仿生功能性纳米通道分子模拟设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物通道蛋白具有各种优异的性能和多种功能,如以非常高的通透性和选择性进行快速传质以及通水阻盐、极高的离子选择性、离子电流整流和感知环境变化实现智能门控响应等功能。基于分子动力学模拟,本研究通过模仿生物通道蛋白的关键结构和机制,将其优异性能和功能移植到仿生纳米通道;具有广泛的应用价值,如化工分离、纳米医药、用于海水脱盐淡化的高效反渗透膜和用于精确化学分析的新型纳流控系统;设计仿生纳米通道有助于阐明实现生物通道各种功能的必需因素,还可发现电解质溶液在纳米通道受限环境下的新现象和新规律,具有深远的理论意义。此外,本研究探索氨基酸用于碳纳米管水相分散。
     采用拉伸分子动力学模拟和伞形取样法研究Na+、K+和Cl-通过(6,6)、(7,7)、(8,8)、(9,9)和(10,10)椅型碳纳米管的过程,并分析离子在碳管中的水化行为。结果表明,离子通过管径较窄的碳管时,在入口处遇到较大的阻力,从出口进入本体相较容易;而通过管径相对较宽的碳管则几乎无阻碍。离子通过碳管的能垒随管径的增大而降低,不同离子的能垒各不相同,表明碳管具有固有的离子选择性;离子通过碳管时,不仅其配位数改变了,而且配位层中水分子的取向也有所改变,这两者共同决定了离子进入碳管时的去水化能,进而影响离子通过碳管的能垒和碳管的离子选择性。在(8,8)管中,Na+和K+与水分子的作用比在本体相中还要强,而在其他几个管中,要弱于或者类似于本体相。在本体相中,离子与水分子之间的静电作用使得水分子在离子周围呈现特定的取向,而当受限在碳纳米管中,Na+和K+第一配位层水分子之间形成的氢键显著地扰乱这一取向。但是,(8,8)管例外,水分子在此碳管中形成了一种类似于冰的独特结构,使水分子呈现特定的取向,这种水分子偶极取向对Na+和K+水化更加有利。与阳离子水化不同,在决定Cl-与水分子的作用大小方面,离子配位数比配位层中水分子的取向起更主导作用。此外,离子在管中特定的径向位置偏好对于离子水化也有一定影响。
     受生物离子通道蛋白关键结构的启发,本研究采用分子动力学模拟设计仿生石墨烯孔来区分非常相似性的Na+和K+结果发现,在跨膜电位差驱动下,用4个羰基修饰以模仿KcsA K+通道过滤器的石墨烯孔选择性地传输K+;而用4个羧基基修饰模仿NavAbNa+通道过滤器的石墨烯孔选择性地结合Na+,但选择性地传输K+。用3个羧基修饰孔径较窄的石墨烯孔,通过改变跨膜电位差的大小可调控其离子选择性:低电位差下,以单队列形式选择性传输Na+,“敲击”离子传输模式(knock-on)和石墨烯孔被Na+选择性阻塞这2个因素相结合得到Na+选择性;高电位差下,石墨烯被Na+阻塞这一构型变得不稳定,再加之羧基对Na+更强的亲和力使得Na+通过石墨烯的速度比K+更慢,从而得到K+选择性。
     许多生物通道的门控区域由疏水残基组成狭窄通道,能够阻碍离子传输,即便在物理意义上未完全关闭的状态下,受这一疏水门控机制的启发,我们采用分子动力学模拟设计了一个纳米门控装置,施加外力使(12,12)碳纳米管中部变形,形成一个狭窄区域以控制离子传输。施加电场驱动K+和Cl-在纳米管中流动。模拟结果显示增大外力使纳米管狭窄区域变窄从而降低管中的离子流量。当外力大于5nN时,狭窄区域使K+和Cl-部分去水化而彻底中断其传输,但仍能获得可观的水流量。当外力一旦撤走,离子传输可以恢复到未受扰动的水平,表明此门控装置能可逆地控制离子传输。这个外力可由现有的实验设备施加,如原子力显微镜的针尖。此外还发现在完全填充水分子的疏水狭窄区域内,离子部分去水化就能够关闭纳米通道,并不需要狭窄区域本身完全反润湿。
     采用分子动力学模拟研究在浓度为0.17M、pH7.0下,20种天然氨基酸在(6,6)碳纳米管表面吸附行为。结果表明,这20种氨基酸中,苯丙氨酸、酪氨酸、色氨酸和精氨酸表现出对碳管最强的亲和力,它们吸附到碳管表面并形成非常稳定的氨基酸聚集物。苯丙氨酸、酪氨酸和色氨酸通过侧链芳香环与碳管形成非常强的π-π堆积作用。精氨酸对碳管的强吸引作用主要归因于侧链胍基,它直接与碳管作用,并形成多个盐桥。这些吸附在碳管表面氨基酸的带负电的羧基和带正电的氨基指向水溶液,从而促进碳管在水中的分散,并可能通过静电排斥防止碳管凝聚。本研究为氨基酸用作新型的碳管分散剂提供理论支撑,并有助于理解碳管与蛋白质的作用。
Biological protein channels have many remarkable properties and fascinating functions,such as fast mass-transport with high permeability and selectivity, high water permeabilitywith salt-rejection, ion-selectivity, gating, ionic current-rectification and environmentalresponsiveness. Using molecular dynamics (MD) simulations, this study aims to transplantthese properties and functions to biomimetic nanochannels by mimicking the key structuresand mechanisms of biological channel proteins, which might lead to a wide range of potentialapplications, such as in chemical separation, nanomedicines, reverse osmosis desalinationmembranes and novel nanofluidic systems for accurate chemical analysis. The successfuldesign of biomimetic nanochannels may help elucidate the essential ingredients for thefunctions of biological channels. This study could discover new phenomenon arising inelectrolyte solutions confined in nanochannels. Additionally, the suitability of amino acids forcarbon nanotube (CNT) aqueous dispersions is assessed in this study.
     Steered MD and umbrella sampling simulations are performed to study the process ofNa+, K+and Cl traversing through (6,6),(7,7),(8,8),(9,9) and (10,10) CNTs and ionhydration in CNTs is analyzed. The results show that ions are hindered from entering narrowCNTs at the entrance; however, it is easy for ions to leave narrow CNTs into bulk solution atthe exit. There is almost no hindrance for ions to translocate through wide CNTs. The freeenergy barriers for ions translocating through CNTs decrease sharply with the increase ofdiameter. Different free energy barriers of Na+, K+and Cl entering CNTs indicate that CNTshave an inherent ion selectivity. When ions traverse through CNTs, coordination numbers andpreferential orientation of water molecules in coordination shells of ions are different fromthose in bulk, which determine the dehydration energies of ions and affect free energy barriersof ions traversing CNTs and the ion selectivity of CNTs. It is found that the interaction of Na+and K+with the water molecules is enhanced in CNT(8,8), but is similar or weaker than inbulk in the other CNTs. In bulk, water molecules orient in specific directions around ions dueto the electrostatic interaction between them. Under the confinement of CNTs, the hydrogenbonds formed in the first hydration shell of Na+and K+disturb this orientation greatly. Anexception is in CNT(8,8), where the dipole orientation is even more favorable for cations thanin bulk due to the formation of a unique ice-like water structure that aligns the watermolecules in specific directions. In contrast, the coordination number is more important thanhydration shell orientation in determining the Cl--water interaction. Additionally, thepreference for ions to adopt specific radial positions in the CNTs also affects ionic hydration.
     Inspired by the key structures of biological ion channel proteins, we have performed MDsimulations to design biomimetic graphene nanopores that can discriminate between Na+andK+, two ions with very similar properties. The simulation results show that undertransmembrane voltage bias, a nanopore containing four carbonyl groups to mimic theselectivity filter of the KcsA K+channel, preferentially conducts K+over Na+. A nanoporefunctionalized by four negatively charged carboxylate groups to mimic the selectivity filter ofthe NavAb Na+channel, selectively binds Na+but transports K+over Na+. Interestingly, theion selectivity of the smaller diameter pore containing three carboxylate groups can be tunedby changing the magnitude of the applied voltage bias. Under lower voltage bias, it transportsions in a single file manner and exhibits Na+selectivity, dictated by the knock-on ionconduction and selective blockage by Na+. Under higher voltage bias, the nanopore is K+selective, as the blockage by Na+is destabilized and the stronger affinity for carboxylategroups slows the passage of Na+compared with K+.
     Gates in many biological channels are formed by a constriction ringed with hydrophobicresidues which can prevent ion conduction even when they are not completely physicallyoccluded. We use MD simulations to design a nanogate inspired by this hydrophobic gatingmechanism. Deforming a CNT(12,12) with an external force can form a hydrophobicconstriction in the tube centre that controls ion conduction. The simulation results show thatincreasing the magnitude of the applied force narrows the constriction and lowers the fluxesof K+and Cl-found under an electric field. With the exerted force lager than5nN, theconstriction blocks the conduction of K+and Cl-due to partial dehydration while allowing fora noticeable water flux. Ion conduction can revert back to the unperturbed level upon theforce retraction, suggesting the reversibility of the nanogate. The force can be exerted byavailable experimental facilities, such as atomic force microscope (AFM) tips. It is found thatpartial dehydration in a continuous water-filled hydrophobic constriction is enough to closethe channel, while full dewetting is not necessarily required.
     The adsorption of20standard amino acids on CNT(6,6) at a concentration of0.17M andpH7.0has been studied by MD simulations. Simulation results show that among the20amino acids, phenylalanine, tyrosine, tryptophan and arginine exhibit the strongest affinity forCNT(6,6). They adsorb to the tube and form very stable aggregates. Phenylalanine, tyrosineand tryptophan interact with the tube via the strong stacking of their aromatic rings.Interestingly, the strong attraction of arginine to CNT(6,6) mainly attributes to itsguanidinium group, which strongly interacts with the tube and forms multiple salt bridges.The negatively charged carboxylate and positively charged ammonium groups of these adsorbed amino acids extend away from the tube surface and point towards aqueous solution,which facilitates the solubilization of CNTs in water, and may be able to provide electrostaticrepulsion forces to prevent CNT agglomeration. The results of this work provide a theoreticalsupport for using amino acids as novel CNT dispersing agents and help to understandCNT-protein interactions.
引文
[1] Shannon, M. A.; Bohn, P. W.; Elimelech, M., et al. Science and Technology for WaterPurification in the Coming Decades [J]. Nature2008,452(7185):301-310.
    [2] Elimelech, M.; Phillip, W. A. The Future of Seawater Desalination: Energy,Technology, and the Environment [J]. Science2011,333(6043):712-717.
    [3] Semiat, R.; Hasson, D. Water Desalination [J]. Rev. Chem. Eng.2012,28(1):43-60.
    [4] Busch, M.; Mickols, W. E. Reducing Energy Consumption in Seawater Desalination [J].Desalination2004,165(1-3):299-312.
    [5] Rios, A.; Zougagh, M.; Avila, M. Miniaturization through Lab-on-a-Chip: Utopia orReality for Routine Laboratories? A Review [J]. Anal. Chim. Acta2012,740:1-11.
    [6] Mawatari, K.; Kubota, S.; Xu, Y., et al. Femtoliter Droplet Handling in NanofluidicChannels: A Laplace Nanovalve [J]. Anal. Chem.2012,84(24):10812-10816.
    [7] Branton, D.; Deamer, D. W.; Marziali, A., et al. The Potential and Challenges ofNanopore Sequencing [J]. Nat. Biotechnol.2008,26(10):1146-1153.
    [8] Smith, N. M.; Iyer, S.; Corry, B. The Confined Space inside Carbon Nanotubes CanDictate the Stereo-and Regioselectivity of Diels-Alder Reactions [J]. Phys. Chem.Chem. Phys.2014,16(15):6986-6989.
    [9] Miners, S. A.; Rance, G. A.; Khlobystov, A. N. Regioselective Control of AromaticHalogenation Reactions in Carbon Nanotube Nanoreactors [J]. Chem. Commun.2013,49(49):5586-5588.
    [10] Gong, X.; Li, J.; Xu, K., et al. A Controllable Molecular Sieve for Na+and K+Ions [J].J. Am. Chem. Soc.2010,132(6):1873-1877.
    [11] Hilder, T. A.; Gordon, D.; Chung, S.-H. Computational Modeling of Transport inSynthetic Nanotubes [J]. Nanomed. Nanotechnol. Biol. Med.2011,7(6):702-709.
    [12] Iijima, S. Helical Microtubules of Graphitic Carbon [J]. Nature1991,354(6348):56-58.
    [13] Chopra, N. G.; Luyken, R. J.; Cherrey, K., et al. Boron Nitride Nanotubes [J]. Science1995,269(5226):966-967.
    [14] Kovtyukhova, N. I.; Mallouk, T. E.; Mayer, T. S. Templated Surface Sol-Gel Synthesisof Sio2Nanotubes and SiO2-Insulated Metal Nanowires [J]. Adv. Mater.2003,15(10):780-785.
    [15] Novoselov, K. S.; Geim, A. K.; Morozov, S. V., et al. Electric Field Effect inAtomically Thin Carbon Films [J]. Science2004,306(5696):666-669.
    [16] Meier, W.; Nardin, C.; Winterhalter, M. Reconstitution of Channel Proteins in(Polymerized) Aba Triblock Copolymer Membranes [J]. Angew. Chem. Int. Ed.2000,39(24):4599-4602.
    [17] Gonzalez-Perez, A.; Stibius, K. B.; Vissing, T., et al. Biomimetic Triblock CopolymerMembrane Arrays: A Stable Template for Functional Membrane Proteins [J]. Langmuir2009,25(18):10447-10450.
