腐蚀电化学检测中的虚拟仪器技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学方法在腐蚀监检测中具有无可替代的优势,虚拟仪器技术以用户自定义功能和软件化为主要特点,二者的结合使研究人员能够根据测试项目的需要,以较短的周期和较低的成本建立监检测系统,在实时在线腐蚀检测和监控领域有广阔的发展空间。本文工作依据国家材料自然环境腐蚀试验站网大气/海洋全浸区金属材料的腐蚀检测、核电结构材料早期局部腐蚀的电化学噪声检测、发电厂/变电站接地网腐蚀电化学检测等项目的实际需要,应用虚拟仪器技术和电化学方法构建测试系统开展研究。
     研制了基于电化学频率调制(EFM)技术的测试系统,能够实现EFM测试。通过实验室试验对EFM测试系统和实验技术进行了检验,证明系统能够有效地测得多种体系中的腐蚀速率等电化学动力学参数。研制了适合现场检测的实海金属试片腐蚀电化学测试系统,对舟山海洋腐蚀试验站全浸区Q235碳钢试片进行了线性极化阻力和EFM检测。EFM方法测得的极化阻力较传统线性极化阻力方法偏小,但能够直接得到腐蚀速率,可作为试验站一种备选的腐蚀电化学检测技术。
     研制了基于电化学噪声(EN)技术的测试系统和数据解析软件,并将其应用于铝合金大气腐蚀监测及核电结构材料的应力腐蚀开裂检测。获得了自然大气环境中铝合金大气腐蚀的电位电流噪声和噪声电阻变化,分析了表面完好的304奥氏体不锈钢和存在微裂纹的800镍基合金C型环试样在室温蒸馏水中的电化学噪声谱特征,初步证明EN技术可以对大气腐蚀及核电结构材料的局部腐蚀进行有效监检测,为进一步的研究提供了有力工具。
     研制了接地网腐蚀电化学检测系统和数据解析软件,通过恒电流阶跃测试得到接地网测试位置的极化阻力值作为表征腐蚀状况的参数。进行了现场试验,研究了检测传感器的限流效果,确定了适当的检测设备和数据解析方法。结果表明,小孔限流型传感器具有明显的限流效果,小波变换和Levenberg-Marquardt算法能够有效消除充电曲线数据中的噪声干扰和土壤电阻影响。接地网腐蚀电化学检测系统能够在现场提供有价值的信息,为接地网的腐蚀诊断提供依据。
Electrochemical methods are irreplaceable in corrosion monitoring and detecting. Virtual instrument technology is characterized with self-defined function and software implementation. The combination of both technologies makes the researchers able to build measurement systems according to their special project with shorter development cycle and higher cost performance, and shows broad development space in the field of on-line and real-time corrosion detecting and monitoring. In the work of this dissertation, electrochemical methods and virtual instrument technologies were applied to build measurement systems to make a study of some practical projects: electrochemical measurements for atmospheric and marine corrosion of the metal coupons at natural environmental corrosion test stations of China, initial detection for local corrosion of the nuclear structural materials with electrochemical noise technique, and electrochemical detection for corrosion of the grounding grids at power plants and transform substations.
     A measurement system based on electrochemical frequency modulation (EFM) technique was developed, which could implement EFM measurement. The EFM system and EFM technique were examined by laboratory experiments and proved to be available to determine the electrochemical kinetic parameters like corrosion rate in various of corroding systems. A corrosion electrochemical test system for in-field detection of the metal coupons in natural sea was also developed, and was used to detect the corrosion of Q235 steel in fully immersion zone at Zhoushan marine corrosion test site with linear polarization resistance (LPR) and EFM measurement. The results showed that although the Rp obtained with EFM tended to be lower than its real value, corrosion rate was offered directly. Thus, EFM technique was shown to be a possible candidate for corrosion detecting and monitoring at the national corrosion test sites.
     A measurement system and data analysis software were developed based on electrochemical noise technique, which were applied to detect the atmospheric corrosion of aluminum alloy and the stress corrosion crack of nuclear structural materials. The electrochemical potential and current noise were acquired by aluminum alloy atmospheric corrosion sensor in natural atmosphere as well as the noise resistance. Characteristic of the electrochemical noise signals were analyzed for 304 austenitic stainless steel and 800 Nickel-based alloy C-ring specimens in distilled water at room temperature. It was initially verified that EN technique was effective to detect atmospheric corrosion and local corrosion of nuclear structural materials, which provide a powerful tool for further research.
     A measurement system and data analysis software were developed for grounding grid corrosion detection. Polarization resistances of the grounding grid at measured positions were obtained with galvanostatic measurement as an evaluating parameter for corrosion. In-field experiments were performed at several power plants and transform substations, through which the effect of the apertural current limit sensor, the proper test apparatus and data analysis method were studied. The results showed that the current flowing between working electrode and auxiliary electrode were limited in a certain area by the apertural current limit sensor, and the noise disturbance and the IR drop caused by soil resistance were well eliminated by wavelet transform and Levenberg-Marquardt algorithm respectively. The grounding grid corrosion electrochemical test system could provide useful information for grounding grid corrosion diagnosis.
