作为武汉地区典型湿地恢复模式营建的基础场地,以现有的植物群落为基础,提出其湿地植物恢复基本模式,为武汉市湿地生态系统的保护与恢复提供了依据。
Urban wetland has important functions of ecosystem service. However, human activities such as urbanization and infrastructure construction, lead to shrinkage of wetland in area, structural fragmentation and functional decline. Wetland protection and restoration thus become an important issue in the region ecological sustainable development. With supporting of remote sensing and geographic information systems, this paper study the changes of landscape pattern, plant biological diversity and degradation mechanism of urban wetlands in Wuhan. We also focused on the Wuhan city wetland protection and recovery strategy. The main results are shown as followed:
     (1) Changes of Wuhan urban wetland landscape
     Using the multi-temporal Landsat remote sense images during 1991-2007, this study analyzed the landscape changes of Wuhan wetlands under the background of urbanization in recent 17 years. During the whole study period, the wetlands of Wuhan decreased in area with a mean annual decreasing rate of 1.38%, and annual decrement of 2751.42hm2. In particular, the annual-decreasing rate of wetlands during 1991a-1996a was larger than the mean decreasing rate in 17 years, and was synchronous with the area increase of Wuhan built-up area. During the study period, the area of natural wetland decreased, while constructed wetland increased. As a major wetland type of Wuhan, the lake wetlands had the fasted decline in area, being a direct cause of the wetland area decreasing in Wuhan. The increased area of constructed wetland did not prevent the decreasing trend of total wetland area. With rapid urbanization, the wetland in Wuhan showed the trends of the largest patch index and fractal and connectivity decreased and the fragmentation increased.
     (2) Plant diversity feature of Wuhan wetland
     Plant resources in Wuhan lake wetlands were very abundant and included 361 vascular plant species, belonging to 82 families and 231 genera, in which the main category was angiosperm. Moreover, Graminea, Compositae, Leguminosa, and Cyperaceae are dominant families.
     The geographical composition the vascular plants surveyed is complex and widely associated with other florae thus showing both transitional and anciently originated characteristics. However, the endemic species were very rare. The pteridophytes of lake wetlands in Wuhan were rare with obviously intrazonality. The seed plants were rich. Additionally, the 14 areal-types had a large proportion of the cosmopolitan, pantropic and north-temperate distribution types. It indicates obviously subtropical flora characteristics. The dominant life-form of wetland plants was perennial herbaceous and annual herbaceous. This article take moisture as dominant factor-based in the survey of ecological adaptation of wetland plants classification in Wuhan water lakes, the results of showed that the typical vascular plants (164 species) ranked first, accounting for 45.4% of all species. This indicated that the direction of the succession of plant communities living tubes plant of wetland lakes in Wuhan.
     In this paper, exotic plant survey results showed that the lakes in Wuhan have been around the alien invasive plants. Invasive species has 24 species (12 families,17 genera), accounting for 77.4%of alien species. The remaining 22.6%of the total are basically cultivated species by human. These exotic plants had been a great threaten to plants biological diversity of lake wetlands in Wuhan.
     (3) Ecosystems degradation feature and mechanism of Wuhan wetland
     According to biological, habitat and functional features of 23 emblematical lake wetlands in Wuhan, we got a lot of data referring to ecosystems degradation, which were dealt with hierarchical cluster analysis. We divided the 23 lake wetlands into 3 classes with degradation degree. Zhuyehu Lake wetland, Yandonghu Lake wetland, Beitaizihu Lake wetland and Qingtanhu Lake wetland are contained to the first class(Degraded Slightly), Nantaizihu Lake wetland, Yezhihu Lake wetland, Tazihu Lake wetland, Huangjiahu Lake wetland, Yehu Lake wetland, Qinglinghu Lake wetland, Longyanghu Lake wetland, Shahu Lake wetland, Nanhu Lake wetland, Zhangbihu Lake wetland, Yanxihu Lake wetland, Moshuihu Lake wetland, Beihu Lake wetland, Donghu Lake wetland, Wujiahu Lake wetland, and Sanjiaohu Lake wetland are contained to the second class(Degraded), the third class is degraded seriously lakes, such as Neishahu Lake wetland and Ziyanghu Lake wetland.
     City construction is one of the most remarkable symbols of human's effects to lake-wetlands. Urban construction affected the lake-wetlands by changing the land use type of environment around the lake-wetlands. The percent of construction coverage and agriculture coverage were the most remarkable differences among lakes of different degraded class. With the increasing of construction coverage percent and the decreasing of agriculture coverage percent, lake wetlands'degradation degree wound is increasingly serious. The results of degradation cause principal component analysis indicated that the primary degradation causes of lake wetlands were inning, breaking into and polluting the lake wetlands in Wuhan.
     (4) Classified protection mode of Wuhan lake wetland
     The change trends of species richness, plant diversity, ecological dominance, and evenness of vascular plants in lake wetlands in Wuhan are relative consistent. However, there were significant differences in plant diversity (abundance, diversity and evenness), association abundance and common wetland plants diversity (including percents of total common wetlands, abundance and dominance) among various fielded lakes. The spatial distribution of abundance of vegetation types, formation and association in different lakes are very consistent. Even though the vegetation communities are abundant in Donghu Lake, Yanxihu Lake, Qinglinghu Lake, Sanjiaohu Lake, Yandonghu Lake, and Chedunhu Lake, the majority of lakes still contain fewer plant community types. And the number of typical plant species had more obvious spatial variation.