    [18] Bonhenry, D.; Kraszewski, S.; Picaud, F., et al. Stability of the Gramicidin-a ChannelStructure in View of Nanofiltration: A Computational and Experimental Study [J]. SoftMatter2011,7(22):10651-10659.
    [19] Balme, S.; Picaud, F.; Kraszewski, S., et al. Controlling Potassium Selectivity andProton Blocking in a Hybrid Biological/Solid-State Polymer Nanoporous Membrane [J].Nanoscale2013,5(9):3961-3968.
    [20] Picaud, F.; Kraszewski, S.; Ramseyer, C., et al. Enhanced Potassium Selectivity in aBioinspired Solid Nanopore [J]. Phys. Chem. Chem. Phys.2013,15(45):19601-19607.
    [21] Thiele, D.; Kraszewski, S.; Balme, S., et al. Structure and Ionic Selectivity of a HybridPolyene/Artificial Polymer Solid State Membrane [J]. Soft Matter2013,9(3):684-691.
    [22] Kumar, M.; Grzelakowski, M.; Zilles, J., et al. Highly Permeable PolymericMembranes Based on the Incorporation of the Functional Water Channel ProteinAquaporin Z [J]. Proc. Natl. Acad. Sci. U. S. A.2007,104(52):20719-20724.
    [23] Hille, B., Ionic Channels of Excitable Membranes.3rd ed.; Sinauer Associates Inc.:Sunderland, MA:2001.
    [24] Agre, P. Aquaporin Water Channels (Nobel Lecture)[J]. Angew. Chem. Int. Ed.2004,43(33):4278-4290.
    [25] MacKinnon, R. Potassium Channels and the Atomic Basis of Selective Ion Conduction(Nobel Lecture)[J]. Angew. Chem. Int. Ed.2004,43(33):4265-4277.
    [26] LeMasurier, M.; Heginbotham, L.; Miller, C. Kcsa: It's a Potassium Channel [J]. J. Gen.Physiol.2001,118(3):303-313.
    [27] Beckstein, O.; Biggin, P. C.; Bond, P., et al. Ion Channel Gating: Insights ViaMolecular Simulations [J]. FEBS Lett.2003,555(1):85-90.
    [28] Hamill, O. P.; Marty, A.; Neher, E., et al. Improved Patch-Clamp Techniques forHigh-Resolution Current Recording from Cells and Cell-Free Membrane Patches [J].Pflug. Arch. Eur.J.Phy.1981,391(2):85-100.
    [29] Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A., et al. The Structure of the PotassiumChannel: Molecular Basis of K+Conduction and Selectivity [J]. Science1998,280(5360):69-77.
    [30] Zhou, Y. F.; Morais-Cabral, J. H.; Kaufman, A., et al. Chemistry of Ion Coordinationand Hydration Revealed by a K+Channel-Fab Complex at2.0Angstrom Resolution [J].Nature2001,414(6859):43-48.
    [31] Jiang, Y. X.; Lee, A.; Chen, J. Y., et al. The Open Pore Conformation of PotassiumChannels [J]. Nature2002,417(6888):523-526.
    [32] Payandeh, J.; Scheuer, T.; Zheng, N., et al. The Crystal Structure of a Voltage-GatedSodium Channel [J]. Nature2011,475(7356):353-358.
    [33] Zhang, X.; Ren, W. L.; DeCaen, P., et al. Crystal Structure of an Orthologue of theNachbac Voltage-Gated Sodium Channel [J]. Nature2012,486(7401):130-134.
    [34] McCusker, E. C.; Bagneris, C.; Naylor, C. E., et al. Structure of a BacterialVoltage-Gated Sodium Channel Pore Reveals Mechanisms of Opening and Closing [J].Nat. Commun.2012,3(1102.
    [35] Hilber, K.; Sandtner, W.; Zarrabi, T., et al. Selectivity Filter Residues ContributeUnequally to Pore Stabilization in Voltage-Gated Sodium Channels [J]. Biochemistry2005,44(42):13874-13882.
    [36] Lipkind, G. M.; Fozzard, H. A. Voltage-Gated Na Channel Selectivity: The Role of theConserved Domain Iii Lysine Residue [J]. J. Gen. Physiol.2008,131(6):523-529.
    [37] Berneche, S.; Roux, B. Energetics of Ion Conduction through the K+Channel [J].Nature2001,414(6859):73-77.
    [38] Noskov, S. Y.; Berneche, S.; Roux, B. Control of Ion Selectivity in Potassium Channelsby Electrostatic and Dynamic Properties of Carbonyl Ligands [J]. Nature2004,431(7010):830-834.
    [39] Thomas, M.; Jayatilaka, D.; Corry, B. The Predominant Role of Coordination Numberin Potassium Channel Selectivity [J]. Biophys. J.2007,93(8):2635-2643.
    [40] Noskov, S. Y.; Roux, B. Importance of Hydration and Dynamics on the Selectivity ofthe Kcsa and Nak Channels [J]. J. Gen. Physiol.2007,129(2):135-143.
    [41] Bostick, D. L.; Brooks, C. L. Selectivity in K+Channels Is Due to Topological Controlof the Permeant Ion's Coordinated State [J]. Proc. Natl. Acad. Sci. U. S. A.2007,104(22):9260-9265.
    [42] Varma, S.; Rempe, S. B. Tuning Ion Coordination Architectures to Enable SelectivePartitioning [J]. Biophys. J.2007,93(4):1093-1099.
    [43] Varma, S.; Sabo, D.; Rempe, S. B. K+/Na+Selectivity in K Channels and Valinomycin:Over-Coordination Versus Cavity-Size Constraints [J]. J. Mol. Biol.2008,376(1):13-22.
    [44] Egwolf, B.; Roux, B. Ion Selectivity of the Kcsa Channel: A Perspective fromMulti-Ion Free Energy Landscapes [J]. J. Mol. Biol.2010,401(5):831-842.
    [45] Furini, S.; Domene, C. Atypical Mechanism of Conduction in Potassium Channels [J].Proc. Natl. Acad. Sci. U. S. A.2009,106(38):16074-16077.
    [46] Jensen, M. O.; Borhani, D. W.; Lindorff-Larsen, K., et al. Principles of Conduction andHydrophobic Gating in K+Channels [J]. Proc. Natl. Acad. Sci. U. S. A.2010,107(13):5833-5838.
    [47] Hodgkin, A. L.; Keynes, R. D. The Potassium Permeability of a Giant Nerve Fibre [J].J. Physiol.1955,128(1):61-88.
    [48] Kasahara, K.; Shirota, M.; Kinoshita, K. Ion Concentration-Dependent Ion ConductionMechanism of a Voltage-Sensitive Potassium Channel [J]. Plos One2013,8(2).
    [49] Kim, I.; Allen, T. W. On the Selective Ion Binding Hypothesis for Potassium Channels[J]. Proc. Natl. Acad. Sci. U. S. A.2011,108(44):17963-17968.
    [50] Hille, B. Ionic Selectivity, Saturation, and Block in Sodium Channels. A Four-BarrierModel [J]. J. Gen. Physiol.1975,66(5):535-560.
    [51] Eisenman, G. Cation Selective Glass Electrodes and Their Mode of Operation [J].Biophys. J.1962,2(2):259-323.
    [52] Corry, B.; Thomas, M. Mechanism of Ion Permeation and Selectivity in a VoltageGated Sodium Channel [J]. J. Am. Chem. Soc.2011,134(3):1840-1846.
    [53] Corry, B. Na+/Ca2+Selectivity in the Bacterial Voltage-Gated Sodium Channel NavAb[J]. PeerJ2013,1: e16.
    [54] Ke, S.; Zangerl, E. M.; Stary-Weinzinger, A. Distinct Interactions of Na+and Ca2+Ionswith the Selectivity Filter of the Bacterial Sodium Channel NavAb [J]. Biochem.Biophys. Res. Commun.2013,430(4):1272-1276.
    [55] Furini, S.; Domene, C. On Conduction in a Bacterial Sodium Channel [J]. PLoSComput. Biol.2012,8(4): e1002476.
    [56] Stock, L.; Delemotte, L.; Carnevale, V., et al. Conduction in a Biological SodiumSelective Channel [J]. J. Phys. Chem. B2013,117(14):3782-3789.
    [57] Qiu, H.; Shen, R.; Guo, W. L. Ion Solvation and Structural Stability in a SodiumChannel Investigated by Molecular Dynamics Calculations [J]. Biochim. Biophys. Acta-Biomembr.2012,1818(11):2529-2535.
    [58] Carnevale, V.; Treptow, W.; Klein, M. L. Sodium Ion Binding Sites and Hydration inthe Lumen of a Bacterial Ion Channel from Molecular Dynamics Simulations [J]. J.Phys. Chem. Lett.2011,2(19):2504-2508.
    [59] Ulmschneider, M. B.; Bagneris, C.; McCusker, E. C., et al. Molecular Dynamics of IonTransport through the Open Conformation of a Bacterial Voltage-Gated SodiumChannel [J]. Proc. Natl. Acad. Sci. U. S. A.2013,110(16):6364-6369.
    [60] Chakrabarti, N.; Ing, C.; Payandeh, J., et al. Catalysis of Na+Permeation in theBacterial Sodium Channel NavAb [J]. Proc. Natl. Acad. Sci. U. S. A.2013,110(28):11331-11336.
    [61] Boiteux, C.; Vorobyov, I.; Allen, T. W. Ion Conduction and Conformational Flexibilityof a Bacterial Voltage-Gated Sodium Channel [J]. Proc. Natl. Acad. Sci. U. S. A.2014,111(9):3454-3459.
    [62] Dudev, T.; Lim, C. Determinants of K+vs Na+Selectivity in Potassium Channels [J]. J.Am. Chem. Soc.2009,131(23):8092-8101.
    [63] Dudev, T.; Lim, C. Factors Governing the Na+vs K+Selectivity in Sodium IonChannels [J]. J. Am. Chem. Soc.2010,132(7):2321-2332.
    [64] Dudev, T.; Lim, C. Competition among Ca2+, Mg2+and Na+for Model Ion ChannelSelectivity Filters: Determinants of Ion Selectivity [J]. J. Phys. Chem. B2012,116(35):10703-10714.
    [65] Dudev, T.; Lim, C. Why Voltage-Gated Ca2+and Bacterial Na+Channels with theSame EEEE Motif in Their Selectivity Filters Confer Opposite Metal Selectivity [J].Phys. Chem. Chem. Phys.2012,14(36):12451-12456.
    [66] Dudev, T.; Lim, C. Evolution of Eukaryotic Ion Channels: Principles Underlying theConversion of Ca2+-Selective to Na+-Selective Channels [J]. J. Am. Chem. Soc.2014,136(9):3553-3559.
    [67] Thomas, M.; Jayatilaka, D.; Corry, B. Mapping the Importance of Four Factors inCreating Monovalent Ion Selectivity in Biological Molecules [J]. Biophys. J.2011,100(1):60-69.
    [68] Thomas, M.; Jayatilaka, D.; Corry, B. How Does Overcoordination Create IonSelectivity?[J]. Biophys. Chem.2013,172:37-42.
    [69] Thomas, M.; Jayatilaka, D.; Corry, B. An Entropic Mechanism of Generating SelectiveIon Binding in Macromolecules [J]. PLoS Comput. Biol.2013,9(2): e1002914.
    [70] Roux, B. Exploring the Ion Selectivity Properties of a Large Number of SimplifiedBinding Site Models [J]. Biophys. J.2010,98(12):2877-2885.
    [71] Roux, B.; Berneche, S.; Egwolf, B., et al. Ion Selectivity in Channels and Transporters[J]. J. Gen. Physiol.2011,137(5):415-426.
    [72] Miyazawa, A.; Fujiyoshi, Y.; Unwin, N. Structure and Gating Mechanism of theAcetylcholine Receptor Pore [J]. Nature2003,423(6943):949-955.
    [73] Beckstein, O.; Sansom, M. S. P. A Hydrophobic Gate in an Ion Channel: The ClosedState of the Nicotinic Acetylcholine Receptor [J]. Phys. Biol.2006,3(2):147-159.
    [74] Corry, B. An Energy-Efficient Gating Mechanism in the Acetylcholine ReceptorChannel Suggested by Molecular and Brownian Dynamics [J]. Biophys. J.2006,90(3):799-810.
    [75] Beckstein, O.; Biggin, P. C.; Sansom, M. S. P. A Hydrophobic Gating Mechanism forNanopores [J]. J. Phys. Chem. B2001,105(51):12902-12905.
    [76] Beckstein, O.; Sansom, M. S. P. The Influence of Geometry, Surface Character, andFlexibility on the Permeation of Ions and Water through Biological Pores [J]. Phys.Biol.2004,1(1-2):42-52.
    [77] Beckstein, O.; Tai, K.; Sansom, M. S. P. Not Ions Alone: Barriers to Ion Permeation inNanopores and Channels [J]. J. Am. Chem. Soc.2004,126(45):14694-14695.
    [78] Vasquez, V.; Sotomayor, M.; Cordero-Morales, J., et al. A Structural Mechanism forMscs Gating in Lipid Bilayers [J]. Science2008,321(5893):1210-1214.
    [79] Birkner, J. P.; Poolman, B.; Kocer, A. Hydrophobic Gating of MechanosensitiveChannel of Large Conductance Evidenced by Single-Subunit Resolution [J]. Proc. Natl.Acad. Sci. U. S. A.2012,109(32):12944-12949.
    [80] Zhu, F. Q.; Hummer, G. Pore Opening and Closing of a Pentameric Ligand-Gated IonChannel [J]. Proc. Natl. Acad. Sci. U. S. A.2010,107(46):19814-19819.