引文
[1]柯伟,中国腐蚀调查报告[M],北京:化学工业出版社,2003
    [2]柯伟,中国工业与自然环境腐蚀调查的进展[J],腐蚀与防护,2004,25(1):1~8
    [3] R. B. Griffin, Marine Atmospheres, Metals Handbook: Vol. 13, Corrosion, 9th edition, ASM International, Metals Park, Ohio, USA, 1987, 902~906
    [4] (俄)Н.Д.托马晓夫著,金属腐蚀及其保护的理论[M],华保定等译,北京:机械工业出版社,1965
    [5] A. Cox, S. B. Lyon. An electrochemical study of the atmospheric corrosion of mild steel– I Experimental method [J]. Corrosion Science, 1994, 36(7): 1167~1176
    [6] A. Cox, S. B. Lyon. An electrochemical study of the atmospheric corrosion of iron– II Cathodic and anodic processes on uncorroded and pre-corroded iron [J]. Corrosion Science, 1994, 36(7): 1177~1192
    [7] A. Cox, S. B. Lyon. An electrochemical study of the atmospheric corrosion of mild steel– III The effect of sulphur dioxide [J]. Corrosion Science, 1994, 36(7): 1193~1199
    [8] C. Fiaud, M. Keddam, A. Kadri, et al. Electrochemical impedance in a thin surface electrolyte layer. Influence of the potential probe location [J]. Electrochimica Acta, 1987, 32(3): 445~448
    [9] S. H. Zhang, S. B. Lyon. The electrochemistry of iron, zinc and copper in thin layer electrolytes [J]. Corrosion Science, 1993, 35(1~4): 713~718
    [10] S. H. Zhang, S. B. Lyon. Anodic processes on iron covered by thin, dilute electrolyte layers (I)– anodic polarization [J]. Corrosion Science, 1994, 36(8): 1289~1307
    [11] S. H. Zhang, S. B. Lyon. Anodic processes on iron covered by thin, dilute electrolyte layers (II)– a.c. impedance measurements [J]. Corrosion Science, 1994, 36(8): 1309~1321
    [12]张学元,柯克,杜元龙,金属在薄层液膜下电化学腐蚀电池的设计[J],中国腐蚀与防护学报,2001,21(2):117~122
    [13] M. Stratmann, H. Streckel. On the atmospheric corrosion of metals which are coverd with thin electrolyte layers– I Verification of the experimental technique [J]. Corrosion Science, 1990, 30(6~7): 681~696
    [14] M. Stratmann, H. Streckel. On the atmospheric corrosion of metals which are coverd with thin electrolyte layers– II Experimental results [J]. CorrosionScience, 1990, 30(6~7): 697~714
    [15] M. Stratmann, H. Streckel, K. T. Kim, et al. On the atmospheric corrosion of metals which are coverd with thin electrolyte layers– III The measurement of polarisation curves on meal surfaces which are covered by thin electrolyte layers [J]. Corrosion Science, 1990, 30(6~7): 715~734
    [16] S. Yee, R. A. Oriani, M. Stratmann. Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres [J]. Journal of the Electrochemical Society, 1991, 138(1): 55~61
    [17] A. Nishikata, Y. Ichihara, T. Tsuru. An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J]. Corrosion Science, 1995, 37(6): 897~911
    [18] A. Nishikata, Y. Ichihara, T. Tsuru. Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer [J]. Electrochimica Acta, 1996, 41(7~8): 1057~1062
    [19] A. Nishikata, Y. Ichihara, Y. Hayashi, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron [J]. Journal of the Electrochemical Society, 1997, 144(4): 1244~1252
    [20]张正,飞行器用铝合金大气腐蚀的电化学检测研究[博士学位论文],天津:天津大学,2006
    [21] (瑞典)C.莱格拉夫,(美)T.格雷德尔著,大气腐蚀[M],韩恩厚等译,北京:化学工业出版社,2005,190
    [22] F. Mansfeld, J. V. Kenkel. Electrochemical monitoring of atmospheric corrosion phenomena [J]. Corrosion Science, 1976, 16(3), 111~112
    [23] F. Mansfeld. Monitoring of atmospheric corrosion phenomena with electrochemical sensors [J]. Journal of the Electrochemical Society, 1988, 135(6): 1354~1358
    [24] F. Mansfeld, S. Tsai. Laboratory studies of atmospheric corrosion– I. Weight loss and electrochemical measurements [J]. Corrosion Science, 1980, 20(7): 853~872
    [25] F. Mansfeld, S. L. Jeanjaquet, M. W. Kendig, et al. A new atmospheric corrosion rate monitor– development and evaluation [J]. Atmospheric Environment, 1986, 20(6): 1179~1192
    [26]王一建,黄本元,王余高等,金属大气腐蚀与暂时性保护[M],北京:化学工业出版社,2007
    [27]杨武,核电工业的发展及其对腐蚀防护技术的需求[J],腐蚀与防护,1998,18(3):99~107
    [28]白新德,材料腐蚀与控制[M],北京:清华大学出版社,2005,297,320~324
    [29]黄春波,吕战鹏,杨武,Fe-Cr-Ni合金碱性SCC的电化学研究[J],腐蚀科学与防护技术,2004,16(2):67~69
    [30]黄春波,吕战鹏,杨武,Fe-Cr-Ni合金碱性SCC的电化学预测方法[J],电化学,2003,9(3):292~298
    [31]黄春波,吕战鹏,杨武,改性800合金碱性SCC机理研究[J],腐蚀与防护,2003,24(1):1~5
    [32]黄春波,吕战鹏,杨武,Fe-Cr-Ni合金碱性应力腐蚀破裂[J],腐蚀与防护,2002,23(6):239~244
    [33]华惠中,黄春波,吕战鹏等,800、600和690合金的铅致应力腐蚀破裂[J],腐蚀与防护,2001,22(11):483~488
    [34]丁训慎,核电站蒸汽发生器传热管二次侧晶间腐蚀和晶间应力腐蚀及防护[J],腐蚀与防护,2002,23(10):441~444
    [35] J. G. Gonzalez-Rodriguez, M. Casales, V. M. Salinas-Bravo, et al. Electrochemical noise generated during the stress corrosion cracking of sensitized alloy 690 [J]. Journal of Solid State Electrochemistry, 2004, 8(5): 290~295