     According to these characteristics, the lakes were classified into four classes, which included native vegetation lakes, secondary vegetation lakes, artificial vegetation lakes, and degraded vegetation lakes. In the native vegetation lakes, wetland natural reserves should be constructed so as to conserve the native wetland plants. The secondary vegetation lake is the most common type of lakes. Differentiated management measures should be developed according to their location. In urban area, vegetation buffer zones with the width of 30-100m should be considered to establish in order to promote restoration and development of wetland natural vegetations; while in agricultural areas, the government and managers should guide and regulate the mode of agricultural production around the lake to reduce disturbance of the human activities. Urban wetland parks should be constructed to protect the artificial vegetation lakes and promote the near-natural restoration of wetland vegetations. Some ecological engineering methods are also needed to improve wetland habitat of the degraded lakes as soon as possible, and then recover them with near-natural wetlands vegetation.
     The research of the Yandonghu Lake wetland plant communities along the moisture gradient demonstrated that the seasonal sweeper environment diversity index were all significantly higher than all other habitats community.
     As the lower of terrain, water increase, tree and shrub, mesophyte, mesophreatophyte, typical vascular plants of wetland plant, hydrophyte herbage plant seriatim appeared in particular space.
     (5) Typical wetland plants selection and recovery mode of Wuhan lake wetland
     On the basis of higher plants investigatation of 26 urban lake wetlands of Wuhan, summarize the Liangzi lake wetland and Donghu lake wetland historical plants situation changes by using TWINSPAN and DCA, analyze the type and structure of Yandonghu lake wetland higher plant communities, identified the Liangzihu(1998-2002), Donghu(1992-1993) and Yandonghu lakewetland plant as the reference target of Wuhan lake wetland vegetation restoration, guide Wuhan lake wetlands'restoration and reconstruction. Based on the evaluation of the Wuhan area typical wetland plants' different application, combined with the wetland function characteristics, environmental conditions, investigated lakes were classified into four models:ecological protection model, landscaping model, economic productive model and comprehensive efficiency model and probed its recovery mode respectively, choose a typical lake from each mode as the basis site of Wuhan area, based on the existing communities, submit their basic mode of restoration of wetland plants. It gives a theory and data support of Wuhan wetland protection and rehabilitation.
引文
1.安娜,高乃云,刘长娥.中国湿地的退化原因、评价及保护.生态学杂志,2008,27(5):821-828
    2.白祥.新疆艾比湖湖泊湿地生态脆弱及其驱动机制研究.[博士学位论文].上海:华东师范大学,2010
    3.卞建民,林年丰,汤洁.吉林西部向海湿地环境退化及驱动机制研究.吉林大学学报(地球科学版),2004,34(3):441-444
    4.柴岫,郎惠卿,金树仁.若尔盖高原沼泽.北京:科学出版社,1965
    5.潮落蒙,李小凌,俞孔坚.城市湿地的生态功能.城市问题,2003,3:9-12
    6.曹新向,翟秋敏,郭志永.城市湿地生态系统服务功能及其保护.水土保持研究,2005,12(1):145-148
    7.曹宇,莫利江,李艳,章文妹.湿地景观生态分类研究进展.应用生态学报,2009,20(12):3084-3092
    8.常罡,廉振民.生物多样性研究进展.陕西师范大学学报(自然科学版),2004,9(32):152-157
    9.常中芳.黄河中游湿地生物多样性及保护对策.山西大学学报自然科学版,2006,29(3):321-325
    10.陈炳浩.世界生物多样性面临危机及其保护的重要性.世界林业研究,1993,4:1-6
    11.陈荷生,石建华.太湖底泥的生态疏浚工程.水资源保护,1998,9(3):12-15
    12.陈洪达.武汉东湖水生维管束植物群落的结构和动态.海洋与沼泽,1980,11(3):275-283
    13.陈洪达.东湖水生维管束植物.见:刘建康主编,东湖生态学研究(一).北京:科学出版社,1990,94-104
    14.陈建伟,朱翔.中国湿地的现状与我们的任务.见:林业部野生动物和森林植物保护司编,湿地保护与合理利用——中国湿地保护研讨会文集.北京:中国林业出版社,1996,78-81
    15.陈建伟,黄桂林.中国湿地分类系统及其划分指标的探讨.林业资源理,1995,5:65-71
    16.陈锦,李东庆,孟庆州,雍国武才.江河源区的湿地退化现状与驱动力分析.干早区资源与环境,2009,23(4):43-49
    17.陈灵芝.中国的生物多样性:现状及其保护对策.北京:科学出版社,1993,112-156
    18.陈水森,詹志明.基于GIS的鄱阳湖湿地遥感调查实验研究.热带地理,1999,19(1):35-38
    19.陈中义,雷泽湘,周进.梁子湖六种沉水植物种群数量和生物量周年动态.水生生物学报,2000,24(6):582-588
    20.程志,郭亮华,工东清,张玉峰.我国湿地植物多样性研究进展.湿地科学与管理,2010,6(2):54-56
    21.成水平,吴振斌,况琪军.人工湿地植物研究.湖泊科学,2002,14(2):179-184
    22.崔保山,刘兴土.湿地恢复研究综述.地球科学进展,1999,8,14(4):358-364
    23.崔丽娟,张曼胤.人类干扰对安庆沿江湿地植物多样性的影响.林业科学研究,2005,18(4),441-445
    24.戴全裕,陈源高,魏云,张珩,戴玉兰,蒋兴昌.水培经济植物对酿酒废水净化与资源化生态工程研究.科学通报,1996,41(6):547-551
    25.戴璨,汤璐瑛.濒危植物浮叶慈姑遗传多样性的RAPD分析.氨基酸和生物资源,2005,27(1):6-9
    26.董光器.北京城市发展的制约因素与解决对策.北京规划建设,2000(6)48-51
    27.董哲仁,刘蓓,曾向辉.受污染水体的生物—生态修复技术.水利水电技术,2002,33(2):1-4
    28.范成新.太湖非点源污染负荷与对策研究.河海大学学报,1996,24(1):64-69
    29.范成新,季江,陈荷生.太湖富营养化现状、趋势及其综合治理对策.上海环境科学,1997,16(8):4-7
    30.傅娇艳,丁振华.湿地生态系统服务、功能和价值评价研究进展.应用生态学报,2007,18(3):681-686
    31.傅书遐主编.湖北植物志3.武汉:湖北科学技术出版社,2002
    32.傅书遐主编.湖北植物志4.武汉:湖北科学技术出版社,2002
    33.高庆华.衡水湖湿地鸟类多样性、种群数量动态变化及重要水鸟繁殖生态学研究.[硕士学位论文].石家庄:河北师范大学,2003
    34.高正清.云南乡土植物资源的保护与利用.西南农业学报,2006,19(增刊)239-244
    35.葛继稳.湿地资源及管理研究实证—以“千湖之省”湖北省为例.北京:科学出版社,2007
    36.葛继稳,蔡庆华,刘建康,刘胜祥,蒲云海,梅伟俊.梁子湖湿地植物多样性 现状与评价.中国环境科学,2003,23(5):451-456
    37.葛继稳,蔡庆华,李建军,刘建康,刘胜祥,蒲云海,工希群.梁子湖水生植被1955-2001年间的演替.北京林业大学学报,2004,26(1):14-20
    38.宫兆宁,赵文吉,宫辉力,李小娟.基于遥感技术的北京湿地资源变化研究.中国科学E,2006,36(B07):94-103
    39.国家林业局.国家重点保护野生植物名录(第一批).植物杂志,1999,(5):4-11.