    [81] Song, C.; Corry, B. Ion Conduction in Ligand-Gated Ion Channels: BrownianDynamics Studies of Four Recent Crystal Structures [J]. Biophys. J.2010,98(3):404-411.
    [82] Anishkin, A.; Sukharev, S. Water Dynamics and Dewetting Transitions in the SmallMechanosensitive Channel Mscs [J]. Biophys. J.2004,86(5):2883-2895.
    [83] Sotomayor, M.; Vasquez, V.; Perozo, E., et al. Ion Conduction through Mscs asDetermined by Electrophysiology and Simulation [J]. Biophys. J.2007,92(3):886-902.
    [84] Dai, H. J. Carbon Nanotubes: Synthesis, Integration, and Properties [J]. Acc. Chem. Res.2002,35(12):1035-1044.
    [85] Ebbesen, T. W.; Ajayan, P. M. Large-Scale Synthesis of Carbon Nanotubes [J]. Nature1992,358(6383):220-2.
    [86] Guo, T.; Nikolaev, P.; Thess, A., et al. Catalytic Growth of Single-Walled Nanotubesby Laser Vaporization [J]. Chem. Phys. Lett.1995,243(1-2):49-54.
    [87] Jose-Yacaman, M.; Miki-Yoshide, M.; Rendon, L., et al. Catalytic Growth of CarbonMicrotubules with Fullerene Structure [J]. Appl. Phys. Lett.1993,62(2):202-4.
    [88] Wang, S. R.; Liang, Z. Y.; Wang, B., et al. Precise Cutting of Single-Walled CarbonNanotubes [J]. Nanotechnology2007,18(5):055301.
    [89] Gu, Z.; Peng, H.; Hauge, R. H., et al. Cutting Single-Wall Carbon Nanotubes throughFluorination [J]. Nano Lett.2002,2(9):1009-1013.
    [90] Tasis, D.; Tagmatarchis, N.; Bianco, A., et al. Chemistry of Carbon Nanotubes [J].Chem. Rev.2006,106(3):1105-1136.
    [91] Karousis, N.; Tagmatarchis, N.; Tasis, D. Current Progress on the ChemicalModification of Carbon Nanotubes [J]. Chem. Rev.2010,110(9):5366-5397.
    [92] Hersam, M. C. Progress Towards Monodisperse Single-Walled Carbon Nanotubes [J].Nat. Nanotechnol.2008,3(7):387-394.
    [93] Holt, J. K.; Park, H. G.; Wang, Y. M., et al. Fast Mass Transport throughSub-2-Nanometer Carbon Nanotubes [J]. Science2006,312(5776):1034-1037.
    [94] Fornasiero, F.; Park, H. G.; Holt, J. K., et al. Ion Exclusion by Sub-2-nm CarbonNanotube Pores [J]. Proc. Natl. Acad. Sci. U. S. A.2008,105(45):17250-17255.
    [95] Hinds, B. J.; Chopra, N.; Rantell, T., et al. Aligned Multiwalled Carbon NanotubeMembranes [J]. Science2004,303(5654):62-65.
    [96] Hu, Z.; Jiang, J. Covalent-Organic Framework as a Template to Assemble CarbonNanotubes into a High-Density Membrane: Computational Demonstration [J].Nanoscale2014,6(2):772-777.
    [97] Lee, C. Y.; Choi, W.; Han, J. H., et al. Coherence Resonance in a Single-WalledCarbon Nanotube Ion Channel [J]. Science2010,329(5997):1320-1324.
    [98] Choi, W.; Lee, C. Y.; Ham, M.-H., et al. Dynamics of Simultaneous, Single IonTransport through Two Single-Walled Carbon Nanotubes: Observation of a Three-StateSystem [J]. J. Am. Chem. Soc.2011,133(2):203-205.
    [99] Ulissi, Z. W.; Shimizu, S.; Lee, C. Y., et al. Carbon Nanotubes as Molecular Conduits:Advances and Challenges for Transport through Isolated Sub-2-nm Pores [J]. J. Phys.Chem. Lett.2011,2(22):2892-2896.
    [100] Choi, W.; Ulissi, Z. W.; Shimizu, S. F. E., et al. Diameter-Dependent Ion Transportthrough the Interior of Isolated Single-Walled Carbon Nanotubes [J]. Nat. Commun.2013,4:2397.
    [101] Alexiadis, A.; Kassinos, S. Molecular Simulation of Water in Carbon Nanotubes [J].Chem. Rev.2008,108(12):5014-5034.
    [102] Rubio, A.; Corkill, J. L.; Cohen, M. L. Theory of Graphitic Boron Nitride Nanotubes[J]. Phys. Rev. B1994,49(7):5081-5084.
    [103] Pham-Huu, C.; Keller, N.; Ehret, G., et al. The First Preparation of Silicon CarbideNanotubes by Shape Memory Synthesis and Their Catalytic Potential [J]. J. Catal.2001,200(2):400-410.
    [104] Zhi, C.; Bando, Y.; Tang, C., et al. Boron Nitride Nanotubes [J]. Mater. Sci. Eng., R2010,70(3-6):92-111.
    [105] Roy, P.; Berger, S.; Schmuki, P. Tio2Nanotubes: Synthesis and Applications [J].Angew. Chem. Int. Ed.2011,50(13):2904-2939.
    [106] Siria, A.; Poncharal, P.; Biance, A. L., et al. Giant Osmotic Energy ConversionMeasured in a Single Transmembrane Boron Nitride Nanotube [J]. Nature2013,494(7438):455-458.
    [107] Zhang, L.; Chen, X. Nanofluidics for Giant Power Harvesting [J]. Angew. Chem. Int.Ed.2013,52(30):7640-7641.
    [108] Khademi, M.; Sahimi, M. Molecular Dynamics Simulation of Pressure-Driven WaterFlow in Silicon-Carbide Nanotubes [J]. J. Chem. Phys.2011,135(20):204509.
    [109] Geim, A. K.; Novoselov, K. S. The Rise of Graphene [J]. Nat. Mater.2007,6(3):183-191.
    [110] Kuila, T.; Bose, S.; Mishra, A. K., et al. Chemical Functionalization of Graphene andIts Applications [J]. Prog. Mater Sci.2012,57(7):1061-1105.
    [111] Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S., et al. Graphene: The NewTwo-Dimensional Nanomaterial [J]. Angew. Chem. Int. Ed.2009,48(42):7752-7777.
    [112] Malko, D.; Neiss, C.; Vines, F., et al. Competition for Graphene: Graphynes withDirection-Dependent Dirac Cones [J]. Phys. Rev. Lett.2012,108(8):086804.
    [113] Fischbein, M. D.; Drndic, M. Electron Beam Nanosculpting of Suspended GrapheneSheets [J]. Appl. Phys. Lett.2008,93(11):113107.
    [114] Lemme, M. C.; Bell, D. C.; Williams, J. R., et al. Etching of Graphene Devices with aHelium Ion Beam [J]. ACS Nano2009,3(9):2674-2676.
    [115] Storm, A. J.; Chen, J. H.; Ling, X. S., et al. Fabrication of Solid-State Nanopores withSingle-Nanometre Precision [J]. Nat. Mater.2003,2(8):537-540.
    [116] Zhao, S. J.; Xue, J. M.; Liang, L., et al. Drilling Nanopores in Graphene with Clusters:A Molecular Dynamics Study [J]. J. Phys. Chem. C2012,116(21):11776-11782.
    [117] Song, B.; Schneider, G. F.; Xu, Q., et al. Atomic-Scale Electron-Beam Sculpting ofnear-Defect-Free Graphene Nanostructures [J]. Nano Lett.2011,11(6):2247-2250.
    [118] Lu, N.; Wang, J. G.; Floresca, H. C., et al. In Situ Studies on the Shrinkage andExpansion of Graphene Nanopores under Electron Beam Irradiation at Temperatures inthe Range of400-1200oC [J]. Carbon2012,50(8):2961-2965.
    [119] Russo, C. J.; Golovchenko, J. A. Atom-by-Atom Nucleation and Growth of GrapheneNanopores [J]. Proc. Natl. Acad. Sci. U. S. A.2012,109(16):5953-5957.
    [120] Kuhn, P.; Forget, A.; Su, D. S., et al. From Microporous Regular Frameworks toMesoporous Materials with Ultrahigh Surface Area: Dynamic Reorganization of PorousPolymer Networks [J]. J. Am. Chem. Soc.2008,130(40):13333-13337.
    [121] Li, Y. F.; Zhou, Z.; Shen, P. W., et al. Two-Dimensional Polyphenylene:Experimentally Available Porous Graphene as a Hydrogen Purification Membrane [J].Chem. Commun.2010,46(21):3672-3674.
    [122] Pisula, W.; Kastler, M.; Yang, C., et al. Columnar Mesophase Formation ofCyclohexa-M-Phenylene-Based Macrocycles [J]. Chem.-Asian J.2007,2(1):51-56.
    [123] Jiang, D. E.; Cooper, V. R.; Dai, S. Porous Graphene as the Ultimate Membrane forGas Separation [J]. Nano Lett.2009,9(12):4019-4024.
    [124] Blankenburg, S.; Bieri, M.; Fasel, R., et al. Porous Graphene as an AtmosphericNanofilter [J]. Small2010,6(20):2266-2271.
    [125] Du, H. L.; Li, J. Y.; Zhang, J., et al. Separation of Hydrogen and Nitrogen Gases withPorous Graphene Membrane [J]. J. Phys. Chem. C2011,115(47):23261-23266.
    [126] Jiao, Y.; Du, A. J.; Hankel, M., et al. Modelling Carbon Membranes for Gas andIsotope Separation [J]. Phys. Chem. Chem. Phys.2013,15(14):4832-4843.
    [127] Berry, V. Impermeability of Graphene and Its Applications [J]. Carbon2013,62:1-10.
    [128] Hauser, A. W.; Schwerdtfeger, P. Nanoporous Graphene Membranes for Efficient3He/4He Separation [J]. J. Phys. Chem. Lett.2012,3(2):209-213.
    [129] Hankel, M.; Jiao, Y.; Du, A. J., et al. Asymmetrically Decorated, Doped PorousGraphene as an Effective Membrane for Hydrogen Isotope Separation [J]. J. Phys.Chem. C2012,116(11):6672-6676.
    [130] Koenig, S. P.; Wang, L. D.; Pellegrino, J., et al. Selective Molecular Sieving throughPorous Graphene [J]. Nat. Nanotechnol.2012,7(11):728-732.
    [131] Venkatesan, B. M.; Bashir, R. Nanopore Sensors for Nucleic Acid Analysis [J]. Nat.Nanotechnol.2011,6(10):615-624.
    [132] Garaj, S.; Hubbard, W.; Reina, A., et al. Graphene as a Subnanometre Trans-ElectrodeMembrane [J]. Nature2010,467(7312):190-193.
    [133] Siwy, Z. S.; Davenport, M. Nanopores Graphene Opens up to DNA [J]. Nat.Nanotechnol.2010,5(10):697-698.
    [134] Wells, D. B.; Belkin, M.; Comer, J., et al. Assessing Graphene Nanopores forSequencing DNA [J]. Nano Lett.2012,12(8):4117-4123.
    [135] Garaj, S.; Liu, S.; Golovchenko, J. A., et al. Molecule-Hugging Graphene Nanopores[J]. Proc. Natl. Acad. Sci. U. S. A.2013,110(30):12192-12196.
    [136] Girdhar, A.; Sathe, C.; Schulten, K., et al. Graphene Quantum Point Contact Transistorfor DNA Sensing [J]. Proc. Natl. Acad. Sci. U. S. A.2013,110(42):16748-16753.
    [137] Prasongkit, J.; Grigoriev, A.; Pathak, B., et al. Theoretical Study of ElectronicTransport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap [J].J. Phys. Chem. C2013,117(29):15421-15428.
    [138] Liu, L.; Zhang, L.; Sun, Z. G., et al. Graphene Nanoribbon-Guided Fluid Channel: AFast Transporter of Nanofluids [J]. Nanoscale2012,4(20):6279-6283.
    [139] Qiao, Y.; Xu, X.; Li, H. Conduction of Water Molecules through Graphene Bilayer [J].Appl. Phys. Lett.2013,103(23):233106.
    [140] Mirsaidov, U.; Mokkapati, V.; Bhattacharya, D., et al. Scrolling Graphene intoNanofluidic Channels [J]. Lab on a Chip2013,13(15):2874-2878.
    [141] Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure-Property Predictions for NewPlanar Forms of Carbon: Layered Phases Containing sp2and sp Atoms [J]. J. Chem.Phys.1987,87(11):6687-99.
    [142] Li, G. X.; Li, Y. L.; Liu, H. B., et al. Architecture of Graphdiyne Nanoscale Films [J].Chem. Commun.2010,46(19):3256-3258.
    [143] Bunz, U. H. F.; Rubin, Y.; Tobe, Y. Polyethynylated Cyclic pi-Systems: Scaffoldingsfor Novel Two and Three-Dimensional Carbon Networks [J]. Chem. Soc. Rev.1999,28(2):107-119.
    [144] Wu, W. Z.; Guo, W. L.; Zeng, X. C. Intrinsic Electronic and Transport Properties ofGraphyne Sheets and Nanoribbons [J]. Nanoscale2013,5(19):9264-9276.
    [145] Cranford, S. W.; Buehler, M. J. Selective Hydrogen Purification through Graphdiyneunder Ambient Temperature and Pressure [J]. Nanoscale2012,4(15):4587-4593.
    [146] Jiao, Y.; Du, A. J.; Hankel, M., et al. Graphdiyne: A Versatile Nanomaterial forElectronics and Hydrogen Purification [J]. Chem. Commun.2011,47(43):11843-11845.
    [147] De Santis, P.; Morosetti, S.; Rizzo, R. Conformational Analysis of RegularEnantiomeric Sequences [J]. Macromolecules1974,7(1):52-58.