    [36] Q. Yang, J. Luo. Detection of crack initiation and propagation in 304 stainless steel through electrochemical noise technique [J]. Bulletin of Electrochemistry (India), 2001, 17(1): 18~23
    [37] Y. Watanabe, T. Kondo. Current and potential fluctuation characteristics in intergranular stress corrosion cracking processes of stainless steels [J]. Corrosion, 2000, 56(12): 1250~1255
    [38] M. Leban, V. Dole?ek, A. Legat. Comparative analysis of electrochemical noise generated during stress corrosion cracking of AISI 304 stainless steel [J]. Corrosion, 2000, 56(9): 921~927
    [39] J. L. Luo, L. J. Qiao. Application and evaluation of processing methods of electrochemical noise generated during stress corrosion cracking [J]. Corrosion, 1999, 55(9): 870~876
    [40] M. Leban. Electrochemical noise as a possible method for detecting stress-corrosion cracking [J]. Materials Science Forum, 1998, 289(2): 157~161
    [41] J. G. Gonzalez-Rodriguez, V. M. Salinas-Bravo, E. Garcia-Ochoa. Use of electrochemical potential noise to detect initiation and propagation of stress corrosion cracks in a 17-4 PH steel [J]. Corrosion, 1997, 53(9): 693~699
    [42] H. Inoue, H. Iwawaki, K. Yamakawa. Potential fluctuation during early-state of stress-corrosion cracking of type-304 stainless in chloride solution [J]. Materials Science and Engineering, 1995, 198(1~2): 225~230
    [43] J. Macák, P. Sajdl, P. Ku?era, et al. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water [J]. Electrochimica Acta, 2006, 51(17): 3566~3577
    [44] R. W. Bosch. Electrochemical impedance spectroscopy for the detection of stress corrosion cracks in aqueous corrosion systems at ambient and high temperature [J]. Corrosion Science, 2005, 47(1): 125~143
    [45] V. Kain, Y. Watanabe, M. Kobayashi. Electrochemical noise during exposure of alloy 600 to borated and lithiated high temperature water. Corrosion 2001, NACE, Houston (TX), US, 2001, paper 01118
    [46] T. Dorsch, R. Kilian, E. Wendler-Kalsch. Possibility of detection of crack initiation in high temperature water [J]. Materials and Corrosion, 1999, 49(9): 659~670
    [47] J. Hickling, D. F. Taylor, P. L. Andresen. Use of electrochemical noise to detect stress corrosion crack initiation in simulated BWR environments [J]. Materials and Corrosion, 1999, 49(9): 651~658
    [48] G. L. Edgemon, M. J. Danielson, G. E. C. Bell. Detection of stress corrosion cracking and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis [J]. Journal of Nuclear Materials, 1997, 245(2~3): 201~209
    [49] W. P. Iverson. Transient voltage changes produced in corroding metals and alloys [J]. Journal of the Electrochemical Society, 1968, 115(6): 617~618
    [50] K. Hladky, J. L. Dawson. The measurement of localized corrosion using electrochemical noise [J], Corrosion Science, 1981, 21(4): 317~322
    [51] K. Hladky, J. L. Dawson. The measurement of corrosion using electrochemical 1/f noise [J], Corrosion Science, 1982, 22(3): 231~237
    [52] K. Hladky. Corrosion monitoring [P]. US Patent 4575678, 1986-3-11
    [53] J. R. Kearns, J. R. Scully, P. R. Roberge, et al. Electrochemical Noise Measurement for Corrosion Applications, ASTM STP 1277, 1996
    [54] (加)R. W.里维主编,尤利格腐蚀手册(原著第2版) [M],杨武等译,北京:化学工业出版社,2005
    [55] D. A. Eden, D. G. John, J. L. Dawson. Corrosion monitoring [P]. US Patent 5139627, 1992-8-18
    [56] J. L. Dawson, D. A. Eden, R. N. Carr. Method and apparatus for producing electrochemical impedance spectra [P]. US Patent 5425867, 1995-6-20
    [57] J. F. Chen, W. F. Bogaerts. Electrochemical emission spectroscopy for monitoring uniform and localized corrosion [J]. Corrosion, 1996, 52(10): 753~759
    [58] K. Habib. Modified electrochemical emission spectroscopy (MEES) as technique of NDT for detection localized corrosion of copper alloys in seawater [J]. Optics and Lasers in Engineering, 2000, 33(1): 1~13
    [59] K. Habib. Modified electrochemical emission spectroscopy (MEES) as NDTtechnique for detecting localized corrosion of copper alloys in seawater [J]. Desalination, 2001, 135(1~3): 111~119
    [60] U. Bertocci, F. Huet, R. Nogueira, et al. Drift removal procedures for PSD calculation. Corrosion 2001, NACE, Houston (TX), US, 2001, paper 01291
    [61] U. Bertocci, F. Huet, R. Nogueira. Drift removal procedures in the analysis of electrochemical noise [J], Corrosion, 2002, 58(4): 337~347