    40.韩芳.乌珠穆沁盆地湿地植被空间分布与生物多样性研究.[硕士学位论文].内蒙古:内蒙古大学,2004
    41.何池全,赵魁义.若尔盖高原·湿地生物多样性保护及其可持续利用.自然资源学报,1999,14(3);238-244
    42.何池全,赵魁义,赵志春.若尔盖高原湿地草场退化成因分析及其保护利用.中国草地,2000(6):11-16
    43.贺金生,马克平.物种多样性.杭州:浙江科技术出版社,1997
    44.胡鸿兴,康洪莉,贡国鸿,朱觅辉,郑文勤,吴法清,何定富,李振文,耿栋.湖北省湿地冬季水鸟多样性研究.长江流域资源与环境,2005,14(4):422-428
    45.胡小辉,陈家宽,工建波,何国庆,葛颂.长喙毛茛泽泻遗传多样性及其与繁育系统的关系.云南植物研究,1999,21(2):232-238
    46.黄桂林.青海三江源区湿地状况及保护对策.林业资源管理,2005,(4):35-39
    47.汲玉河,吕宪国,杨青,董厚德.三江平原湿地植物物种空间分宜规律的探讨.生态环境,2006,15(4):781-786
    48.简永兴.两湖平原湖泊湿地水生植物多样性编目与评价.[硕士学位论文].武汉:武汉大学生命科学学院,2001
    49.蒋明康,周泽江,贺苏宁.中国湿地生物多样性的保护和持续利用.东北师范大学学报(自然科学版),1998,2:79-84
    50.蒋跃平,葛滢,岳春需,常杰.人工湿地植物对观赏水中氮磷去除的贡献.生态学报,2004,24(8):1720-1725
    51.鞠澎.玄武湖湿地生态系统植物群落人工恢复研究.[硕士学位论文].南京:南京林业大学图书馆,2003
    52.兰竹虹.南中国海地区湿地植物多样性研究.生态科学,2006,25(1):13-16
    53.郎惠卿,林鹏,陆健健.中国湿地研究和保护.上海:华东师范大学出版社,1998
    54.郎惠卿,赵魁义,陈克林.中国湿地植被.北京:科学出版社,1999
    55.陆健健,王伟.湿地生态恢复.湿地科学与管理,2007,3(1):34-36
    56.雷霆,崔国发,陈建伟,张佳蕊,陈燕,工德国,陈元君.北京市湿地维管束植物多样性及优先保护级别划分.生态学报,2006,26(6):1675-1685
    57.李长安.中国湿地环境现状与保护对策.中国水利,2004,3:24-26
    58.李春晖,郑小康,牛少凤,蔡宴朋,沈楠,庞爱萍.城市湿地保护与修复研究进展.湿地科学进展,2009,28(2):271-279
    59.李广玉,叶思源,张正贤,高宗军.湿地的研究展望及其保护对策.海洋地质动态,2005,21(6),8-11
    60.李景侠,蔡靖,张文辉等.牛背梁自然保护区种子植物多样性研究.西北植物学报,1999,19(5):37-43
    61.黎明,刘德启,沈颂东,袁雯,姜海燕,蔡哗.国内富营养化湖泊生态修复技术研究进展.水土保持研究,2007,14(5):374-376
    62.李瑞,刘云芳,张克斌.半干旱区湿地植物群落α多样性分析.中国水土保持科学,2007,5(6):65-69
    63.李瑞,张克斌,刘云芳,边振,刘晓丹,路端正,尤万学.宁夏哈巴湖自然保护区湿地植被优先保护研究.北京林业大学学报,2009,31(2):44-49
    64.李胜男,工根绪,邓伟.湿地景观格局与水文过程研究进展.生态学杂志,2008,27(6):1012-1020.