    [148] Ghadiri, M. R.; Granja, J. R.; Milligan, R. A., et al. Self-Assembling OrganicNanotubes Based on a Cyclic Peptide Architecture [J]. Nature1993,366(6453):324-327.
    [149] Chapman, R.; Danial, M.; Koh, M. L., et al. Design and Properties of FunctionalNanotubes from the Self-Assembly of Cyclic Peptide Templates [J]. Chem. Soc. Rev.2012,41(18):6023-6041.
    [150] Brea, R. J.; Reiriz, C.; Granja, J. R. Towards Functional Bionanomaterials Based onSelf-Assembling Cyclic Peptide Nanotubes [J]. Chem. Soc. Rev.2010,39(5):1448-1456.
    [151] Seabra, A. B.; Duran, N. Biological Applications of Peptides Nanotubes: An Overview[J]. Peptides2013,39:47-54.
    [152] Gong, B.; Shao, Z. F. Self-Assembling Organic Nanotubes with Precisely Defined,Sub-Nanometer Pores: Formation and Mass Transport Characteristics [J]. Acc. Chem.Res.2013,46(12):2856-2866.
    [153] Kameta, N.; Minamikawa, H.; Masuda, M. Supramolecular Organic Nanotubes: How toUtilize the Inner Nanospace and the Outer Space [J]. Soft Matter2011,7(10):4539-4561.
    [154] Sakai, N.; Matile, S. Synthetic Ion Channels [J]. Langmuir2013,29(29):9031-9040.
    [155] Barboiu, M.; Gilles, A. From Natural to Bioassisted and Biomimetic Artificial WaterChannel Systems [J]. Acc. Chem. Res.2013,46(12):2814-2823.
    [156] Akhshi, P.; Mosey, N. J.; Wu, G. Free-Energy Landscapes of Ion Movement through aG-Quadruplex DNA Channel [J]. Angew. Chem. Int. Ed.2012,51(12):2850-2854.
    [157] Kalra, A.; Garde, S.; Hummer, G. Osmotic Water Transport through Carbon NanotubeMembranes [J]. Proc. Natl. Acad. Sci. U. S. A.2003,100(18):10175-10180.
    [158] Skoulidas, A. I.; Ackerman, D. M.; Johnson, J. K., et al. Rapid Transport of Gases inCarbon Nanotubes [J]. Phys. Rev. Lett.2002,89(18):185901.
    [159] Majumder, M.; Chopra, N.; Andrews, R., et al. Nanoscale Hydrodynamics-EnhancedFlow in Carbon Nanotubes [J]. Nature2005,438(7064):44.
    [160] Verweij, H.; Schillo, M. C.; Li, J. Fast Mass Transport through Carbon NanotubeMembranes [J]. Small2007,3(12):1996-2004.
    [161] Holt, J. K. Carbon Nanotubes and Nanofluidic Transport [J]. Adv. Mater.2009,21(35):3542-3550.
    [162] Noy, A.; Park, H. G.; Fornasiero, F., et al. Nanofluidics in Carbon Nanotubes [J]. NanoToday2007,2(6):22-29.
    [163] Whitby, M.; Quirke, N. Fluid Flow in Carbon Nanotubes and Nanopipes [J]. Nat.Nanotechnol.2007,2(2):87-94.
    [164] Qin, X. C.; Yuan, Q. Z.; Zhao, Y. P., et al. Measurement of the Rate of WaterTranslocation through Carbon Nanotubes [J]. Nano Lett.2011,11(5):2173-2177.
    [165] Thomas, J. A.; McGaughey, A. J. H. Reassessing Fast Water Transport through CarbonNanotubes [J]. Nano Lett.2008,8(9):2788-2793.
    [166] Thomas, J. A.; McGaughey, A. J. H. Water Flow in Carbon Nanotubes: Transition toSubcontinuum Transport [J]. Phys. Rev. Lett.2009,102(18):184502.
    [167] Falk, K.; Sedlmeier, F.; Joly, L., et al. Molecular Origin of Fast Water Transport inCarbon Nanotube Membranes: Superlubricity versus Curvature Dependent Friction [J].Nano Lett.2010,10(10):4067-4073.
    [168] Joseph, S.; Aluru, N. R. Why Are Carbon Nanotubes Fast Transporters of Water?[J].Nano Lett.2008,8(2):452-458.
    [169] Sisan, T. B.; Lichter, S. The End of Nanochannels [J]. Microfluid. Nanofluid.2011,11(6):787-791.
    [170] Walther, J. H.; Ritos, K.; Cruz-Chu, E. R., et al. Barriers to Superfast Water Transportin Carbon Nanotube Membranes [J]. Nano Lett.2013,13(5):1910-1914.
    [171] Koga, K.; Gao, G. T.; Tanaka, H., et al. Formation of Ordered Ice Nanotubes insideCarbon Nanotubes [J]. Nature2001,412(6849):802-805.
    [172] Maniwa, Y.; Kataura, H.; Abe, M., et al. Ordered Water inside Carbon Nanotubes:Formation of Pentagonal to Octagonal Ice-Nanotubes [J]. Chem. Phys. Lett.2005,401(4-6):534-538.
    [173] Maniwa, Y.; Matsuda, K.; Kyakuno, H., et al. Water-Filled Single-Wall CarbonNanotubes as Molecular Nanovalves [J]. Nat. Mater.2007,6(2):135-141.
    [174] Mashl, R. J.; Joseph, S.; Aluru, N. R., et al. Anomalously Immobilized Water: A NewWater Phase Induced by Confinement in Nanotubes [J]. Nano Lett.2003,3(5):589-592.
    [175] Zhang, H. W.; Ye, H. F.; Zheng, Y. G., et al. Prediction of the Viscosity of WaterConfined in Carbon Nanotubes [J]. Microfluid. Nanofluid.2011,10(2):403-414.
    [176] Ye, H. F.; Zhang, H. W.; Zheng, Y. G., et al. Nanoconfinement Induced AnomalousWater Diffusion inside Carbon Nanotubes [J]. Microfluid. Nanofluid.2011,10(6):1359-1364.
    [177] Takaiwa, D.; Hatano, I.; Koga, K., et al. Phase Diagram of Water in Carbon Nanotubes[J]. Proc. Natl. Acad. Sci. U. S. A.2008,105(1):39-43.
    [178] Kyakuno, H.; Matsuda, K.; Yahiro, H., et al. Confined Water inside Single-WalledCarbon Nanotubes: Global Phase Diagram and Effect of Finite Length [J]. J. Chem.Phys.2011,134(24):244501.
    [179] Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Water Conduction through theHydrophobic Channel of a Carbon Nanotube [J]. Nature2001,414(6860):188-190.
    [180] Das, A.; Jayanthi, S.; Deepak, H., et al. Single-File Diffusion of Confined Water insideSwnts: An Nmr Study [J]. ACS Nano2010,4(3):1687-1695.
    [181] Cambre, S.; Schoeters, B.; Luyckx, S., et al. Experimental Observation of Single-FileWater Filling of Thin Single-Wall Carbon Nanotubes Down to Chiral Index (5,3)[J].Phys. Rev. Lett.2010,104(20):207401.
    [182] Kolesnikov, A. I.; Zanotti, J. M.; Loong, C. K., et al. Anomalously Soft Dynamics ofWater in a Nanotube: A Revelation of Nanoscale Confinement [J]. Phys. Rev. Lett.2004,93(3):035503.
    [183] Berezhkovskii, A.; Hummer, G. Single-File Transport of Water Molecules through aCarbon Nanotube [J]. Phys. Rev. Lett.2002,89(6):064503.
    [184] Kofinger, J.; Hummer, G.; Dellago, C. Single-File Water in Nanopores [J]. Phys. Chem.Chem. Phys.2011,13(34):15403-15417.
    [185] Waghe, A.; Rasaiah, J. C.; Hummer, G. Entropy of Single-File Water in (6,6) CarbonNanotubes [J]. J. Chem. Phys.2012,137(4):044709.
    [186] Kofinger, J.; Hummer, G.; Dellago, C. Macroscopically Ordered Water in Nanopores[J]. Proc. Natl. Acad. Sci. U. S. A.2008,105(36):13218-13222.
    [187] Mann, D. J.; Halls, M. D. Water Alignment and Proton Conduction inside CarbonNanotubes [J]. Phys. Rev. Lett.2003,90(19):195503.
    [188] Wan, R. Z.; Li, J. Y.; Lu, H. J., et al. Controllable Water Channel Gating of NanometerDimensions [J]. J. Am. Chem. Soc.2005,127(19):7166-7170.
    [189] Li, J. Y.; Gong, X. J.; Lu, H. J., et al. Electrostatic Gating of a Nanometer WaterChannel [J]. Proc. Natl. Acad. Sci. U. S. A.2007,104(10):3687-3692.
    [190] Tu, Y. S.; Xiu, P.; Wan, R. Z., et al. Water-mediated Signal Multiplication withY-Shaped Carbon Nanotubes [J]. Proc. Natl. Acad. Sci. U. S. A.2009,106(43):18120-18124.
    [191] Tu, Y. S.; Zhou, R. H.; Fang, H. P. Signal Transmission, Conversion and Multiplicationby Polar Molecules Confined in Nanochannels [J]. Nanoscale2010,2(10):1976-1983.
    [192] Tu, Y. S.; Lu, H. J.; Zhang, Y. Z., et al. Capability of Charge Signal Conversion andTransmission by Water Chains Confined inside Y-Shaped Carbon Nanotubes [J]. J.Chem. Phys.2013,138(1):015104.
    [193] Wang, J.; Zhu, Y.; Zhou, J., et al. Diameter and Helicity Effects on Static Properties ofWater Molecules Confined in Carbon Nanotubes [J]. Phys. Chem. Chem. Phys.2004,6(4):829-835.
    [194] Huang, L. L.; Shao, Q.; Lu, L. H., et al. Helicity and Temperature Effects on StaticProperties of Water Molecules Confined in Modified Carbon Nanotubes [J]. Phys.Chem. Chem. Phys.2006,8(33):3836-3844.
    [195] Huang, L. L.; Zhang, L. Z.; Shao, Q., et al. Molecular Dynamics Simulation Study ofthe Structural Characteristics of Water Molecules Confined in Functionalized CarbonNanotubes [J]. J. Phys. Chem. B2006,110(51):25761-25768.
    [196] Zheng, Y. G.; Ye, H. F.; Zhang, Z. Q., et al. Water Diffusion inside Carbon Nanotubes:Mutual Effects of Surface and Confinement [J]. Phys. Chem. Chem. Phys.2012,14(2):964-971.
    [197] Liu, Y. C.; Wang, Q. Transport Behavior of Water Confined in Carbon Nanotubes [J].Phys. Rev. B2005,72(8):085420.
    [198] Liu, Y. C.; Wang, Q.; Wu, T., et al. Fluid Structure and Transport Properties of Waterinside Carbon Nanotubes [J]. J. Chem. Phys.2005,123(23):234701.
    [199] Liu, Y. C.; Wang, Q.; Zhang, L., et al. Dynamics and Density Profile of Water inNanotubes as One-Dimensional Fluid [J]. Langmuir2005,21(25):12025-12030.
    [200] Paineau, E.; Albouy, P. A.; Rouziere, S., et al. X-Ray Scattering Determination of theStructure of Water During Carbon Nanotube Filling [J]. Nano Lett.2013,13(4):1751-1756.
    [201] Zhu, Y.; Zhou, J.; Lu, X., et al. Molecular Simulations on Nanoconfined WaterMolecule Behaviors for Nanoporous Material Applications [J]. Microfluid. Nanofluid.2013,15(2):191-205.
    [202] LyndenBell, R.; Rasaiah, J. C. Mobility and Solvation of Ions in Channels [J]. J. Chem.Phys.1996,105(20):9266-9280.
    [203] Tang, Y. W.; Szalai, I.; Chan, K. Y. Diffusivity and Conductivity of a Solvent PrimitiveModel Electrolyte in a Nanopore by Equilibrium and Nonequilibrium MolecularDynamics Simulations [J]. J. Phys. Chem. A2001,105(41):9616-9623.
    [204] Lai, S. K.; Kau, C. Y.; Tang, Y. W., et al. Anomalous Diffusivity and ElectricConductivity for Low Concentration Electrolytes in Nanopores [J]. Phys. Rev. E2004,69(5):051203.
    [205] Tang, Y. W.; Chan, K. Y.; Szalai, I. Structural and Transport Properties of an Spc/EElectrolyte in a Nanopore [J]. J. Phys. Chem. B2004,108(47):18204-18213.
    [206] Tang, Y. W.; Chan, K. Y.; Szalai, I. One-Dimensional Capacitance Behavior of Electrolytes in a Nanopore [J]. Nano Lett.2003,3(2):217-221.
    [207]Feng, G.; Qiao, R.; Huang, J. S., et al. Ion Distribution in Electrified Micropores and Its Role in the Anomalous Enhancement of Capacitance [J]. ACS Nano2010,4(4):2382-2390.
    [208]Chmiola, J.; Yushin, G.; Gogotsi, Y., et al. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than1Nanometer [J]. Science2006,313(5794):1760-1763.
    [209]Ohba, T.; Kojima, N.; Kanoh, H., et al. Unique Hydrogen-Bonded Structure of Water around Ca Ions Confined in Carbon Slit Pores [J]. J. Phys. Chem. C2009,113(29):12622-12624.
    [210]Argyris, D.; Cole, D. R.; Striolo, A. Ion-Specific Effects under Confinement:The Role of Interfacial Water [J]. ACS Nano2010,4(4):2035-2042.