    [62] F. Mansfeld, Z. Sun, C. H. Hsu, et al. Concerning trend removal in electrochemical noise measurements [J]. Corrosion Science, 2001, 43(2): 341~352
    [63] Y. J. Tan, S. Bailey, B. Kinsella. The monitoring of the formation and destruction of corrosion inhibitor films using electrochemical noise analysis (ENA) [J]. Corrosion Science, 1996, 38(10): 1681~1695
    [64] U. Bertocci, J. Frydman, C. Gabrielli, et al. Analysis of electrochemical noise by power spectral density applied to corrosion studies [J]. Journal of the Electrochemical Society, 1998, 145(8): 2780~2786
    [65] F. Mansfeld, H. Xiao. Electrochemical noise analysis of iron exposed to NaCl solutions of different corrosivity [J]. Journal of the Electrochemical Society, 1993, 140(8): 2205~2209
    [66] H. Xiao, F. Mansfeld. Evaluation of coatings regradation with electrochemical impedance spectroscopy and electrochemical noise analysis [J]. Journal of the Electrochemical Society, 1994, 141(9): 2332~2337
    [67] F. Mansfeld, C. C. Lee, G. Zhang. Comparison of electrochemical impedance and noise data in the frequency domain [J]. Electrochimica Acta, 1997, 43(3~4): 435~438
    [68] U. Bertocci, C. Gabrielli, F. Huet, et al. Noise resistance applied to corrosion measurements I. theoretical analysis [J]. Journal of the Electrochemical Society, 1997, 144(1): 31~37
    [69] U. Bertocci, C. Gabrielli, F. Huet, et al. Noise resistance applied to corrosion measurements II. experimental tests [J]. Journal of the Electrochemical Society, 1997, 144(1): 37~43
    [70] F. Mansfeld, L. T. Han, C. C. Lee. Analysis of electrochemical noise data for polymer coated steel in the time and frequency domains [J]. Journal of the Electrochemical Society, 1996, 143(12), L286~L289
    [71] F. Mansfeld, L. T. Han, C. C. Lee, et al. Analysis of electrochemical impedance and noise data for polymer coated metals [J]. Corrosion Science, 1997, 39(2): 255~279
    [72] F. Mansfeld, C. C. Lee. The frequency dependence of the noise resistance for polymer-coated metals [J]. Journal of the Electrochemical Society, 1997,144(6): 2068~2071
    [73] A. Nagiub, F. Mansfeld. Evaluation of corrosion inhibition of brass in chloride media using EIS and ENA [J]. Corrosion Science, 2001, 43(11), 2147~2171
    [74]张鉴清,张昭,王建明等,电化学噪声的分析与应用– I.电化学噪声的分析原理[J],中国腐蚀与防护学报,2001,21(5):310~320
    [75] R. A. Cottis. Interpretation of electrochemical noise data [J]. Corrosion, 2001, 57(3): 265-285
    [76] F. Mansfeld. The electrochemical noise technique– applications in corrosion research. 18th International Conference on Noise and Fluctuations, Salamanca, Spain, 2005, CP780
    [77] R. A. Cottis, M. A. A. Al-Awadhi, H. Al-Mazeedi, et al. Measures for the detection of localized corrosion with electrochemical noise [J]. Electrochimica Acta, 2001, 46(24): 3665~3674
    [78] J. M. Sanchez-Amaya, R. A. Cottis, F. J. Botana. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corrosion Science, 2005, 47(12): 3280~3299
    [79] H. A. A. Al-Mazeedi, R. A. Cottis. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochimica Acta, 2004, 49(17~18): 2787~2793
    [80] U. Bertocci, F. Huet, B. Jaoul, et al. Frequency analysis of transients in electrochemical noise: mathematical relationships and computer simulations [J]. Corrosion, 2000, 56(7): 675~683
    [81] Y. F. Cheng, J. L. Luo, M. Wilmott. Spectral analysis of electrochemical noise with different transient shapes [J]. Electrochimica Acta, 2000, 45(11): 1763~1771
    [82]张昭,张鉴清,李劲风等,因次分析法在电化学噪声分析中的应用[J],物理化学学报,2001,17(7):651~654
    [83] A. Aballe, M. Bethencourt, F. J. Botana, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochemistry Communications, 1999, 1(7): 266~270
    [84] A. Aballe, M. Bethencourt, F. J. Botana, et al. Using wavelets transform in the analysis of electrochemical noise data [J]. Electrochimica Acta, 1999, 44(26): 4805~4816
    [85] A. Aballe, M. Bethencourt, F. J. Botana, et al. Use of wavelets to study electrochemical noise transients [J]. Electrochimica Acta, 2001, 46(15): 2353~2361
    [86] K. Darowicki, A. Zieliński. Joint time-frequency analysis of electrochemical noise [J]. Journal of Electroanalytical Chemistry, 2001, 504(2): 201~207
    [87] C. Aldrich, B. C. Qi, P. J. Botha. Analysis of electrochemical noise data with phase space methods [J], Minerals engineering, 2006, 19(14): 1402~1409