    65.李永红,杨倩.杭州西溪湿地植物园——基于有机更新和生态修复的设计.中国园林,2010,7:31-35
    66.李元跃,吴文林.福建漳江口红树林湿地自然保护区的生物多样性及其保护.生态科学,2004,23(2):134-136
    67.李振宇,解炎.中国外来入侵种.北京:中国林业出版社,2002
    68.廖宇红,陈传国,陈红跃,张杰,吴钟亲,刘烈旺.广州市莲塘村风水林群落特征及植物多样性.生态环境,2008,17(2):812-817
    69.廖玉静,宋长春.湿地生态系统退化研究综述.土壤通报,2009,40(5):1199-1203
    70.林开敏,黄宝龙.杉木人工林林下植物物利β多样性的研究.生物多样性,2001,9:157-161
    71.林鹏,周涵韬.中国红树科7种红树植物遗传多样性分析.水生生物学报,2001,25(4):362-369
    72.刘厚田.湿地的定义和类型划分.生态学杂志,1995,14(4):73-77
    73.刘晓嫣,李轶伦.湿地生态修复与景观规划研究——以上海青西湿地生态修复工程为例.中国园林,2009,8:75-78
    74.刘子刚,马学慧.湿地的分类.湿地科学与管理,2006,2(1):60-63
    75.娄建.贵州草海湿地植物群落定量分析及人为影响研究.[硕士学位论文].贵阳:贵州师范大学图书馆,2006
    76.陆健健.中国湿地.华东师范大学出版社,1990
    77.卢书兵.基于3S技术的长白山自然保护区湿地分类和分布特征研究.[硕士论文].延吉:延边大学,2010
    78.罗磊.青藏高原湿地退化的气候背景分析.湿地科学,2005,3(3):190-199
    79.罗新正,朱坦,孙广友.松嫩平原湿地生态环境退化机制探讨.干旱区资源与环境,2002,16(4):39-43
    80.罗新正,朱坦,孙广友.松嫩平原大安古河道湿地的恢复与重建.生态学报,2003,23(2):244-250
    81.吕金福,肖荣寰,介冬梅,范有生.莫莫格湖泊群近50年来的环境变化.地理科学,2000,20(3):279-283
    82.吕宪国.湿地科学研究进展及研究方向.中国科学院院刊,2002,3:170-172
    83.吕宪国,刘晓辉.中国湿地研究进展.地理科学,2008,28(3):301-308
    84.马克明,傅伯杰,周华锋.北京东灵山地区森林的物种多样性和景观格局多样性研究.生态学报,1999,19(1):2-7
    85.马克平.试论生物多样性的概念.生物多样性,1993,1(1):20-22
    86.马克平.生物群落多样性的测度方法Iα多样性的测度方法(上).生物多样,1994,2(23):162-168
    87.马克平,黄建辉,于顺利,陈灵芝.北京东灵山地区植物群落多样性的研究B,丰富度、均匀度和物种多样性指数.生态学报,1995,15(3):268-277
    88.马克平,钱迎倩.生物多样性保护及其研究进展.应用与环境生物学报,1998,4(1):95-99
    89.马剑敏,严国安,任南,罗岳平,李益健.东湖围隔(栏)中水生植被恢复及结构优化研究.应用生态学报.1997,8(5):535-540
    90.孟伟庆,李洪远,王秀明,李姝娟,吴璇.天津滨海新区湿地退化现状及其恢复模式研究.水土保持研究,2010,17(3):144-147
    91.孟华,李晓东,韩敏,杨继新.基于GIS的松嫩湿地信息系统的建立.计算机工程,2005,31(7):49-52
    92.倪晋仁,殷康前,赵智杰.湿地综合分类研究:I.分类.自然资源学报,1998,13(3):214-221
    93.宁龙梅,王学雷,吴后建.武汉市湿地景观格局变化研究.长江流域资源与环境,2005,14(1):44-49
    94.潘延宾,姚崇怀,宁云飞,刘英.城市绿地系统规划中的鸟类保护规划——以武汉市为例.湖北林业科技,2008,2:21-24
    95.彭少麟,王伯荪.鼎湖山森林群落分析I.物种多样性.生态科学,1983,2:11-17
    96.彭少麟,任海,张倩媚.退化湿地生态系统恢复的一些理论问题.应用生态学报,2003,14(11):2026-2030
    97.彭少麟,周婷.通过生态恢复改变全球变化——第19届国际恢复生态学大会综述.生态学报,2009,29(9):5161-5162
    98.彭映辉,倪乐意,简永兴.两湖平原六个湖泊水生植物多样性的比较研究.云南植物研究,2004,6(2):191-198
    99.彭映辉,简永兴,倪乐意.湖北省梁子湖水生植物的多样性.中南林学院学报,2005,25(6):60-64
    100.钱迎倩,马克平,韩兴国.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994
    101.秦伯强.湖泊生态恢复的基木原理与实现.生态学报,2007,27(11):4847-4858
    102.秦仁昌.中国蕨类植物科属的系统排列和历史来源.植物分类学报,1978,3:1-19
    103.秦伟,刘胜祥.湖北入侵植物物种现状的初步研究.中国植物学会,中国植物学会七十周年年会论文摘要汇编.北京:高等教育出版社,2003
    104.琼次仁,拉琼.拉萨市拉鲁湿地的初步研究.西藏大学学报,2000,15(4):40-41
    105.邱东茹,吴振斌.富营养化浅水湖泊的退化与生态恢复.长江流域资源与环境,1996,15(4):355-361
    106.邱东茹,吴振斌,刘保元.武汉东湖水生植被的恢复试验研究.湖泊科学,1997,9(2):168-174
    107.邱扬,张金屯.DCCA排序轴分类及其在关帝山八水沟植物群落生态梯度分析中的应用.生态学报,2000,20(2):199-206
    108.任海,张倩媚,彭少麟.内陆水体退化生态系统的恢复.热带地理,2003,23(1):22-29
    109.上官铁梁,贾志力,张金屯,张峰,许念.汾河太原段河漫滩草地植被的数量分类与排序.草业学报,2001,10(4):31-39
    110.宋辞,于洪贤.镜泊湖浮游植物多样性分析及水质评价.东北林业大学学报,2009,37(4):40-42
    111.宋永昌.植被生态学.上海:华东师范大学出版社,2001
    112.孙刚,盛连喜.湖泊富营养化治理的生态工程.应用生态学报,2001,12(4)590-592
    113.孙忠林.三江平原沼泽湿地斑块群落多样性研究.[硕士研究生论文].长春:东北师范大学图书馆,2006
    114.唐小平,黄桂林.中国湿地分类系统的研究.林业科学研究,2003,16(5):531-539
    115.唐志尧,方精云.植物物种多样性的垂直分布格局.生物多样性,2004,12:20-28
    116.万晓红,李旭东,王雨春,陆瑾,赵茵茵,刘玲花,周怀东.不同水生植物对湿地无机氮素去除效果的模拟.湖泊科学,2008,20(3):327-333
    117.王伯荪.植物群落学.北京:高等教育出版社,1987
    118.王朝晖,彭友林,王云.常德市湿地植物多样性初步研究.草业科学,2010,27(12):96-101
    119.王辰,刘全儒.北京湿地维管植物区系研究.武汉植物学研究,2004,22(5)406-411
    120.王飞,谢其明.论湿地及其保护和利用——以洪湖湿地为例.自然资源学报,1990,5(4):297-303
    121.王根绪,郭晓寅,程国栋.黄河源区景观格局与生态功能的动态变化.生态学报,2002,22(10):1587-1598
    122.工海霞,孙广友,宫辉力,于少鹏.北京市可持续发展战略下的湿地建设策略.干旱区资源与环境,2006,20(1):27-32
    123.王海珍,陈德辉,王全喜,刘永定.水生植被对富营养化湖泊生态恢复的作用.自然杂志.2001,24(1):33-36
    124.王家骥,成文连.湖泊群的生态修复与开发利用研究初探.环境科学研究,2003,16(5),33-36