    [211]Peter, C.; Hummer, G. Ion Transport through Membrane-Spanning Nanopores Studied by Molecular Dynamics Simulations and Continuum Electrostatics Calculations [J]. Biophys. J.2005,89(4):2222-2234.
    [212]Liu, H. M.; Murad, S.; Jameson, C. J. Ion Permeation Dynamics in Carbon Nanotubes [J]. J. Chem. Phys.2006,125(8):084713.
    [213]Malani, A.; Ayappa, K. G.; Murad, S. Effect of Confinement on the Hydration and Solubility of Nacl in Water [J]. Chem. Phys. Lett.2006,431(1-3):88-93.
    [214]Nicholson, D.; Quirke, N. Ion Pairing in Confined Electrolytes [J]. Mol. Simul.2003,29(4):287-290.
    [215]Beu, T. A. Molecular Dynamics Simulations of Ion Transport through Carbon Nanotubes. I. Influence of Geometry, Ion Specificity, and Many-Body Interactions [J]. J. Chem. Phys.2010,132(16):164513.
    [216]Beu, T. A. Molecular Dynamics Simulations of Ion Transport through Carbon Nanotubes. Ii. Structural Effects of the Nanotube Radius, Solute Concentration, and Applied Electric Fields [J]. J. Chem. Phys.2011,135(4):044515.
    [217]Beu, T. A. Molecular Dynamics Simulations of Ion Transport through Carbon Nanotubes. Iii. Influence of the Nanotube Radius, Solute Concentration, and Applied Electric Fields on the Transport Properties [J]. J. Chem. Phys.2011,135(4):044516.
    [218]Zwolak, M.; Lagerqvist, J.; Di Ventra, M. Quantized Ionic Conductance in Nanopores [J]. Phys. Rev. Lett.2009,103(12):128102.
    [219]Zwolak, M.; Wilson, J.; Di Ventra, M. Dehydration and Ionic Conductance Quantization in Nanopores [J]. J. Phys. Condens. Matter.2010,22(45):454126.
    [220]邵庆;吕玲红;陆小华,等.纳米受限下溶质水化结构的分子模拟[J].物理化学学报.2009,25(3):583-589.
    [221] Shao, Q.; Huang, L. L.; Zhou, J., et al. Molecular Simulation Study of TemperatureEffect on Ionic Hydration in Carbon Nanotubes [J]. Phys. Chem. Chem. Phys.2008,10(14):1896-1906.
    [222] Shao, Q.; Zhou, J.; Lu, L. H., et al. Anomalous Hydration Shell Order of Na+and K+inside Carbon Nanotubes [J]. Nano Lett.2009,9(3):989-994.
    [223] Guo, X. J.; Shao, Q.; Lu, L. H., et al. Molecular Dynamics Simulation Study of IonicHydration in Negatively Charged Single-Walled Carbon Nanotubes [J]. J. Nanosci.Nanotechno.2010,10(11):7620-7624.
    [224] Zhu, Y. D.; Guo, X. J.; Shao, Q., et al. Molecular Simulation Study of the Effect ofInner Wall Modified Groups on Ionic Hydration Confined in Carbon Nanotube [J].Fluid Phase Equilib.2010,297(2):215-220.
    [225] Zhou, J.; Lu, X. H.; Wang, Y. R., et al. Molecular Dynamics Study on Ionic Hydration[J]. Fluid Phase Equilib.2002,194:257-270.
    [226] Wu, X. M.; Lu, L. H.; Zhu, Y. D., et al. Changes in CNT-Confined Water StructuralProperties Induced by the Variation in Water Molecule Orientation [J]. Mol. Simul.2012,38(13):1094-1102.
    [227] Wu, X. M.; Lu, L. H.; Zhu, Y. D., et al. Ionic Hydration of Na+inside CarbonNanotubes, under Electric Fields [J]. Fluid Phase Equilib.2013,353:1-6.
    [228] Aziz, E. F. The Solvation of Ions and Molecules Probed Via Soft X-Ray Spectroscopies[J]. J. Electron. Spectrosc. Relat. Phenom.2010,177(2-3):168-180.
    [229] Ohkubo, T.; Konishi, T.; Hattori, Y., et al. Restricted Hydration Structures of Rb and BrIons Confined in Slit-Shaped Carbon Nanospace [J]. J. Am. Chem. Soc.2002,124(40):11860-11861.
    [230] Ohkubo, T.; Hattori, Y.; Kanoh, H., et al. Structural Anomalies of Rb and Br IonicNanosolutions in Hydrophobic Slit-Shaped Solid Space as Revealed by the ExafsTechnique [J]. J. Phys. Chem. B2003,107(49):13616-13622.
    [231] Ohkubo, T.; Nishi, M.; Kuroda, Y. Actual Structure of Dissolved Zinc Ion Restricted inLess Than1Nanometer Micropores of Carbon [J]. J. Phys. Chem. C2011,115(30):14954-14959.
    [232] Ohkubo, T.; Takehara, Y.; Kuroda, Y. Water-Initiated Ordering around a Copper Ion ofCopper Acetate Confined in Slit-Shaped Carbon Micropores [J]. MicroporousMesoporous Mater.2012,154:82-86.
    [233] Nishi, M.; Ohkubo, T.; Tsurusaki, K., et al. Highly Compressed NanosolutionRestricted in Cylindrical Carbon Nanospaces [J]. Nanoscale2013,5(5):2080-2088.
    [234] Ahmmad, B.; Nishi, M.; Hirose, F., et al. Structure of Hydrated Cobalt Ions Confined inthe Nanospace of Single-Walled Carbon Nanotubes [J]. Phys. Chem. Chem. Phys.2013,15(21):8264-8270.
    [235] Levi, M. D.; Sigalov, S.; Salitra, G., et al. Assessing the Solvation Numbers ofElectrolytic Ions Confined in Carbon Nanopores under Dynamic Charging Conditions[J]. J. Phys. Chem. Lett.2011,2(2):120-124.
    [236] Wu, J.; Gerstandt, K.; Zhang, H. B., et al. Electrophoretically Induced Aqueous Flowthrough Single-Walled Carbon Nanotube Membranes [J]. Nat. Nanotechnol.2012,7(2):133-139.
    [237] Ohba, T.; Hata, K.; Kanoh, H. Significant Hydration Shell Formation Instead ofHydrogen Bonds in Nanoconfined Aqueous Electrolyte Solutions [J]. J. Am. Chem. Soc.2012,134(43):17850-17853.
    [238] Ohba, T.; Kanoh, H. Energetic Contribution to Hydration Shells in One-DimensionalAqueous Electrolyte Solution by Anomalous Hydrogen Bonds [J]. Phys. Chem. Chem.Phys.2013,15(15):5658-5663.
    [239] Mehta, A.; Nelson, E. J.; Webb, S. M., et al. The Interaction of Bromide Ions withGraphitic Materials [J]. Adv. Mater.2009,21(1):102-106.
    [240] Frolov, A. I.; Rozhin, A. G.; Fedorov, M. V. Ion Interactions with the Carbon NanotubeSurface in Aqueous Solutions: Understanding the Molecular Mechanisms [J].Chemphyschem2010,11(12):2612-2616.
    [241] Cazade, P. A.; Dweik, J.; Coasne, B., et al. Molecular Simulation of Ion-SpecificEffects in Confined Electrolyte Solutions Using Polarizable Forcefields [J]. J. Phys.Chem. C2010,114(28):12245-12257.
    [242] Sala, J.; Guardia, E.; Marti, J. Specific Ion Effects in Aqueous Eletrolyte SolutionsConfined within Graphene Sheets at the Nanometric Scale [J]. Phys. Chem. Chem. Phys.2012,14(30):10799-10808.
    [243] Kulik, H. J.; Schwegler, E.; Galli, G. Probing the Structure of Salt Water underConfinement with First-Principles Molecular Dynamics and Theoretical X-RayAbsorption Spectroscopy [J]. J. Phys. Chem. Lett.2012,3(18):2653-2658.
    [244] Shi, G. S.; Liu, J.; Wang, C. L., et al. Ion Enrichment on the HydrophobicCarbon-Based Surface in Aqueous Salt Solutions Due to Cation-Pi Interactions [J]. Sci.Rep.2013,3:3436.
    [245] Agre, P.; King, L. S.; Yasui, M., et al. Aquaporin Water Channels-from AtomicStructure to Clinical Medicine [J]. J. Physiol.2002,542(1):3-16.
    [246] de Groot, B. L.; Grubmuller, H. Water Permeation across Biological Membranes:Mechanism and Dynamics of Aquaporin-1and GlpF [J]. Science2001,294(5550):2353-2357.
    [247] de Groot, B. L.; Grubmuller, H. The Dynamics and Energetics of Water Permeation andProton Exclusion in Aquaporins [J]. Curr. Opin. Struct. Biol.2005,15(2):176-183.
    [248] Zhu, F. Q.; Schulten, K. Water and Proton Conduction through Carbon Nanotubes asModels for Biological Channels [J]. Biophys. J.2003,85(1):236-244.
    [249] Gong, X. J.; Li, J. Y.; Lu, H. J., et al. A Charge-Driven Molecular Water Pump [J]. Nat.Nanotechnol.2007,2(11):709-712.
    [250] Zuo, G. C.; Shen, R.; Ma, S. J., et al. Transport Properties of Single-File WaterMolecules inside a Carbon Nanotube Biomimicking Water Channel [J]. ACS Nano2010,4(1):205-210.
    [251] Wong-Ekkabut, J.; Miettinen, M. S.; Dias, C., et al. Static Charges Cannot Drive aContinuous Flow of Water Molecules through a Carbon Nanotube [J]. Nat.Nanotechnol.2010,5(8):555-557.
    [252] Liu, B.; Li, X. Y.; Li, B. L., et al. Carbon Nanotube Based Artificial Water ChannelProtein: Membrane Perturbation and Water Transportation [J]. Nano Lett.2009,9(4):1386-1394.
    [253] Yang, Y. L.; Li, X. Y.; Jiang, J. L., et al. Control Performance and BiomembraneDisturbance of Carbon Nanotube Artificial Water Channels by Nitrogen-Doping [J].ACS Nano2010,4(10):5755-5762.
    [254] Li, X. Y.; Shi, Y. C.; Yang, Y. L., et al. How Does Water-Nanotube InteractionInfluence Water Flow through the Nanochannel?[J]. J. Chem. Phys.2012,136(17):175101.
    [255] Garate, J. A.; English, N. J.; MacElroy, J. M. D. Carbon Nanotube Assisted WaterSelf-Diffusion across Lipid Membranes in the Absence and Presence of Electric Fields[J]. Mol. Simul.2009,35(1-2):3-12.
    [256] Su, J. Y.; Guo, H. X. Control of Unidirectional Transport of Single-File WaterMolecules through Carbon Nanotubes in an Electric Field [J]. ACS Nano2011,5(1):351-359.
    [257] Su, J. Y.; Guo, H. X. Effect of Nanotube-Length on the Transport Properties ofSingle-File Water Molecules: Transition from Bidirectional to Unidirectional [J]. J.Chem. Phys.2011,134(24):244513.
    [258] Wang, Y.; Zhao, Y. J.; Huang, J. P. Giant Pumping of Single-File Water Molecules in aCarbon Nanotube [J]. J. Phys. Chem. B2011,115(45):13275-13279.
    [259] Joseph, S.; Aluru, N. R. Pumping of Confined Water in Carbon Nanotubes byRotation-Translation Coupling [J]. Phys. Rev. Lett.2008,101(6):064502.
    [260] Won, C. Y.; Aluru, N. R. Water Permeation through a Subnanometer Boron NitrideNanotube [J]. J. Am. Chem. Soc.2007,129(10):2748-2749.
    [261] Suk, M. E.; Raghunathan, A. V.; Aluru, N. R. Fast Reverse Osmosis Using BoronNitride and Carbon Nanotubes [J]. Appl. Phys. Lett.2008,92(13):133120.
    [262] Suk, M. E.; Aluru, N. R. Water Transport through Ultrathin Graphene [J]. J. Phys.Chem. Lett.2010,1(10):1590-1594.
    [263] Suk, M. E.; Aluru, N. R. Molecular and Continuum Hydrodynamics in GrapheneNanopores [J]. Rsc Advances2013,3(24):9365-9372.
    [264] Kou, J. L.; Zhou, X. Y.; Chen, Y. Y., et al. Water Permeation through Single-LayerGraphyne Membrane [J]. J. Chem. Phys.2013,139(6):064705.
    [265] Le Duc, Y.; Michau, M.; Gilles, A., et al. Imidazole-Quartet Water and Proton DipolarChannels [J]. Angew. Chem. Int. Ed.2011,50(48):11366-11372.
    [266] Raghavender, U. S.; Chatterjee, B.; Saha, I., et al. Entrapment of a Water Wire in aHydrophobic Peptide Channel with an Aromatic Lining [J]. J. Phys. Chem. B2011,115(29):9236-9243.
    [267] Hu, X. B.; Chen, Z. X.; Tang, G. F., et al. Single-Molecular Artificial TransmembraneWater Channels [J]. J. Am. Chem. Soc.2012,134(20):8384-8387.
    [268] Corry, B. Designing Carbon Nanotube Membranes for Efficient Water Desalination [J].J. Phys. Chem. B2008,112(5):1427-1434.
    [269] Corry, B. Water and Ion Transport through Functionalised Carbon Nanotubes:Implications for Desalination Technology [J]. Energy Environ. Sci.2011,4(3):51-759.
    [270] Hughes, Z. E.; Shearer, C. J.; Shapter, J., et al. Simulation of Water Transport throughFunctionalized Single-Walled Carbon Nanotubes (SWCNTs)[J]. J. Phys. Chem. C2012,116(47):24943-24953.
