车载武器系统起竖仿真平台的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着计算机与信息技术的高速发展,虚拟现实技术在科研、生产、生活中的应用越来越深入与广泛。作为虚拟现实技术最重要的表现形式,视景仿真是一种可以让用户产生身临其境感觉的交互式三维虚拟环境,可通过视觉、听觉、触觉甚至嗅觉上的实时感知让用户与所模拟的三维虚拟环境直接进行自然的交流。基于上述特点,虚拟现实技术已经成功应用于海洋仿真、地面战争模拟、车辆驾驶仿真、飞行仿真、城市规划仿真、三维游戏开发、建筑设计漫游等方面,并不断地向新的领域扩展。
     现代战争科技水平越来越高,对武器精度的要求和军事人员的综合素质要求也越来越高,因此,世界各国不惜耗费巨资进行各种武器装备试验和军事人员实战训练,不断提高军队的战斗力。但是真实作战训练会出现许多实际问题比如:有一定危险性、费用过高以及受真实地理环境的限制等等,而虚拟现实技术可以很好的模拟高度逼真的三维虚拟战场环境、模拟和控制各种武器装备的运动和功能以及模拟实战中的各个环节,很大程度上解决上述实战训练中的问题,从而将虚拟现实技术应用到军事领域渐渐成为一种潮流和趋势,因此近些年虚拟现实技术在军事领域的应用越来越广泛和深入。
     在这样的背景下,为了方便新一代车载武器系统的研究,本课题志在研究开发一个车载武器系统起竖仿真平台,该平台能够实现在不同的仿真模式和导航参数设置下,模拟车载武器发射前的各种起竖过程,并同步进行导航解算仿真,最终实时而直观地描述车载武器系统在各种导航和起竖方式下的解算精度。
     论文首先基于Multigen-Paradigm公司的Creator建模软件和Vega三维视景仿真技术,深入研究了车载武器系统和地形三维建模,以及三维虚拟场景的创建、实时仿真和控制。然后设计编写一种适合于本课题的具有各种参数接口的捷联惯导导航算法,研究不同仿真模式下的导航解算仿真。接下来在VC++6.0开发环境中设计开发起竖仿真平台框架,以独立模块的形式加入三维视景仿真模块和惯组导航解算模块,并研究设计一套科学高效的运行流程和控制逻辑,确保平台能够正确、稳定和高效地运行。最后设计一个友好、美观、大方的起竖仿真平台界面,实现人机交互功能。
     经过大量的后期测试,平台成功地实现了预期的功能,运行良好。
With the rapid development of computer and information technology, the application of Virtual Reality Technology becomes more and more deeply and widly in scientific research, manufacture and daily life. As the most important representative form, Scene Simulation is a interactive 3D visual environment which can make people feel like they are in reality, it can make the user and the 3D visual environment communicating directly by the feeling on vision, hearing, touch and smell. Hence, Virtual Reality Technology has been used in sea simulation, war simulation, driving simulation, flying simulation and so on, it will be used in more and more area.
     The level of modern warfare technology bocomes higher and higher, so the precision weapons requirements and the overall quality of military personnel requirements bocomes higher and higher, therefore, the military expenditure was spared for a variety of weapons and equipment testing and combat training of military personnel to continuously improve the armed forces combat effectiveness. But There will be many practical issues in real combat training such as:There is some risk, high cost and subject to geographical constraints, Virtual Reality Technology can be a very good three-dimensional simulation of highly realistic virtual battlefield environment, simulation and control of the kinds of weapons and equipment movement and function as well as all aspects of simulation of actual combat, combat training in large part to solve the above problem, which will be applied to virtual reality military gradually become a trend, so the application of Virtual Reality Technology in the military becomes more and more extensive and in-depth in recent years.
     Under the background just mentioned above, In order to make it easy on the research of a new generation of the Car Weapon System, this paper aim at designing an Erecting simulation platform of Car Weapon System. This platform can simulate all kinds of erecting process of the Car Weapon before launching and achieve the simulation of navigation calculation at the same time with different simulation models and navigation parameters, it can also describe the calculation precision of the Car-Weapon System with different navigation and erecting process timely and directly.
     Firstly, this paper has made a deep research not only on how to create the 3D models of the Car Weapon System and terrain but also on how to create, simulate and control the 3D virtual scene based on Creator software and Vega 3D scene simulation technology producted by Multigen-Paradigm Company. Then it designed and programmed an algorithm of Strap-down Inertial Navigation System with all kinds of parameter interface which is suitable for this paper in order to make a research on the simulation of navigation calculation under different simulation modes. The next work is to design the frame of the erecting simulation platform in the VC++6.0 development environment, then importing the 3D Scene Simulation Module and the Navigation Calculation Module into the frame. Then Designing a scientific, efficient running flow and control logic to make sure the platform can work accurately, steadily and efficiently. The last work is to design a friendly, beautiful and handsome interface in order to achieve the function of Human-Computer interaction.
     After testing and debugging, the platform has achieved prospective function and works well.