    125.王建成,张洪斌,王丽媛.论乌裕尔河水污染对扎龙自然保护区生态环境的影响.东北水利水电,1997,9:31-33
    126.王建华,吕宪国.城市湿地概念和功能及中国城市湿地保护.生态学杂志,2007,26(4):555-560
    127.王丽学,李学森,窦孝鹏,刘冀,石志强.湿地保护的意义及我国湿地退化的原因与对策.中国水土保持,2003,7:8-9
    128.王庆海,段留生,武菊英,阳娟.北京地区人工湿地植物活力及污染物去除能力.应用生态学报,2008,19(5):1131-1137
    129.王仁卿,刘纯惠,晁敏.从第五届国际湿地会议看湿地保护与研究趋势.生态 学杂志,1997,16(5):72-76
    130.工卫民,杨干荣,樊启学,张家波.梁子湖水生植被.华中农业大学学报,1994,13(3):281-290
    131.王宪礼,李秀珍.湿地的国内外研究进展.生态学杂志,1997,16(1):58-62
    132.工宪礼,肖笃宁,布仁仓,胡远满.辽河三角洲湿地的景观格局分析。生态学报,1997,17(3):318-323
    133.王小丹,钟祥浩.生态环境脆弱性概念的若干问题探讨.山地学报,2003,21(增刊):21-25
    134.王学雷.江汉平原湿地生态脆弱性评估与生态恢复.华中师范大学学报(自然科学版),2001,35(2):237-240
    135.王学雷,蔡述明,曾艳红.湖北省湿地的保护与利用.长江流域资源与环境,2002,11(5):437-441
    136.王学雷,吴宜进.马尔柯夫模型在四湖地区湿地景观变化研究中的应用.华中农业大学学报,2003,21(3):288-291
    137.王志高,叶万辉,曹洪麟,练琚愉.鼎湖山季风常绿阔叶林物种多样性指数空间分布特征.生物多样性,2008,16(5):454-461
    138.武汉市统计局.武汉统计年鉴——2010.北京:中国统计出版社,2010
    139.武汉市环保局.武汉市生态环境现状.http://www. whepb. gov. cn/publish /whhbj/2009-11/18/
    140.吴振斌,陈德强,邱东茹,刘保元.武汉东湖水生植被现状调查及群落演替分析.重庆环境科学,2003,25(8):54-59
    141.吴振斌,陈辉蓉,雷腊梅,宋立荣,付贵萍.金建明,贺锋,何振荣.人工湿地系统去除藻毒素研究.长江流域资源与环境,2000,9(2):242-247
    142.吴征镒.中国种子植物属的分布区类型.云南植物研究,1991,Ⅳ(增刊):1-139
    143.向闱,刘苏,刘胜祥.武汉市湿地分布现状调查与分析.湿地科学,2006,4(2):155-159
    144.肖笃宁,孙中伟.城市景观空间格局变化的研究方法及案例.城市环境与城市生态,1990,3(1):12-16
    145.肖文军,徐春荣.城市湿地功能及研究进展.河北农业科学,2010,14(12):85-88
    146.肖晓萍.湿地保护与湿地公园建设.福建建设科技,2005,5:37-39
    147.谢炳庚.湿地景观生态学理论和方法研究.[博士学位论文].长沙:中南工业大学,1998
    148.谢晋阳,陈灵芝.暖温带落叶阔叶林的物种多样性特征.生态学报,1994,14(4):337-344
    149.许木启,黄玉瑶.受损水域生态系统恢复与重建研究.生态学报,1998,18(5):547-558
    150.徐文铎,何兴元,陈玮,张粤,李海梅,刘常富.沈阳市区植物区系与植被类型的研究.应用生态学报,2003,14(12):2095-2102
    151.徐正浩,王一平.外来入侵植物成灾的机制及防除对策.生态学杂志,2004,23(3):124-127
    152.薛力群.葫芦岛锌业股份有限公司汞污染现状调查与防治对策研究.环境科学与管理,2009,34(12):115-117
    153.阎桂琴,毕润成.山西霍山森林群落物种的多样性和生态优势度.西南师范大学学报(自然科学版),1993,18(2):173-178
    154.严国安,马剑敏,邱东茹,吴振斌.武汉东湖水生植物群落演替的研究.植物生态学报,1997,21(4):319-327
    155.杨桂山,马荣华,张路,姜加虎,姚书春,张民,曾海鳌.中国湖泊现状及面临的重大问题与保护策略.湖泊科学,2010,22(6):799-810
    156.杨洪,陈红梅.武汉湖泊.武汉:武汉出版社,2003
    157.杨会利.河北省典型滨海湿地演变与退化状况研究.[硕士学位论文].石家庄:河北师范大学,2007
    158.杨珊,胡利梅,高瑞,刘琴.洞庭湖区湿地生态系统存在的问题及其对策研究.环境科学与管理,2006,31(8):111-113
    159.杨润高,李红梅.城市湿地保护区重建模式——以佛山市三水区云东海湿地为例.城市问题,2005,1:52-55
    160.杨永兴.若尔盖高原生态环境恶化与沼泽退化及其形成机制.山地学报,1999,17(4):318-323
    161.杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望.地球科学进展,2002,17(4):508-514
    162.杨云良,阎顺,贾宝全.艾比湖流域生态环境演变与人类活动关系初探.生态学杂志,1996,15(6):43-49
    163.叶頔.北京市湿地植物多样性保护研究.[硕士学位论文].北京:北京林业大学图书馆,2006
    164.叶正伟.洪泽湖湿地生态脆弱性的驱动力系统与评价.水土保持研究,2008,15(6):245-249
    165.尹发能.略论武汉水资源水环境的保护.襄樊学院学报,2005,26(5):70-72
    166.尹健梅,程伍群,严磊.白洋淀湿地水文水资源变化趋势分析.水资源保护,2009,25(1):52-58
    167.殷康前,倪晋仁.湿地研究综述.生态学报,1998,18(5):539-546
    168.于丹,康辉,谢平等.青菱湖和黄家湖水生植物多样性的比较分析.生态学报,1996,16(6):566-571
    169.余营国.湿地研究进展与展望.世界科技研究与发展,2000,22(3):61-66
    170.詹存卫,于丹,吴中华,刘春花,李中强.梁子湖水-陆交错区水生植物群落生态学研究.植物生态学报,2001,25(5):573-580
    171.张峰,上官铁梁.山西湿地生物多样性及其保护.地理科学,1999,19(3):216-219
    172.张光富,高邦权.江浙莼菜遗传多样性和遗传结构的ISSR分析.湖泊科学,2008,20(5):662-668
    173.章光新,郭跃东.嫩江中下游湿地生态水文功能及其退化机制与对策研究.干早区资源与环境,2008,22(1):122-128
    174.张纪林.沿海湿地生物多样性保护及复合农林业利用.世界林业研究.1999,12(6):38-41
    175.张继义,赵哈林,张铜会,赵学勇.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态.植物生态学报,2004,28(1):86-92
    176.章家恩,徐琪.生态退化研究的基本内容与框架.水土保持通报,1997,17(6):46-53
    177.章家恩,徐琪.恢复生态学研究的一些基本问题探讨.应用生态学报,1999,10(1):109-113
    178.张杰,赵振坤,李晓文.湿地恢复与生境改造的规划设计——以武汉市涨渡湖为例.资源科学,2005,27(4):133-139
    179.张林静,岳明,赵桂仿,张远东,顾峰雪,潘晓玲.新疆阜康地区植物群落物种多样性及其测度指标的比较.西北植物学报,2002,22(2):350-358
    180.张明祥,严承高,王建春,陈飞.中国湿地资源的退化及其原因分析.林业资源管理,2001,3:23-26
    181.张晓龙,李培英.湿地退化标准的探讨.湿地科学,2004,2(1):36-41