    [271] Richards, L. A.; Schafer, A. I.; Richards, B. S., et al. The Importance of Dehydration inDetermining Ion Transport in Narrow Pores [J]. Small2012,8(11):1701-1709.
    [272] Richards, L. A.; Schafer, A. I.; Richards, B. S., et al. Quantifying Barriers toMonovalent Anion Transport in Narrow Non-Polar Pores [J]. Phys. Chem. Chem. Phys.2012,14(33):11633-11638.
    [273] Richards, L. A.; Richards, B. S.; Corry, B., et al. Experimental Energy Barriers to Anions Transporting through Nanofiltration Membranes [J]. Environ. Sci. Technol.2013,47(4):1968-1976.
    [274]Chen, Q. W.; Meng, L. Y.; Li, Q. K., et al. Water Transport and Purification in Nanochannels Controlled by Asymmetric Wettability [J]. Small2011,7(15):225-2231.
    [275]Jia, Y. X.; Li, H. L.; Wang, M., et al. Carbon Nanotube:Possible Candidate for Forward Osmosis [J]. Sep. Purif. Technol.2010,75(1):55-60.
    [276]李燕;贾玉香;胡仰栋.受限于纳米碳管中盐溶液的分子动力学模拟[J].哈尔滨工程大学学报2011,32(2):242-245.
    [277]贾玉香;李艳;胡仰栋.正渗透过程中纳米碳管膜的盐水通道行为[J].物理化学学报2011,27(1):228-232.
    [278]Chan, W. F.; Chen, H. Y.; Surapathi, A., et al. Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination [J].ACS Nano2013,7(6):5308-5319.
    [279]Hilder, T. A.; Gordon, D.; Chung, S. H. Salt Rejection and Water Transport through Boron Nitride Nanotubes [J]. Small2009,5(19):2183-2190.
    [280]Hughes, Z. E.; Carrington, L. A.; Raiteri, P., et al. A Computational Investigation into the Suitability of Purely Siliceous Zeolites as Reverse Osmosis Membranes [J]. J. Phys. Chem. C2011,115(10):4063-4075.
    [281]Hughes, Z. E.; Gale, J. D. A Computational Investigation of the Properties of a Reverse Osmosis Membrane [J]. J. Mater. Chem.2010,20(36):7788-7799.
    [282]Hu, Z. Q. H. Z. Q.; Chen, Y. F.; Jiang, J. W. Zeolitic Imidazolate Framework-8as a Reverse Osmosis Membrane for Water Desalination: Insight from Molecular Simulation [J]. J. Chem. Phys.2011,134(13):134705.
    [283]Luo, Y.; Harder, E.; Faibish, R. S., et al. Computer Simulations of Water Flux and Salt Permeability of the Reverse Osmosis FT-30Aromatic Polyamide Membrane [J]. J. Membr. Sci.2011,384(1-2):1-9.
    [284]Wang, E. N.; Karnik, R. Water Desalination Graphene Cleans up Water [J]. Nat. Nanotechnol.2012,7(9):552-554.
    [285]Cohen-Tanugi, D.; Grossman, J. C. Water Desalination across Nanoporous Graphene [J]. Nano Lett.2012,12(7):3602-3608.
    [286]Konatham, D.; Yu, J.; Ho, T. A., et al. Simulation Insights for Graphene-Based Water Desalination Membranes [J]. Langmuir2013,29(38):11884-11897.
    [287]Lin, S. C.; Buehler, M. J. Mechanics and Molecular Filtration Performance ofGraphyne Nanoweb Membranes for Selective Water Purification [J]. Nanoscale2013,5(23):11801-11807.
    [288] Zhu, C. Q.; Li, H.; Zeng, X. C., et al. Quantized Water Transport: Ideal Desalinationthrough Graphyne-4Membrane [J]. Sci. Rep.2013,3:3163.
    [289] Xue, M. M.; Qiu, H.; Guo, W. L. Exceptionally Fast Water Desalination at CompleteSalt Rejection by Pristine Graphyne Monolayers [J]. Nanotechnology2013,24(50):505720.
    [290] Kou, J. L.; Zhou, X. Y.; Lu, H. J., et al. Graphyne as the Membrane for WaterDesalination [J]. Nanoscale2014,6(3):1865-1870.
    [291] Fornasiero, F.; Bin In, J.; Kim, S., et al. pH-Tunable Ion Selectivity in CarbonNanotube Pores [J]. Langmuir2010,26(18):14848-14853.
    [292] Jentsch, T. J.; Hubner, C. A.; Fuhrmann, J. C. Ion Channels: Function Unravelled byDysfunction [J]. Nat. Cell Biol.2004,6(11):1039-1047.
    [293] Lopez, C. F.; Nielsen, S. O.; Moore, P. B., et al. Understanding Nature's Design for aNanosyringe [J]. Proc. Natl. Acad. Sci. U. S. A.2004,101(13):4431-4434.
    [294] Hilder, T. A.; Gordon, D.; Chung, S. H. Synthetic Chloride-Selective CarbonNanotubes Examined by Using Molecular and Stochastic Dynamics [J]. Biophys. J.2010,99(6):1734-1742.
    [295] Hilder, T. A.; Chung, S. H. Carbon Nanotube as a Gramicidin Analogue [J]. Chem.Phys. Lett.2011,501(4-6):423-426.
    [296] Hilder, T. A.; Gordon, D.; Chung, S. H. Synthetic Cation-Selective Nanotube:Permeant Cations Chaperoned by Anions [J]. J. Chem. Phys.2011,134(4):045103.
    [297] Hilder, T. A.; Gordon, D.; Chung, S. H. Boron Nitride Nanotubes SelectivelyPermeable to Cations or Anions [J]. Small2009,5(24):2870-2875.
    [298] Hilder, T. A.; Yang, R.; Gordon, D., et al. Silicon Carbide Nanotube as aChloride-Selective Channel [J]. J. Phys. Chem. C2012,116(7):4465-4470.
    [299] Pongprayoon, P.; Beckstein, O.; Sansom, M. S. P. Biomimetic Design of a Brush-LikeNanopore: Simulation Studies [J]. J. Phys. Chem. B2012,116(1):462-468.
    [300] Garcia-Fandino, R.; Sansom, M. S. P. Designing Biomimetic Pores Based on CarbonNanotubes [J]. Proc. Natl. Acad. Sci. U. S. A.2012,109(18):6939-6944.
    [301] Park, J. H.; Sinnott, S. B.; Aluru, N. R. Ion Separation Using a Y-Junction CarbonNanotube [J]. Nanotechnology2006,17(3):895-900.
    [302] Yang, L.; Garde, S. Modeling the Selective Partitioning of Cations into NegativelyCharged Nanopores in Water [J]. J. Chem. Phys.2007,126(8):084706.
    [303]Nasrabadi, A. T.; Foroutan, M. Ion-Separation and Water-Purification Using Single-Walled Carbon Nanotube Electrodes [J]. Desalination2011,277(1-3):236-243.
    [304]Sint, K.; Wang, B.; Kral, P. Selective Ion Passage through Functionalized Graphene Nanopores [J]. J. Am. Chem. Soc.2008,130(49):16448-16449.
    [305]Zhao, S. J.; Xue, J. M.; Kang, W. Ion Selection of Charge-Modified Large Nanopores in a Graphene Sheet [J]. J. Chem. Phys.2013,139(11):114702.
    [306]Won, C. Y.; Aluru, N. R. A Chloride Ion-Selective Boron Nitride Nanotube [J]. Chem. Phys. Lett.2009,478(4-6):185-190.
    [307]Gong, X. J.; Li, J. C.; Guo, C., et al. Molecular Switch for Tuning Ions across Nanopores by an External Electric Field [J]. Nanotechnology2013,24(2):025502.
    [308]Sardroodi, J. J.; Azamat, J.; Rastkar, A., et al. The Preferential Permeation of Ions across Carbon and Boron Nitride Nanotubes [J]. Chem. Phys.2012,403:105-112.
    [309]Yang, D. F.; Liu, Q. Z.; Li, H. M., et al. Molecular Simulation of Carbon Nanotube membrane for Li+and Mg2+Separation [J]. J. Membr. Sci.2013,444:327-331.
    [310]李红曼;杨登峰;刘清芝,等.碳纳米管膜分离Li+/Mg2+的分子动力学模拟[J].高等学校化学学报2013,34(4):925-930.
    [311]Yang, G.; Shi, H.; Liu, W. Q., et al. Investigation of Mg2+/Li+Separation by Nanofiltration [J]. Chin. J. Chem. Eng.2011,19(4):586-591.
    [312]Liu, H. M.; Jameson, C. J.; Murad, S. Molecular Dynamics Simulation of Ion Selectivity Process in Nanopores [J]. Mol. Simul.2008,34(2):169-175.
    [313]Song, C.; Corry, B. Intrinsic Ion Selectivity of Narrow Hydrophobic Pores [J]. J. Phys. Chem. B2009,113(21):7642-7649.
    [314]吴林松;吴锋民;陆杭军,等.条形纳米通道中奇特的钠选择性[J].浙江师范大学学报2011,34(3):281-285.
    [315]Cannon, J. J.; Tang, D.; Hur, N., et al. Competitive Entry of Sodium and Potassium into Nanoscale Pores [J]. J. Phys. Chem. B2010,114(38):12252-12256.
    [316]Hinds, B. Dramatic Transport Properties of Carbon Nanotube Membranes for a Robust Protein Channel Mimetic Platform [J]. Curr. Opin. Solid State Mater. Sci.2012,16(1):1-9.
    [317]Majumder, M.; Zhan, X.; Andrews, R., et al. Voltage Gated Carbon Nanotube Membranes [J]. Langmuir2007,23(16):8624-8631.
    [318]Wu, J.; Zhan, X.; Hinds, B. J. Ionic Rectification by Electrostatically Actuated Tethers on Single Walled Carbon Nanotube Membranes [J]. Chem. Commun.2012,48(64):7979-7981.
    [319] Majumder, M.; Chopra, N.; Hinds, B. J. Effect of Tip Functionalization on Transportthrough Vertically Oriented Carbon Nanotube Membranes [J]. J. Am. Chem. Soc.2005,127(25):9062-9070.
    [320] Wu, J.; Gerstandt, K.; Majumder, M., et al. Highly Efficient Electroosmotic Flowthrough Functionalized Carbon Nanotube Membranes [J]. Nanoscale2011,3(8):3321-3328.
    [321] Majumder, M.; Chopra, N.; Hinds, B. J. Mass Transport through Carbon NanotubeMembranes in Three Different Regimes: Ionic Diffusion and Gas and Liquid Flow [J].ACS Nano2011,5(5):3867-3877.
    [322] Yu, M. A.; Funke, H. H.; Falconer, J. L., et al. Gated Ion Transport through DenseCarbon Nanotube Membranes [J]. J. Am. Chem. Soc.2010,132(24):8285-8290.
    [323] Balme, S.; Janot, J. M.; Berardo, L., et al. New Bioinspired Membrane Made of aBiological Ion Channel Confined into the Cylindrical Nanopore of a Solid-StatePolymer [J]. Nano Lett.2011,11(2):712-716.
    [324] Alder, B. J.; Wainwright, T. E. Phase Transition for a Hard Sphere System [J]. J. Chem.Phys.1957,27(5):1208-1209.
    [325] MacKerell, A. D. J.; Bashford, D.; Bellott, et al. All-Atom Empirical Potential forMolecular Modeling and Dynamics Studies of Proteins [J]. J. Phys. Chem. B1998,102(18):3586-3616.
    [326] Jorgensen, W. L.; Tirado-Rives, J. The OPLS [Optimized Potentials for LiquidSimulations] Potential Functions for Proteins, Energy Minimizations for Crystals ofCyclic Peptides and Crambin [J]. J. Am. Chem. Soc.1988,110(6):1657-1666.
    [327] Schuler, L. D.; Daura, X.; Van Gunsteren, W. F. An Improved Gromos96Force Fieldfor Aliphatic Hydrocarbons in the Condensed Phase [J]. J. Comput. Chem.2001,22(11):1205-1218.
    [328] Cornell, W. D.; Cieplak, P.; Bayly, C. I., et al. A Second Generation Force Field for theSimulation of Proteins, Nucleic Acids, and Organic Molecules [J]. J. Am. Chem. Soc.1995,117(19):5179-5197.
    [329] Sun, H. Compass: An Ab Initio Force-Field Optimized for Condensed-PhaseApplications-Overview with Details on Alkane and Benzene Compounds [J]. J. Phys.Chem. B1998,102(38):7338-7364.
    [330] Verlet, L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Propertiesof Lennard-Jones Molecules [J]. Phys. Rev.1967,159(1):98-103.
    [331]Hockney, R. W.; Goel, S. P.; Eastwood, J. W. Quiet High-Resolution Computer Models of a Plasma [J]. J. Comput. Phys.1974,14(2):148-58.
    [332]Swope, W. C.; Andersen, H. C.; Berens, P. H., et al. A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules:Application to Small Water Clusters [J]. J. Chem. Phys.1982,76(1):637-49.
    [333]Isralewitz, B.; Gao, M.; Schulten, K. Steered Molecular Dynamics and Mechanical Functions of Proteins [J]. Curr. Opin. Struct. Biol.2001,11(2):224-230.
    [334]Torrie, G. M.; Valleau, J. P. Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling [J]. J. Comput. Phys.1977,23(2):187-199.
    [335]Kollman, P. Free Energy Calculations:Applications to Chemical and Biochemical Phenomena [J]. Chem. Rev.1993,93(7):2395-2417.
    [336]Kumar, S.; Bouzida, D.; Swendsen, R. H., et al. The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules.1. The Method [J]. J. Comput. Chem.1992,13(8):1011-1021.