    [88] A. Legat, E. Govekar. Detection of corrosion by analysis of electrochemical noise [J]. Fractals, 1994, 2(2): 241~244
    [89] A. Legat, E. Govekar. A comparison of spectral and chaotic analysis of electrochemical noise, Electrochemical noise measurement for corrosion applications, ASTM STP 1277, 1996, 129~141
    [90] A. Legat, V. Dole?ek, Chaotic analysis of electrochemical noise measured on stainless steel [J]. Journal of the Electrochemical Society, 1995, 142(6): 1851~1858
    [91] T. F. Barton, D. L. Tuck, D. B. Wells. The identification of pitting and crevice corrosion spectra in electrochemical noise using an artificial neural network, Electrochemical noise measurement for corrosion applications, ASTM STP 1277, 1996, 157~172
    [92] H. A. Humble. The cathodic protection of steel piping in seawater [J]. Corrosion, 1949, 5(9): 292~302
    [93] B. R. Hou, J. L. Zhang, H. Y. Sun, et al. Corrosion of C-Mn steel in simulated tidal and immersion zones [J]. British Corrosion Journal, 2001, 36(4): 310~312
    [94] B. R. Hou, J. Duan, J. L. Zhang, et al. Tests for hanging steel specimens in seawater [J]. Materials Performance, 2002, 41(10): 45~49
    [95]郭稚弧,张华民,张兴中,A3钢在海洋环境中腐蚀行为的模拟试验[J],油气田地面工程,1997,16(2):32~34
    [96]郭晓军,杨晓鸿,段韶明,海洋飞溅区模拟实验装置[J],腐蚀与防护,1999,20(6):289~290
    [97] T. S. Lee, K. L. Money. Difficulties in developing tests to simulate corrosion in marine environments [J]. Materials Performance, 1984, 23(8): 28~33
    [98] (美)F. W.芬克,(美)W. K.博伊德著,海洋环境中金属的腐蚀[M],冶金工业部钢铁研究院,包钢冶金研究所译,北京:科学出版社,1976
    [99] (美)M.舒马赫著,海水腐蚀手册[M],李大超等译,北京:国防工业出版社,1985
    [100]上海钢铁研究所主编,海洋用钢腐蚀研究[M],上海:上海科学技术出版社,1978,64~126
    [101]国家科委腐蚀科学学科组中国海洋湖沼学会《海洋与湖沼》编辑部,1979年腐蚀与防护学术报告会议论文集,北京:科学出版社,1982
    [102] B. S. Phull, S. J. Pikul, R. M. Kain. Seawater corrosivity around the world: results from five years of testing, Corrosion Testing in Natural Waters, Vol. 2, ASTM STP 1300, 1997, 34~73
    [103] W. W. Kirk, S. J. Pikul. Seawater corrosivity around the world: results fromthree years of testing, Corrosion in Natural Waters, ASTM STP 1086, 1990, 2~36
    [104] S. S. Sawant, A. B. Wagh. Corrrosion behaviour of metals and alloys in the waters of the Arabian sea [J]. Corrosion Prevention and Control, 1990, 37(6): 154~157, 168
    [105] N. B. Bhosle, A. B. Wagh. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian sea [J]. Corrosion Science, 1992, 33(5): 647~655
    [106] S. Maruthamuthu, M. Eashwar, S. T. Manickam, et al. Corrosion and biofouling in tuticorin harbor [J]. Corrosion Prevention and Control, 1993, 40(1): 6~10
    [107] K. Matsuoka, M. Yamamoto, K. Goto. Analysis for macro-cell corrosion phenomena of steels exposed in sea water [J]. Zairyo-to-Kankyo, 2007, 56(3): 99~105
    [108] F. L. Laque, Marine corrosion: causes and prevention [M]. John Wiley and Sons Inc. New York, US, 1975
    [109]曹楚南主编,中国材料的自然环境腐蚀[M],北京:化学工业出版社,2005
    [110]中国腐蚀与防护学会主编,吴荫顺等编著,腐蚀试验方法与防腐蚀检测技术[M],北京:化学工业出版社,1996
    [111] E. Hussain, A. Husain. Erosion-corrosion of duplex stainless steel under Kuwait marine condition [J]. Desalination, 2005, 183(1~3): 227~234
    [112] A. Al-Arifi, M. E. El-Dahshan, M. I. Hazza. The effect of molybdenum on the corrosion behaviour of steel alloy in sea water [J]. Desalination, 1994, 97(1~3): 77~86
    [113] A. U. Malik, N. A. Siddiqi, S. Ahmad, et al. The effect of dominant alloy additions on the corrosion behavior of some conventional and high alloy stainless steels in seawater [J]. Corrosion Science, 1995, 37(10): 1521~1535
    [114] G. Gusmano, G. Montesperelli, G. Forte, et al. On-line corrosion resistance tests in sea water on metals for MED plants [J]. Desalination, 2005, 183(1~3): 187~194
    [115] D. K. Kim, S. Muralidharan, T. H. Ha, et al. Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments [J]. Electrochimica Acta, 2006, 51(25): 5259~5267
    [116]宋诗哲,雒娅楠,金威贤等,海水腐蚀试验站碳钢低合金钢全浸试片的现场腐蚀检测[J],中国腐蚀与防护学报,印刷中
    [117] S. Z. Song, Y. N. Luo, W. X. Jin, et al. Electrochemical detecting of mild steel samples at marine corrosion test station, 14th Asian-Pacific Corrosion Control Conference, Shanghai, China, 2006, 44
    [118] S. Z. Song, L. H. Yin, W. X. Jin, et al. In field electrochemical detecting of carbon steel and low alloy steel samples in immersion region, 16th International Corrosion Congress, Beijing, China, 2005, P-05-A-08
    [119] F. Mansfeld, H. Xiao, L. T. Han, et al. Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites [J]. Progress in Organic Coatings, 1997, 30(1~2): 89~100