    182.张晓龙.现代黄河三角洲滨海湿地环境演变及退化研究.[硕士学位论文].青岛:中国海洋大学图书馆,2005
    183.张秀敏,陈娟,杨树华.滇池水生植被恢复规划研究.云南环境科学,1998,17(3):38-40
    184.张绪良,徐宗军,张朝晖,谷东起,叶思源.中国北方滨海湿地退化研究综述.地 质论评,2010,56(4):561-566
    185.张毅,邓宏兵.武汉市城市湖泊演化及开发利用初探.华中师范大学学报(自然科学版),2005,39(4):559-563
    186.张永泽,王煊.自然湿地生态恢复研究综述.生态学报,2001,21(2):309-314
    187.张元明,曹同,潘伯荣.新疆博格达山地面生苔藓植物物种多样性研究.应用生态学报,2003,14(6):887-889
    188.张峥,张建文,李寅年.湿地生态评价指标体系.农业环境保护,1999,18(6):283-285
    189.赵魁义.加拿大国际湿地会议与湿地研究.地理科学,1988,8(3):293-294
    190.赵魁义.中国湿地植物初录.北京:科学出版社,1999
    191.赵生才.中国湿地退化、保护与恢复—香山科学会议第241次学术讨论会.地球科学进展,2005,20(6):701-704
    192.郑洁华.湖北蕨类植物区系基本成分和主要特点的探讨.武汉植物学研究,1987,5(3):227-233
    193.郑小康,李春晖,黄国和,杨志峰.流域城市化对湿地生态系统的影响研究进展.湿地科学,2008,6(1):87-95
    194.郑忠明,李华,周志翔,徐永荣,滕明君.城市化背景下近30年武汉市湿地的景观变化.生态学杂志,2009,28(8):1619-1623
    195.郑忠明,宋广莹,周志翔,韩筱婕,滕明君,李智琦.基于植物多样性特征的武汉市城市湖泊湿地植被分类保护和恢复.生态学报,2010,30(24):7045-7054
    196.中国科学院武汉植物研究所.中国水生维管束植物图谱.武汉:湖北人民出版社,1980
    197.中国植被编委会.中国植被.北京:科学出版社,1980
    198.中国植物志编辑委员会.中国植物志.北京:科学出版社,2004
    199.周涵韬,林鹏.海桑属红树植物遗传多样性和引种关系研究.海洋学报,2002,24(5):98-105
    200.周进,Hisako Tschibana,李伟,刘贵华.受损湿地植被的恢复与重建研究进展.植物生态学报,2001,25(5):561-572
    201.周以良,倪红伟,周瑞昌.大兴安岭森林植物多样性特征.国土与自然资源研究.1998,3:66-68
    202.朱京海,刘伟玲,胡远满.辽宁沿海湿地生物多样性评价研究.气象与环境学报,2008,24(1):27-31
    203.祝廷成,钟章成,李建东.植物生态学.北京:高等教育出版社,1988
    204.朱卫红,南颖,刘志锋,王琪,程火生,今西纯一,森木幸裕.基于3S技术 的图们江下游湿地系统分类及分布特征研究.东北师范大学学报(自然科学版),2007,39(3):160-163
    205.卓丽环,陈龙清.园林树木学.北京:中国农业出版社,2004,382
    206.邹尚辉.武汉市湖泊环境的遥感研究.地理科学,1991,11(3):261-268
    207.2009年武汉市环境状况公报.武汉市环境保护局.2010
    208.Albert F, Michael J, Mangnal I, Robin M L, Timothy M C. Water bird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodiversity and Conservation,2001,10:251-270
    209.Amanda A, Richard R H. Wetlands and Urbanization:Implications for the Future. CRC Press,2000
    210.Arnold Jr. C L, Gibbons J C. Impervious surface coverage:the emergence of a key environmental indicator. Journal of the American Planning Association,1996,62 (2):243-259
    211.Bedford B L, Preston E M. Developing the scientific basis for assessing cumulative effects of wetland loss and degradation on landscape functions:Status, perspectives, and prospects. Environment Management,1988,12(5):751-771
    212.Bjork S. Redevelopment of lake ecosystem--A case study approach. Ambio, 1988,17:90-98
    213.Booth D B, Jackson C R. Urbanization of aquatic systems:Degradation thresholds, stormwater detection, and the limits of mitigation. Journal of the American Water Resources Association,1997,33(5):1077-1090
    214.Brinson M M. A hydrogeomorphic classification for wetlands. Vicksburg, MS U S: Army Engineers Water ways Experiment Station,1993
    215.Brock M A. Australian wetland plants and wetlands in the landscape:Conservation of diversity and future management. Aquatic Ecosystem Health and Management, 2003,6(1):29-40
    216.Cowardin L M, Carter V, Golet F C. Classification of wetlands and deep-water habitats of the United States. U S:U S Department of the Interior Fish and Wildlife Service Office of Biological Services,1979
    217.Cowardin L M, Golet F C. U S fish and wildlife service wetland classification:a review In:Finlay son C M, vander Valk A G eds. Classification and Inventory of the World's Wetlands. Netherlands:Kluwer Academic Publishers,1995
    218.Cronk J K, Fennessy M S. Wetland Plants:Biology and Ecology. Boca Raton, Florida, USA:CRC Press,2001
    219.David D. Conservation of freshwater biodiversity in Oriental Asia:constraints, conflicts, and challenges to science and sustainability. Limnology,2000,1: 237-243