    [337]Bennett, C. H. Efficient Estimation of Free-Energy Differences from Monte-Carlo Data [J]. J. Comput. Phys.1976,22(2):245-268.
    [338]Sholl, D. S.; Johnson, J. K. Making High-Flux Membranes with Carbon Nanotubes [J]. Science2006,312(5776):1003-1004.
    [339]王俊;朱宇;周健,等.受限于不同螺旋性的纳米碳管中水的分子动力学模拟[J].化学学报2003,61(12):1891-1896.
    [340]邵庆;黄亮亮;陆小华,等.受限于纳米碳管中的乙醇分子的结构和扩散的分子模拟研究[J].化学学报2007,65(20):2217-2223.
    [341]李春喜;田茹;卢贵武,等.电解质模型流体的MonteCarlo分子模拟[J].化学学报2003,61(2):175-180.
    [342]史红兵;于养信;高光华.电解质溶液传递性质的布朗动力学模拟研究[J].化学学报2005,63(5):358-362.
    [343]冯海军;周健;陆小华.电解质溶液界面结构的分子动力学模拟研究[J].化学学报2009,67(21):2407-2412.
    [344]Feng, H.; Zhou, J.; Lu, X., et al. Communication: Molecular Dynamics Simulations of the Interfacial Structure of Alkali Metal Fluoride Solutions [J]. J. Chem. Phys.2010,133(6):061103.
    [345] Shao, Q.; Zhou, J.; Lu, L., et al. Anomalous Hydration Shell Order of Na+and K+inside Carbon Nanotubes [J]. Nano Lett.2009,9(3):989-994.
    [346] Liu, H.; Murad, S.; Jameson, C. J. Ion Permeation Dynamics in Carbon Nanotubes [J].J. Chem. Phys.2006,125(8):084713.
    [347] Beu, T. A. Molecular Dynamics Simulations of Ion Transport through CarbonNanotubes. I. Influence of Geometry, Ion Specificity, and Many-Body Interactions [J].J. Chem. Phys.2010,132(16):164513.
    [348] Hess, B.; Kutzner, C.; van der Spoel, D., et al. Gromacs4: Algorithms for HighlyEfficient, Load-Balanced, and Scalable Molecular Simulation [J]. J. Chem. TheoryComput.2008,4(3):435-447.
    [349] Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The Missing Term in Effective PairPotentials [J]. J. Phys. Chem.1987,91(24):6269-6271.
    [350] Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·log(N) Method forEwald Sums in Large Systems [J]. J. Chem. Phys.1993,98(12):10089-10092.
    [351] Hoover, W. G. Canonical Dynamics: Equilibrium Phase-Space Distributions [J]. Phys.Rev. A1985,31(3):1695-1697.
    [352] Ghosh, S.; Sood, A. K.; Kumar, N. Carbon Nanotube Flow Sensors [J]. Science2003,299(5609):1042-1044.
    [353] Regan, B. C.; Aloni, S.; Ritchie, R. O., et al. Carbon Nanotubes as Nanoscale MassConveyors [J]. Nature2004,428(6986):924-927.
    [354] Gong, X. J.; Li, J. C.; Xu, K., et al. A Controllable Molecular Sieve for Na+and K+Ions[J]. J. Am. Chem. Soc.2010,132(6):1873-1877.
    [355] Zhao, W. H.; Shang, B.; Du, S. P., et al. Highly Selective Adsorption of Methanol inCarbon Nanotubes Immersed in Methanol-Water Solution [J]. J. Chem. Phys.2012,137(3):034501.
    [356] Shao, Q.; Huang, L. L.; Zhou, J., et al. Molecular Dynamics Study on Diameter Effectin Structure of Ethanol Molecules Confined in Single-Walled Carbon Nanotubes [J]. J.Phys. Chem. C2007,111(43):15677-15685.
    [357] Shi, N.; Ye, S.; Alam, A., et al. Atomic Structure of a Na+-and K+-Conducting Channel[J]. Nature2006,440(7083):570-574.
    [358] Corry, B.; Thomas, M. Mechanism of Ion Permeation and Selectivity in a VoltageGated Sodium Channel [J]. J. Am. Chem. Soc.2012,134(3):1840-1846.
    [359] Zhu, Y. D.; Zhou, J.; Lu, X. H., et al. Molecular Simulations on Nanoconfined WaterMolecule Behaviors for Nanoporous Material Applications [J]. Microfluid. Nanofluid.2013:191-205.
    [360] Jungwirth, P.; Tobias, D. J. Specific Ion Effects at the Air/Water Interface [J]. Chem.Rev.2006,106(4):1259-1281.
    [361] Caleman, C.; Hub, J. S.; van Maaren, P. J., et al. Atomistic Simulation of Ion Solvationin Water Explains Surface Preference of Halides [J]. Proc. Natl. Acad. Sci. U. S. A.2011,108(17):6838-6842.
    [362] Phillips, K. A.; Palmer, J. C.; Gubbins, K. E. Analysis of the Solvation Structure ofRubidium Bromide under Nanoconfinement [J]. Mol. Simul.2012,38(14-15):1209-1220.
    [363] Leng, Y. S.; Cummings, P. T. Shear Dynamics of Hydration Layers [J]. J. Chem. Phys.2006,125(10):104701.
    [364] Chialvo, A. A.; Cummings, P. T. Aqua Ions-Graphene Interfacial and ConfinementBehavior: Insights from Isobaric-Isothermal Molecular Dynamics [J]. J. Phys. Chem. A2011,115(23):5918-5927.
    [365]Marcus, Y. Effect of Ions on the Structure of Water: Structure Making and Breaking [J].Chem. Rev.2009,109(3):1346-1370.
    [366] Byl, O.; Liu, J. C.; Wang, Y., et al. Unusual Hydrogen Bonding in Water-Filled CarbonNanotubes [J]. J. Am. Chem. Soc.2006,128(37):12090-12097.
    [367] Essmann, U.; Perera, L.; Berkowitz, M. L., et al. A Smooth Particle Mesh EwaldMethod [J]. J. Chem. Phys.1995,103(19):8577-8593.
    [368] Miyamoto, S.; Kollman, P. A. Settle: An Analytical Version of the Shake and RattleAlgorithm for Rigid Water Models [J]. J. Comput. Chem.1992,13(8):952-962.
    [369] Nose, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble[J]. Mol. Phys.2002,100(1):191-198.
    [370] Beutler, T. C.; Mark, A. E.; Vanschaik, R. C., et al. Avoiding Singularities andNumerical Instabilities in Free-Energy Calculations Based on Molecular Simulations[J]. Chem. Phys. Lett.1994,222(6):529-539.
    [371] Luo, C. F.; Fa, W.; Zhou, J., et al. Ferroelectric Ordering in Ice Nanotubes Confined inCarbon Nanotubes [J]. Nano Lett.2008,8(9):2607-2612.
    [372] Mikami, F.; Matsuda, K.; Kataura, H., et al. Dielectric Properties of Water insideSingle-Walled Carbon Nanotubes [J]. ACS Nano2009,3(5):1279-1287.
    [373] Soper, A. K.; Bruni, F.; Ricci, M. A. Site-Site Pair Correlation Functions of Water from25to400°C: Revised Analysis of New and Old Diffraction Data [J]. J. Chem. Phys. 1997,106(1):247-254.
    [374]Bai, J. E.; Wang, J.; Zeng, X. C. Multiwalled Ice Helixes and Ice Nanotubes [J]. Proc. Natl. Acad. Sci. U. S. A.2006,103(52):19664-19667.
    [375]Ohba, T.; Taira, S.; Hata, K., et al. Predominant Nanoice Growth in Single-Walled Carbon Nanotubes by Water-Vapor Loading [J]. Rsc Adv.2012,2(9):3634-3637.
    [376]Jazdzewska, M.; Sliwinska-Bartkowiak, M. M.; Beskrovnyy, A. I., et al. Novel Ice Structures in Carbon Nanopores:Pressure Enhancement Effect of Confinement [J]. Phys. Chem. Chem. Phys.2011,13(19):9008-9013.
    [377]Lee, S. H.; Rasaiah, J. C. Molecular Dynamics Simulation of Ion Mobility.2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at25℃[J]. J. Phys. Chem.1996,100(4):1420-1425.
    [378]贺仲金;周健.离子通过碳纳米管的拉伸分子动力学模拟[J].化学学报2011,69(24):2901-2907.
    [379]Rasaiah, J. C.; Noworyta, J. P.; Koneshan, S. Structure of Aqueous Solutions of Ions and Neutral Solutes at Infinite Dilution at a Supercritical Temperature of683K [J]. J. Am. Chem. Soc.2000,122(45):11182-11193.
    [380]Strauss, I.; Chan, H.; Kral, P. Ultralong Polarization Chains Induced by Ions Solvated in Confined Water Monolayers [J]. J. Am. Chem. Soc.2014,136(4):1170-1173.
    [381]Jovanovic-Talisman, T.; Tetenbaum-Novatt, J.; McKenney, A. S., et al. Artificial Nanopores That Mimic the Transport Selectivity of the Nuclear Pore Complex [J]. Nature2009,457(7232):1023-1027.
    [382]Hou, X.; Yang, F.; Li, L., et al. A Biomimetic Asymmetric Responsive Single Nanochannel [J]. J. Am. Chem. Soc.2010,132(33):11736-11742.
    [383]Zhou, X. B.; Liu, G. D.; Yamato, K., et al. Self-Assembling Subnanometer Pores with Unusual Mass-Transport Properties [J]. Nat. Commun.2012,3(949.
    [384]Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural Defects in Graphene [J]. ACS Nano2011,5(1):26-41.
    [385]Sun, P. Z.; Zhu, M.; Wang, K. L., et al. Selective Ion Penetration of Graphene Oxide Membranes [J]. ACS Nano2013,7(1):428-437.
    [386]Jeong, H.; Kim, H. S.; Lee, S. H., et al. Quantum Interference in DNA Bases Probed by Graphene Nanoribbons [J]. Appl. Phys. Lett.2013,103(2):023701.
    [387]Sathe, C.; Zou, X. Q.; Leburton, J. P., et al. Computational Investigation of DNA Detection Using Graphene Nanopores [J]. ACS Nano2011,5(11):8842-8851.
    [388]Favre, I.; Moczydlowski, E.; Schild, L. On the Structural Basis for Ionic Selectivityamong Na+, K+, and Ca2+in the Voltage-Gated Sodium Channel [J]. Biophys. J.1996,71(6):3110-3125.
    [389] Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A., et al. The Structure of the PotassiumChannel: Molecular Basis of K+Conduction and Selectivity [J]. Science1998,280(5360):69-77.
    [390] Hille, B. The Permeability of the Sodium Channel to Metal Cations in MyelinatedNerve [J]. J. Gen. Physiol.1972,59(6):637-658.
    [391] MacKerell, A. D.; Bashford, D.; Bellott, M., et al. All-Atom Empirical Potential forMolecular Modeling and Dynamics Studies of Proteins [J]. J. Phys. Chem. B1998,102(18):3586-3616.
    [392] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D., et al. Comparison of SimplePotential Functions for Simulating Liquid Water [J]. J. Chem. Phys.1983,79(2):926-935.
    [393] Aksimentiev, A.; Schulten, K. Imaging Alpha-Hemolysin with Molecular Dynamics:Ionic Conductance, Osmotic Permeability, and the Electrostatic Potential Map [J].Biophys. J.2005,88(6):3745-3761.
    [394] Aksimentiev, A. Deciphering Ionic Current Signatures of DNA Transport through aNanopore [J]. Nanoscale2010,2(4):468-483.
    [395] Torrie, G. M.; Valleau, J. P. Monte-Carlo Free-Energy Estimates UsingNon-Boltzmann Sampling-Application to Subcritical Lennard-Jones Fluid [J]. Chem.Phys. Lett.1974,28(4):578-581.
    [396] Grossfield, Alan."WHAM: the weighted histogram analysis method", version2.0.6,http://membrane.urmc.rochester.edu/content/wham.
    [397] Bonomi, M.; Branduardi, D.; Bussi, G., et al. Plumed: A Portable Plugin forFree-Energy Calculations with Molecular Dynamics [J]. Comput. Phys. Commun.2009,180(10):1961-1972.
    [398] Bagri, A.; Mattevi, C.; Acik, M., et al. Structural Evolution During the Reduction ofChemically Derived Graphene Oxide [J]. Nat. Chem.2010,2(7):581-587.
    [399] He, Z. J.; Zhou, J.; Lu, X. H., et al. Ice-Like Water Structure in Carbon Nanotube (8,8)Induces Cationic Hydration Enhancement [J]. J. Phys. Chem. C2013,117(21):11412-11420.
    [400] Noskov, S. Y.; Roux, B. Control of Ion Selectivity in Leut: Two Na+Binding Sites withTwo Different Mechanisms [J]. J. Mol. Biol.2008,377(3):804-818.
    [401] Terekhova, I. V.; Romanova, A. O.; Kumeev, R. S., et al. Selective Na+/K+Effects onthe Formation of-Cyclodextrin Complexes with Aromatic Carboxylic Acids:Competition for the Guest [J]. J. Phys. Chem. B2010,114(39):12607-12613.
    [402] Annapureddy, H. V. R.; Dang, L. X. Molecular Mechanism of Specific Ion Interactionsbetween Alkali Cations and Acetate Anion in Aqueous Solution: A MolecularDynamics Study [J]. J. Phys. Chem. B2012,116(25):7492-7498.
    [403] Jensen, M. O.; Jogini, V.; Borhani, D. W., et al. Mechanism of Voltage Gating inPotassium Channels [J]. Science2012,336(6078):229-233.
    [404] Gong, X. J.; Li, J. Y.; Zhang, H., et al. Enhancement of Water Permeation across aNanochannel by the Structure Outside the Channel [J]. Phys. Rev. Lett.2008,101(25):257801.