    [120] H. Xiao, L. T. Han, C. C. Lee, et al. Collection of electrochemical impedance and noise data for polymer-coated steel from remote test sites [J]. Corrosion, 1997, 53(5): 412~422
    [121]金威贤,雒娅楠,宋诗哲,金属材料实海冲刷腐蚀检测研究,第五届海峡两岸材料腐蚀与防护研讨会论文集,中国沈阳,2006
    [122] O. Poupard, V. L’Hostis, S. Catinaud, et al. Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment [J]. Cement and Concrete Research, 2006, 36(3): 504~520
    [123] E. Sosa, V. García-Arriaga, H. Castaneda. Impedance distribution at the interface of the API steel X65 in marine environment [J]. Electrochimica Acta, 2006, 51(8~9): 1855~1863
    [124] R. W. Bosch, J. Hubrecht, W. F. Bogaerts et al. Electrochemical frequency modulation: a new electrochemical technique for online corrosion monitoring [J]. Corrosion, 2001, 57(1): 60~70
    [125] D. A. Eden. Practical measurements using non-linear analysis techniques– harmonic distortion and intermodulation distortion, Corrosion 2005, NACE, Houston (TX), US, 2005, paper 05335
    [126] P. Wambacq, W. Sansen. Distortion analysis of analog integrated circuits [M]. Kluwer academic publishers, Boston (MA), US, 1998
    [127] G. P. Rao, A. K. Mishra. A.C. techniques to evaluate the kinetics of corrosion reactions [J]. Journal of Electroanalytical Chemistry, 1977, 77(1): 121~125
    [128] U. Bertocci. Alternating current-induced corrosion: effect of an alternating voltage in electrodes under charge-transfer control [J]. Corrosion, 1979, 35(5): 211~215
    [129] J. Dévay, L. Mészáros. Study of the rate of corrosion of metals by a faradaic distortion method– I [J]. Acta Chimica Academiae Scientiarum Hungaricae 1979, 100(1~4): 183~202
    [130] L. Mészáros, J. Dévay. Study of the rate of corrosion of metals by a faradaic distortion method III– determination of the kinetic parameters of the corrosion process by intermodulation distortion [J]. Acta Chimica Academiae Scientiarum Hungaricae 1980, 105(1): 1~17
    [131] R. W. Bosch, W. F. Bogaerts. Instantaneous corrosion rate measurement withsmall-amplitude potential intermodulation techniques [J]. Corrosion, 1996, 52(3): 204~211
    [132] R. W. Bosch, W. F. Bogaerts. Apparatus and method for electrochemical corrosion monitoring [P]. US Patent 6320395B1, 2001-11-20
    [133] E. K?s, F. Mansfeld. An evaluation of the electrochemical frequency modulation (EFM) technique [J]. Corrosion Science, 2006, 48(4): 965~979
    [134] S. S. Abdel-Rehim, K. F. Khaled, N. S. Abd-Elshafi. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative [J]. Electrochimica Acta, 2006, 51(16): 3269~3277
    [135] Introducing the EFM140 Electrochemical Frequency Modulation Software [EB/OL]. [2006-8-21]. http://www.gamry.com/EFM/Index.htm
    [136]中华人民共和国电力工业部,交流电气装置的接地,DL/T621-1997,北京:中国电力出版社,1998
    [137]徐小洪等,涂装技术(第三册建筑、石油化工、轻工产品涂装) [M],北京:化学工业出版社,1988
    [138]浦文宗,变电站接地网设计中的几个问题[J],高电压技术,1987,2(2):54~57
    [139]李景禄,李从旺,变电站接地网(运行中)存在的问题及改进措施[J],高电压技术,1995,21(4):70~72
    [140]周配明,广西合山电厂污闪及地网故障分析[R],贵阳:贵州省电机工程学会安全技术委员会,1991
    [141]周配明,“地网”的不良引起事故扩大的分析[R],贵阳:贵州省电机工程学会安全技术委员会,1991
    [142]鲍敏铎,110 kV变电所接地装置事故扩大的分析[J],高电压技术,1993,19(4):53~55
    [143]重庆电力局,华莹山电厂“94.1.1”事故调查报告[R],重庆:重庆电力局,1994
    [144]王旭东,发、变电站接地网电气连接故障点检测方法研究[硕士学位论文],重庆:重庆大学,1995
    [145]李思芸,发变电站接地网腐蚀及断点的诊断原理和方法[硕士学位论文],北京:清华大学,1999
    [146]胡军,实用化发变电站接地网故障诊断系统的研究[硕士学位论文],北京:清华大学,2000
    [147] J. Hu, R. Zeng, J. He, et al. Novel method of corrosion diagnosis for grounding grid, PowerCon 2000 International Conference on Power System Technology, Perth (WA), Australia, 2000, 3, 1365~1370
    [148] R. Zeng, J. He, H. Hu, et al. The theory and implementation of corrosiondiagnosis for grounding system, Industry Applications Conference, 37th IAS Annual Meeting, Pittsburgh (PA), US, 2002, 2, 1120~1126
    [149]何金良,曾嵘,电力系统接地技术[M],北京:科学出版社,2007
    [150]陈先禄,接地[M],重庆:重庆大学出版社,2002
    [151] E. T. Serra, W. A. Mannheimer. On the estimation of the corrosion rates of metals in soil by electrochemical measurements, Underground Corrosion, ASTM STP 741, 1981, 111~122
    [152] D. A. Jones. Principles of measurement and prevention of buried metal corrosion by electrochemical polarization, Underground Corrosion, ASTM STP 741, 1981, 123~132
    [153] P. Pernice, M. Arpaia, A. Costantini. Steel corrosion rate in soils by a.c. and d.c. electrochemical methods [J]. Materials Chemistry and Physics, 1990, 26(3~4): 323~330