    220.Davis S M, Ogden J C. Everglades——the ecosystem and its restoration. Delray Beach:St Lucie Press,1994:8-128
    221.Davis J A, Froend R. Loss and degradation of wetlands in southwestern Australia: Underlying causes, consequences and solutions. Wetlands Ecology and Management,1999,7(12):13-23
    222.Douglas R, Porter, David A, Salvesen. Collaborative Planning for Wetlands and Wildlife. Island Press,1995
    223.Ehrenfeld J G, Defining the limits of restoration:the need for realistic goals. Restoration Ecology,2000,8(1):2-9
    224.Fisher R A, Steven Corbet A, Williams C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. The Journal of Animal Ecology,1943.12(1):42-58
    225.Gibbs J P. Wetland loss and biodiversity conservation. Conservation Biology,2002, (1):314-317
    226.Gilvear D J, Bradley C. Hydrological Monitoring and Surveillance for Wetland Conservation and Management:a UK Perspective. Phys. Chem. Earth,2000, 25(7-8):571-588
    227.Gopal B, Junk W J. Assessment, determinants, function and conservation of biodiversity in wetlands:present status and future need. Leiden:Backhuys Publishers,2001
    228.Gudrun B, Claude A, Nicolas Lamouroux. Aquatic plant diversity in riverine wetlands:the role of connectivity. Freshwater Biology,1998,39:267-283
    229.Hails A J. Wetlands, biodiversity and Ramsar Convention-the role of the convention on wetlands in the conservation and wise use of biodiversity. Gland:Ramsar Convention Bureau,1996
    230.Hanski I. Landscape fragmentation, biodiversity loss and the societal response. EMBO Reports,2005,6:388-392
    231.Henry C P, Amoros C, GiuLiani Y. Restoration ecology of rivenie wetlands I:a scientific base. Environmental Management,1995a,19(6):891-902
    232.Henry C P, Amoros C. Giuliani Y. Restoration ecology of riverine wetlands Ⅱ:an example in a former channel of the Rhone River. Environmental Management: 1995b,19(6):903-913
    233.Herold M, Goldstein N C, Clarke K C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment,2003,86 286-302
    234.Houghtou R A, Woodwell G M. Global Climate Change. Scientific American, 1989:36-44
    235.Houlahan J E, Scott Findlay C. Effect of Invasive Plant Species on Temperate Wetland Plant Diversity. Conservation biology,2004,18(4):1132-1138
    236.Hubbell S P. Tree dispersion, abundance, and diversity in a tropical dry forest. Science,1979,203:1299-1309
    237.Hutchings M J. Plant diversity in four chalk grassland sites with different aspects. Vegetatio,1983,53:179-188
    238.Hobbs R J, Norton D A. Towards a conceptual framework for restoration ecology. Restoration Ecology,1996,4:93-110
    239.James S B, Greg A O. Modeling the hydrologic response of groundwater dominated wetlands to transient boundary conditions:Implications for wetland restoration. Journal of Hydrology,2006:1-10
    240. Jason T B, Brook D H, Gary N E. Umbrella potential of plants and dragonflies for wetland conservation:a quantitative case study using the umbrella index. Journal of Applied Ecology,2007,44:833-84
    241.Keddy P A, Fraser L H, Solomeshch A I, Junk W J, Campbell D R, Arroyo M T K, Alho C J R. Wet and wonderful:the world's largest wetlands are conservation priorities. Bioscience,2009,59 (1):39-51
    242.Kentula M, Gwin S, Pierson S. Tracking changes in wetlands with urbanization: Sixteen years of experience in Portland, Oregon USA. Wetlands,2004,24: 734-743
    243.Kvalseth T O. Note on biological diversity, evenness, and homogeneity measures. Oikos,1991,62:123-127