    [405] Beckstein, O.; Sansom, M. S. P. Liquid-Vapor Oscillations of Water in HydrophobicNanopores [J]. Proc. Natl. Acad. Sci. U. S. A.2003,100(12):7063-7068.
    [406] Qiao, R.; Aluru, N. R. Charge Inversion and Flow Reversal in a NanochannelElectro-Osmotic Flow [J]. Phys. Rev. Lett.2004,92(19):198301.
    [407] Qiao, R.; Georgiadis, J. G.; Aluru, N. R. Differential Ion Transport InducedElectroosmosis and Internal Recirculation in Heterogeneous Osmosis Membranes [J].Nano Lett.2006,6(5):995-999.
    [408] Ho, C.; Qiao, R.; Heng, J. B., et al. Electrolytic Transport through a SyntheticNanometer-Diameter Pore [J]. Proc. Natl. Acad. Sci. U. S. A.2005,102(30):10445-10450.
    [409] Chen, H. Y.; Gong, X. G.; Liu, Z. F., et al. Separation of Hydrogen Using aSize-Changeable Nanochannel [J]. J. Phys. Chem. C2011,115(11):4721-4725.
    [410] Coti, K. K.; Belowich, M. E.; Liong, M., et al. Mechanised Nanoparticles for DrugDelivery [J]. Nanoscale2009,1(1):16-39.
    [411] Adiga, S. P.; Brenner, D. W. Flow Control through Polymer-Grafted Smart NanofluidicChannels: Molecular Dynamics Simulations [J]. Nano Lett.2005,5(12):2509-2514.
    [412] Kocer, A.; Walko, M.; Meijberg, W., et al. A Light-Actuated Nanovalve Derived froma Channel Protein [J]. Science2005,309(5735):755-758.
    [413] Yang, L. M.; Wray, R.; Parker, J., et al. Three Routes to Modulate the Pore Size of theMscL Channel/Nanovalve [J]. ACS Nano2012,6(2):1134-1141.
    [414] Hilf, R. J. C.; Dutzler, R. X-Ray Structure of a Prokaryotic Pentameric Ligand-GatedIon Channel [J]. Nature2008,452(7185):375-379.
    [415] Bass, R. B.; Strop, P.; Barclay, M., et al. Crystal Structure of Escherichia coli MscS, aVoltage-Modulated and Mechanosensitive Channel [J]. Science2002,298(5598):1582-1587.
    [416] Nury, H.; Poitevin, F.; Van Renterghem, C., et al. One-Microsecond MolecularDynamics Simulation of Channel Gating in a Nicotinic Receptor Homologue [J]. Proc.Natl. Acad. Sci. U. S. A.2010,107(14):6275-6280.
    [417] He, Z. J.; Zhou, J.; Lu, X. H., et al. Bioinspired Graphene Nanopores with VoltageTunable Ion Selectivity for Na+and K+[J]. ACS Nano2013,7(11):10148-10157.
    [418] Unwin, N. Acetylcholine Receptor Channel Imaged in the Open State [J]. Nature1995,373(6509):37-43.
    [419]Nose, S. A Molecular-Dynamics Method for Simulations in the Canonical Ensemble [J].Mol. Phys.1984,52(2):255-268.
    [420] Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A NewMolecular Dynamics Method [J]. J. Appl. Phys.1981,52(12):7182-7190.
    [421] Grubmuller, H.; Heymann, B.; Tavan, P. Ligand Binding: Molecular MechanicsCalculation of the Streptavidin-Biotin Rupture Force [J]. Science1996,271(5251):997-999.
    [422] Smart, O. S.; Neduvelil, J. G.; Wang, X., et al. Hole: A Program for the Analysis of thePore Dimensions of Ion Channel Structural Models [J]. J. Mol. Graphics1996,14(6):354-360.
    [423] Tombler, T. W.; Zhou, C. W.; Alexseyev, L., et al. Reversible ElectromechanicalCharacteristics of Carbon Nanotubes under Local-Probe Manipulation [J]. Nature2000,405(6788):769-772.
    [424] Jeng, Y. R.; Tsai, P. C.; Fang, T. H. Molecular-Dynamics Studies of BendingMechanical Properties of Empty and C60-Filled Carbon Nanotubes underNanoindentation [J]. J. Chem. Phys.2005,122(22):224713.
    [425] Meyer, E. Atomic Force Microscopy [J]. Prog. Surf. Sci.1992,41(1):3-49.
    [426] Liu, L.; Jayanthi, C. S.; Tang, M. J., et al. Controllable Reversibility of an sp2to sp3Transition of a Single Wall Nanotube under the Manipulation of an AFM Tip: ANanoscale Electromechanical Switch?[J]. Phys. Rev. Lett.2000,84(21):4950-4953.
    [427] Maiti, A. Mechanical Deformation in Carbon Nanotubes-Bent Tubes vs Tubes Pushedby Atomically Sharp Tips [J]. Chem. Phys. Lett.2000,331(1):21-25.
    [428] He, Z. J.; Corry, B.; Lu, X. H., et al. A Mechanical Nanogate Based on a CarbonNanotube for Reversible Control of Ion Conduction [J]. Nanoscale2014,6(7):3686-3694.
    [429] Ren, Y.; Li, F.; Cheng, H. M., et al. Tension-Tension Fatigue Behavior ofUnidirectional Single-Walled Carbon Nanotube Reinforced Epoxy Composite [J].Carbon2003,41(11):2177-2179.
    [430] Liu, Z.; Cai, W. B.; He, L. N., et al. In vivo Biodistribution and Highly EfficientTumour Targeting of Carbon Nanotubes in Mice [J]. Nat. Nanotechnol.2007,2(1):47-52.
    [431] Zhang, Y.; Shi, Z.; Gu, Z., et al. Structure Modification of Single-Wall CarbonNanotubes [J]. Carbon2000,38(15):2055-2059.
    [432] Prevoteau, A.; Soulie-Ziakovic, C.; Leibler, L. Universally Dispersible CarbonNanotubes [J]. J. Am. Chem. Soc.2012,134(49):19961-19964.
    [433] Kim, S. W.; Kim, T.; Kim, Y. S., et al. Surface Modifications for the EffectiveDispersion of Carbon Nanotubes in Solvents and Polymers [J]. Carbon2012,50(1):3-33.
    [434] Britz, D. A.; Khlobystov, A. N. Noncovalent Interactions of Molecules with SingleWalled Carbon Nanotubes [J]. Chem. Soc. Rev.2006,35(7):637-659.
    [435] O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B., et al. Band Gap Fluorescence fromIndividual Single-Walled Carbon Nanotubes [J]. Science2002,297(5581):593-596.
    [436] Richard, C.; Balavoine, F.; Schultz, P., et al. Supramolecular Self-Assembly of LipidDerivatives on Carbon Nanotubes [J]. Science2003,300(5620):775-778.
    [437] Arnold, M. S.; Green, A. A.; Hulvat, J. F., et al. Sorting Carbon Nanotubes byElectronic Structure Using Density Differentiation [J]. Nat. Nanotechnol.2006,1(1):60-65.
    [438] Niyogi, S.; Densmore, C. G.; Doom, S. K. Electrolyte Tuning of Surfactant InterfacialBehavior for Enhanced Density-Based Separations of Single-Walled Carbon Nanotubes[J]. J. Am. Chem. Soc.2009,131(3):1144-1153.
    [439] Tang, B. Z.; Xu, H. Y. Preparation, Alignment, and Optical Properties of SolublePoly(Phenylacetylene)-Wrapped Carbon Nanotubes [J]. Macromolecules1999,32(8):2569-2576.
    [440] Star, A.; Steuerman, D. W.; Heath, J. R., et al. Starched Carbon Nanotubes [J]. Angew.Chem. Int. Ed.2002,41(14):2508-2512.
    [441] Zheng, M.; Jagota, A.; Semke, E. D., et al. DNA-Assisted Dispersion and Separation ofCarbon Nanotubes [J]. Nat. Mater.2003,2(5):338-342.
    [442] Karajanagi, S. S.; Yang, H. C.; Asuri, P., et al. Protein-Assisted Solubilization ofSingle-Walled Carbon Nanotubes [J]. Langmuir2006,22(4):1392-1395.
    [443] Matsuura, K.; Saito, T.; Okazaki, T., et al. Selectivity of Water-Soluble Proteins inSingle-Walled Carbon Nanotube Dispersions [J]. Chem. Phys. Lett.2006,429(4-6):497-502.
    [444] Nepal, D.; Geckeler, K. E. Proteins and Carbon Nanotubes: Close Encounter in Water[J]. Small2007,3(7):1259-1265.
    [445] Ortiz-Acevedo, A.; Xie, H.; Zorbas, V., et al. Diameter-Selective Solubilization ofSingle-Walled Carbon Nanotubes by Reversible Cyclic Peptides [J]. J. Am. Chem. Soc.2005,127(26):9512-9517.
    [446] Chiu, C. C.; Maher, M. C.; Dieckmann, G. R., et al. Molecular Dynamics Study of aCarbon Nanotube Binding Reversible Cyclic Peptide [J]. ACS Nano2010,4(5):2539-2546.
    [447] Friling, S. R.; Notman, R.; Walsh, T. R. Probing Diameter-Selective Solubilisation ofCarbon Nanotubes by Reversible Cyclic Peptides Using Molecular DynamicsSimulations [J]. Nanoscale2010,2(1):98-106.
    [448] Gao, J.; Loi, M. A.; de Carvalho, E. J. F., et al. Selective Wrapping and SupramolecularStructures of Polyfluorene-Carbon Nanotube Hybrids [J]. ACS Nano2011,5(5):3993-3999.
    [449] Yu, T.; Gong, Y. X.; Lu, T. T., et al. Recognition of Carbon Nanotube Chirality byPhage Display [J]. Rsc Adv.2012,2(4):1466-1476.
    [450] Wang, S. Q.; Humphreys, E. S.; Chung, S. Y., et al. Peptides with Selective Affinity forCarbon Nanotubes [J]. Nat. Mater.2003,2(3):196-200.
    [451] Roman, T.; Dino, W. A.; Nakanishi, H., et al. Amino Acid Adsorption onSingle-Walled Carbon Nanotubes [J]. Eur. Phys. J. D2006,38(1):117-120.
    [452] Rajesh, C.; Majumder, C.; Mizuseki, H., et al. A Theoretical Study on the Interaction ofAromatic Amino Acids with Graphene and Single Walled Carbon Nanotube [J]. J.Chem. Phys.2009,130(12):124911.
    [453] Wang, C. H.; Li, S.; Zhang, R. Q., et al. Adsorption and Properties of Aromatic AminoAcids on Single-Walled Carbon Nanotubes [J]. Nanoscale2012,4(4):1146-1153.
    [454] Yang, Z. X.; Wang, Z. G.; Tian, X. L., et al. Amino Acid Analogues Bind to CarbonNanotube Via Pi-Pi Interactions: Comparison of Molecular Mechanical and QuantumMechanical Calculations [J]. J. Chem. Phys.2012,136(2):025103.
    [455] Umadevi, D.; Sastry, G. N. Impact of the Chirality and Curvature of CarbonNanostructures on Their Interaction with Aromatics and Amino Acids [J].ChemPhysChem2013,14(11):2570-2578.
    [456] Anversa, J.; Piquini, P. The Effects of an Explicit Water Environment on the Interactionof a Single Wall Carbon Nanotube with Amino Acids: A Theoretical Study [J]. Chem.Phys. Lett.2011,518:81-86.
    [457] Az'hari, S.; Ghayeb, Y. Effect of Chirality, Length and Diameter of Carbon Nanotubeson the Adsorption of20Amino Acids: A Molecular Dynamics Simulation Study [J].Mol. Simul.2014,40(5):392-398.
    [458] Piao, L. Y.; Liu, Q. R.; Li, Y. D., et al. Adsorption of L-Phenylalanine onSingle-Walled Carbon Nanotubes [J]. J. Phys. Chem. C2008,112(8):2857-2863.
    [459] Piao, L. Y.; Liu, Q. R.; Li, Y. D. Interaction of Amino Acids and Single-Wall CarbonNanotubes [J]. J. Phys. Chem. C2012,116(2):1724-1731.
    [460] Zhong, J.; Meng, J.; Liang, X. Q., et al. Xanes Study of Phenylalanine and GlycineAdsorption on Single-Walled Carbon Nanotubes [J]. Mater. Lett.2009,63(3-4):431-433.
    [461] Tummala, N. R.; Striolo, A. SDS Surfactants on Carbon Nanotubes: AggregateMorphology [J]. ACS Nano2009,3(3):595-602.
    [462] Xu, Z. J.; Yang, X. N.; Yang, Z. A Molecular Simulation Probing of Structure andInteraction for Supramolecular Sodium Dodecyl Sulfate/Single-Wall Carbon NanotubeAssemblies [J]. Nano Lett.2010,10(3):985-991.
    [463] Suttipong, M.; Tummala, N. R.; Striolo, A., et al. Salt-Specific Effects in AqueousDispersions of Carbon Nanotubes [J]. Soft Matter2013,9(14):3712-3719.
    [464]Nose, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble [J].Mol. Phys.1984,52(2):255-268.
    [465] Monera, O. D.; Sereda, T. J.; Zhou, N. E., et al. Relationship of SidechainHydrophobicity and-Helical Propensity on the Stability of the Single-StrandedAmphipathic-Helix [J]. J. Pept. Sci.1995,1(5):319-329.
    [466] Tummala, N. R.; Striolo, A. Role of Counterion Condensation in the Self-Assembly ofSds Surfactants at the Water-Graphite Interface [J]. J. Phys. Chem. B2008,112(7):1987-2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700