    [154] M. J. Wilmott, T. R. Jack, J. J. Geerligs, et al. Soil probe measures several properties to predict corrosion [J]. Oil and Gas Journal, 1995, 93(14): 54~58
    [155] F. Ansuini, M. Yaffe, V. Chaker. Corrosion rate sensors for soil, water and concrete. Corrosion 1995, NACE, Houston(TX), US, 19955, paper 95014
    [156] Y. S. Choi, J. G. Kim, S. J. Yang. A galvanic sensor for monitoring the corrosion damage of buried pipelines: part 2– correlation of sensor output to actual corrosion damage of pipeline in soil and tap water environments [J], Corrosion, 2006, 62(6): 522~532
    [157]宋诗哲,计算机在腐蚀科学中的应用及进展[J],化工进展,1989,6:24~33,23
    [158] O. R. Brown. Control of electrochemical experiments by an inexpensive personal microcomputer [J]. Electrochimica Acta, 1982, 27(1): 33~46
    [159]宋诗哲,腐蚀电化学研究方法[M],北京:化学工业出版社,1988
    [160]赵永韬,吴建华,赵常就,工业腐蚀监测的发展及其仪器的智能化[J],煤气化技术通讯,2001,9(1):25~27
    [161]刘晓方,黄淑菊,王汉功等,计算机在腐蚀与防护领域中的应用[J],腐蚀科学与防护技术,1998,10(4):222~229
    [162]杨乐平,李海涛,肖凯等,虚拟仪器技术概论[M],北京:电子工业出版社,2003
    [163]杨乐平,李海涛,肖相生等,LabVIEW程序设计与应用[M],北京:电子工业出版社,2001
    [164] (美)Gary W. Johnson,(美)Richard Jennings著,LabVIEW图形编程[M],武嘉澍,陆劲昆译,北京:北京大学出版社,2002
    [165]杨乐平,李海涛等,LabVIEW高级程序设计[M],北京:清华大学出版社,2003
    [166] R. Jamal. Graphical object-oriented programming with LabVIEW [J]. Nuclear Instruments and Methods in Physics Research A, 1994, 352(1~2): 438~441
    [167] S. R. Murrell, S. L. McCarthy. Intermittence detection in fretting corrosion studies of electricalcontacts. Proceedings of the 43th IEEE Holm Conference on Electrical Contacts, Philadelphia (PA), USA, 1997, 1~6
    [168] R. Gostowski. Teaching Analytical instrument design with LabVIEW [J]. Journal of Chemical Education, 1996, 73(12): 1103~1107
    [169] M. Grossmann, M. H. Skinner. A simple computer based system to analyze Morris water maze trials on-line [J]. Journal of Neuroscience Methods, 1996, 70(2): 171~175
    [170] H. Flandorfer, F. Gehringer, E. Hayer, Individual solutions for control and data acquisition with the PC [J]. Thermochimica Acta, 2002, 382(1~2): 77~87
    [171] K. Yeung, J. Huang. Development of a remote-access laboratory: a dc motor control experiment [J]. Computers in Industry, 2003, 52(3): 305~311
    [172] G. Chen, P. B. Harrington. Real-time two-dimensional wavelet compression and its application to real-time modeling of ion mobility data [J]. Analytica Chimica Acta, 2003, 490(1~2): 59~69
    [173]刘洪,NI全面打造汽车测试平台[J],今日电子,2004,3:72~73
    [174] J. Morrison,C. Patterson,使用NI TestStand测试手机基站[J],今日电子,2003,4:10,7
    [175]杨泽富,肖波,李军,电工实验虚拟仪器的研制[J],实验技术与管理,2003,20(6):83~86
    [176]王为民,林元盛等,浅谈虚拟仪器技术及其在石油科学仪器中的应用[J],石油仪器,2001,15(4):33~38
    [177]金昊,基于虚拟仪器的计算机视觉系统的研究[J],计算机自动测量与控制,2000,8(1):18~20
    [178]郭恩全,赵兴奋,虚拟仪器发展趋势及其对军用测试技术的影响[J],国外电子测量技术,1999(6):4~6
    [179]李凤保,彭安金等,基于Web的网络化虚拟教学实验室[J],仪器仪表学报,2002,23(5):461~463
    [180]江建军,周毅,基于虚拟仪器的网络虚拟实验室构建[J],仪表技术,2003,5:11~12
    [181]代富平,吕淑媛,冯博学等,基于LabVIEW的电化学测控系统的设计与应用[J],兰州大学学报(自然科学版),2002,38(6):44~47
    [182]郑利锋,张平等,管道内腐蚀监测系统的设计与实现[J],西南石油学院学报,2002,24(2):68~70
    [183]干敏染,干宁,基于虚拟仪器技术的示波分析方法的实现[J],计算机与应用化学,2001,18(5):561~563
    [184] P. T. Wojcik, P. Agarwal, M. E. Orazem. A method for maintaining a constant potential variation during galvanostatic regulation of electrochemical impedance measurements [J]. Electrochimica Acta, 1996, 41(7~8): 977~983
    [185] A. Economou, S. D. Bolis, C. E. Efstathiou et al, A“virtual”electroanalytical instrument for square wave voltammetry [J]. Analytica Chimica Acta, 2002, 467(1~2): 179~188
    [186]王佳,Kelvin探针大气腐蚀电位分布测试系统的研究与开发,基于计算机的测量与自动化应用方案文集,National Instrument,2003
    [187]北京钢铁学院,线性极化技术用于评定金属耐局部腐蚀性能的研究——局部腐蚀指数δ的初步探讨,海洋用钢腐蚀研究,1978,64~77
    [188] M. Stern, A. L. Geary. Electrochemical polarization I. a theoretical analysis of the shape of polarization curves [J], Journal of the Electrochemical Society, 1957, 104(1): 56~63
    [189] S. Barnartt. Two-point and three-point methods for the investigation of electrode reaction mechanisms [J]. Electrochimica Acta, 1970, 15(8): 1313~1324
    [190]曹楚南编著,腐蚀电化学原理[M],北京:化学工业出版社,2004,第2版
    [191] F. Mansfeld. Tafel slopes and corrosion rates from polarization resistance measurements [J]. Corrosion, 1973, 29(10): 397~402
    [192]魏宝明,附录十三确定塔菲尔常数(b值)的几种方法,金属腐蚀理论及应用,北京:化学工业出版社,1984,360~362
    [193] R. E. Melchers, R. Jeffrey. Early corrosion of mild steel in seawater [J]. Corrosion Science, 2005, 47(77): 1678~1693