    244.Larose S, Price J. Rewetting of a cutover peatland:hydrologic assessment. Wetlands,1997,17(3):416-424
    245.Lopez R D, Fennessy M S. Testing the floristic quality assessment index as an indicator of wetland condition. Ecological Applications,2002,12:487-497
    246.Magurran A E. Ecological Diversity and Its Measurement. Princeton:Princeton University Press,1988:1-179
    247.Middleton B. Wetland restoration, flood pulsing and disturbance dynamics. Chichester:John Wiley& Sons.1999
    248.Mitsch W J, Gosselink J G. Wetlands. New York:Van Nostrand Reinhold Company,2000:2-88
    249.Myers N, Mittermeier R A, Mittermeier C G, Da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature,2000,403(6772):853-858
    250.Naveh Z and Whittaker R H. Structural and diversity of shrublands and woodlands in Northern Israel and other Mediterranean areas. Vegetio,1980,41:171-190
    251.Nora F Y, TamY S, Wong. Conservation and sustainable exploitation of mangroves in Hong Kong. Trees,2002,16:224-229
    252.OECD/IUCN. Guidelines for aid agencies for improved conservation and sustainable use of tropical and sub-tropical wetlands. Paris:OECD,1996
    253.Okruszko H. Influence of hydrological differentiation of Fens on their transformation after Dehydration and Possibilities for Restoration. Chiehester:John Wiley& Sons Ltd,1995
    254.Olson D M, Dinerstein E. The Global 200:a representation approach to conserving the Earth's most biologically valuable ecoregions. Conservation Biology,1998,12: 502-515
    255. Palmer M A, Bernhardt E S, Allan J D, Lake P S, Alexander G, Brooks S, Carr J, Clayton S, Dahm C N, Follstad Shah J, Galat D L, Loss S G, Goodwin P, Hart D D, Hassett B, Jenkinson R, Kondolf G M, Lave R. Standard for ecologically successful river restoration. Journal of Applied Ecology,2005,10(4):1-10
    256.Patrick Denny. Biodiversity and wetlands. Wetlands Ecology and Management, 1994,3(1):55-61
    257.Paul Keddy. Wetland restoration:the potential for assembly rule in the service of conservation. Wetlands,1999,19(4):716-732
    258.Prasad S N, Ramachandra T V, Ahalya N. Conservation of wetlands of India-a review. Tropical Ecology,2002,43(1):173-186
    259.Pollock M M. Patterns of plant species richness in emerget and forested wetland of southeast Alaska. Washington:Washington University Press,1995:6-40
    260.Spencer C, Roberson A I, Curtie A. Development and testing of a rapid appraisal wetland condition index in south-eastern Australia. Journal of Environmental Management,1998,54:143-159
    261.Stephen F. Urbanization impacts on the structure and function of forested wetlands. Urban Ecosystems,2004,7:89-106
    262.US National Research Council. Restoration of Aquati Ecosystems. Washington D C:Nat Acad Press,1992
    263.Wetzel P R, Valk A G van der, et al. Restoration of wetland vegetation on the Kissimmee river floodplain:potential role of seed banks. Wetlands,2002,21(2): 189-198
    264.Whittaker R J, Willis K J, Field R. Scale and species richness:towards a general hierarchical theory of species diversity. Journal of Biogeography,2001:28,453-470
    265.Wilson E O.Biodversity. Washington D C:Nat Aead Press,1988
    266.Wright C, Gallant A. Improved wetland remote sensing in Yellow stone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sensing of Environment,2007,107:582-605
    267.Yong P. The "new science" of wetland restoration. Environmental Science& Technology.1996,7:292-296
    268.Zedker J B. Progress in wetland restoration ecology. Tree,2000,15(10):402-407

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700