    [194] F. Mansfeld. The polarization resistance technique for measuring corrosion currents, Advances in Corrosion Science and Technology, Vol. 6, Plenum, New York, US, 1976, 163~262
    [195] D. A. Eden, K. Hladky, D. G. John, et al. Electrochemical noise– simultaneous monitoring of potential and current noise signals from corroding electrodes, Corrosion 1986, NACE, Houston(TX), US, 1986, paper 86274
    [196] G. Gusmano, G. Montesperelli, S. Pacetti, et al. Electrochemical noise resistance as a tool for corrosion rate prediction [J], Corrosion, 1997, 53(11): 860~868
    [197] J. F. Chen, W. F. Bogaerts. The physical meaning of noise resistance [J], Corrosion Science, 1997, 37(11): 1839~1842
    [198] F. Mansfeld, Z. Sun. Localization index obtained from electrochemical noise analysis [J], Corrosion, 1999, 55(10): 915~918
    [199] F. Mansfeld, Z. Sun, C. H. Hsu. Electrochemical noise analysis (ENA) foractive and passive systems in chloride media [J], Electrochimica Acta, 2001, 46(24): 3651~3664
    [200] P. R. Roberge. Analysis of electrochemical noise by the stochastic process detector method [J]. Corrosion, 1994, 50(7): 502~512
    [201] C. Gabrielli, F. Huet, M. Keddam, et al. A review of the probabilistic aspects of localized corrosion [J]. Corrosion, 1990, 46(4): 266~279
    [202] Y. F. Chen, J. L. Luo. Metastable pitting of carbon steel under potentiostatic control [J]. Journal of the Electrochemical Society, 1999, 146(3): 970~976
    [203] J. M. Sanchez-Amaya, M. Bethencourt, L. Gonzalez-Rovira, et al. Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments [J]. Electrochimica Acta, 2007, 52(23): 6569~6583
    [204] A. Legat, V. Dole?ek. Corrosion monitoring system based on measurement and analysis of electrochemical noise [J]. Corrosion, 1995, 51(4): 295~300
    [205] A. Legat, C. Zevnik. The electrochemical noise of mild and stainless steel in various water solutions [J]. Corrosion Science, 1993, 35(5~8): 1661~1666
    [206] J. C. Uruchrutu, J. L. Dawson. Noise analysis of pure aluminum under different pitting conditions [J]. Corrosion, 1987, 43(1): 19~25
    [207]曹楚南,常晓元,林海潮,孔蚀过程中的电化学噪声特征[J],中国腐蚀与防护学报,1989,9(1):21~28
    [208] J. Flis, J. L. Dawson, J. Gill, et al. Impedance and electrochemical noise measurements on iron and iron– carbon alloys in hot caustic soda [J]. Corrosion Science, 1991, 32(8): 877~892
    [209] J. A. Guemes, F. E. Hernando. Method for calculating the ground resistance of grounding grids using FEM [J]. IEEE Transactions on Power Delivery, 2004, 19(2): 595~600
    [210] J. G. Sverak. Progress in step and touch voltage equations of ANSI/IEEE Std 80– historical perspective [J]. IEEE Transactions on Power Delivery, 1998, 13(3): 762~767
    [211] F. P. Dawalibi, J. Ma, R. D. Southey. Behaviour of grounding systems in multiplayer soils: a parametric analysis [J]. IEEE Transactions on Power Delivery, 1994, 9(1): 334~342
    [212]邱志刚,两种现场腐蚀检测技术的研究[硕士学位论文],天津:天津大学,2006
    [213] C. Wagner. Theoretical analysis of the current density distribution in electrolytic cells [J]. Journal of the Electrochemical Society, 1951, 98(2): 116~128
    [214] V. R. Subramanian, R. E. White. A semianalytical method for predictingprimary and secondary current density distributions: linear and nonlinear boundary conditions [J]. Journal of the Electrochemical Society, 2000, 147(5): 1636~1644
    [215] S. Feliu, J. A. Gonzalez, J. M. Miranda, et al. Possibilities and problems of in situ techniques for measuring steel corrosion rates in large reinforced concrete structures [J]. Corrosion Science, 2005, 47(11): 217~238
    [216] H. Wojtas. Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution [J]. Corrosion Science, 2004, 46(7): 1621~1632
    [217] D. W. Law, S. G. Millard, J. H. Bungey. Linear polarisation resistance measurements using a potentiostatically controlled guard ring [J]. NDT & E international, 2000, 33(1): 15~21
    [218] M. E. Orazem, J. M. Esteban, K. J. Kennelly, et al. Mathematical models for cathodic protection of an underground pipeline with coating holidays. Part 1: Theoretical development [J]. Corrosion, 1997, 53(4): 264~272
    [219] I. Daubechies, Ten lectures on wavelet [M]. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992
    [220] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters [J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431~441
    [221] S. T. Roweis, Levenberg-marquardt optimization http://www.cs.toronto.edu/~roweis/notes/lm.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700