引文
[1]李珍香.仿真技术与虚拟现实技术[J].电脑学习.2002.10(5):2-3页
    [2]汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用[M].北京:清华大学出版社,1997:25-29页
    [3]管华.战术武器战场环境仿真系统的研究[D].中国人民解放军信息工程大学硕士学位论文.2003.4:32-35页
    [4]李丽荣,陆宇平,王彦民.虚拟现实技术在军事领域的应用[J].飞机设计第3期.2005.9:7-11页
    [5]游雄.基于虚拟现实技术的战场环境仿真[J].测绘学报.2002.10(3):6-9页
    [6]胡晓峰.军事仿真概念、现状与发展测控技术[M].2000:15-18页
    [7]康凤举.现代仿真技术与应用[M].北京:国防工业出版社,2001.9:19-20页
    [8]孟晓梅,刘文庆Multigen Creator教程[M].北京:国防工业出版社,2005:76-78页
    [9]The Multigen Creator Desktop Tutor.Version 2.6.U.S.A MultiGen Paradigm Inc. 2004:153-156P
    [10]Multigen Creator User Guide.Version 2.6. Multigen Paradigm Inc.2004:211-241P
    [11]OpenFlight Scene Description Database Specification [Version 15.7].2000:34-42P
    [12]王乘,李利军,周均清Creator可视化仿真建模技术[M].武汉:华中科技大学出版社,2005.3:75-79页,114-121页
    [13]范波,吴慧中.多面体表面纹理映射技术的研究[J].计算机研究与发展.1999.5(3):441-447页
    [14]Creating Terrain for Simulation.Version 2.6. Multigen Paradigm Inc.2004:277-285P
    [15]龚卓蓉Vega程序设计[M].北京:国防工业出版社,2002:129-141页
    [16]王乘,李利军,周均清,陈大炜Vega实时三维视景仿真技术[M].武汉:华中科技大学出版社.2004:303-311页
    [17]刘晓波等.一个基于Vega的虚拟场景漫游系统[J].计算机应用.2002:8-12页
    [18]MultiGen-Paradigm.Inc. Lynx Users Guide [M].2001:34-42P
    [19]Simon Premoze, Michael Ashikhmin M.Rendering Natural Waters. Computer Graphic Forum,2001.20:188-201P
    [20]李靖谊等.交互式计算机图形学[M].北京:航空工业出版社,2000:212-215页
    [21]王振波.虚拟现实中的逼真渲染[D].北京航空航天大学硕士学位论文,2004:19-22页
    [22]张云勇,白中建,敬万均.虚拟现实系统的建立[J].计算机应用.2000.6(4):21-26页
    [23]陈哲.捷联惯导系统原理[M].北京:宇航出版社,1986:35-38页
    [24]吴俊伟.惯性技术基础[M].哈尔滨:哈尔滨工程大学出版社.2002.2:17-18页
    [25]黄德鸣,程禄.惯性导航系统[M].哈尔滨:哈尔滨工程大学出版社.154-159页
    [26]张士邈,刘放,秦永元.捷联惯导姿态算法若干问题的研究[J].中国惯性技术学报,2002.10(2):1-6页
    [27]秦永元.惯性导航原理[M].西安:西北工业出版社,2006:360-380页
    [28]赵睿.捷联惯性系统初始对准研究[D].东南大学硕士学位论文,2006:41-46页
    [29]杨艳娟.捷联惯性导航系统关键技术研究[D].哈尔滨工程大学工学博士学位论文.2001:53-55页
    [30]李滋刚,万德钧.捷联式惯性导航技术[J].中国船舶信息中心,2001.10(3):19-20页
    [31]袁信,郑谔.捷联式惯性导航原理[M].北京:航空专业教材编审组.1985:48-53页
    [32]付强文.光纤陀螺捷联惯导系统中的误差分析与补偿[D].西北工业大学硕士学位论文.2005:46-47页
    [33]罗超.FOG捷联惯导系统标定和误差补偿技术研究[D].哈尔滨工程大学硕士学位论文.2006:21-24页
    [34]李明泽,毛学刚,范文义.MFC框架下基于Vega的视景驱动程序设计研究[J].现代计算机,2007:02-04页
    [35]候俊杰.深入浅出MFC(第二版)[M].武汉:华中科技大学出版社,2001:84-88页
    [36]李德强等.反坦克武器模拟训练器三维图形生成方法的研究[J].系统仿真学报.2002.8(2):22-24页
    [37]张德峰等.基于Vega Prime的视景仿真技术研究与应用[J].计算机仿真2006.11(9):191-197页
    [38]吴家铸等.视景仿真技术及应用[M].西安:西安电子科技大学出版社.2001.07:5-7页
    [39]董博,马立元,刘鹏远.基于Vega的某型武器瞄准训练仿真[J].计算机仿真.2006.8(1):3-6页
    [40]郭永梅.坦克综合训练模拟器系统仿真研究[D].北京理工大学论文.2005:52-56页
    [41]高岩,杨华民,狄超,周志成.基于CTS和Vega Prime的视景仿真研究及应用[J].计算机仿真,2007:133-137页
    [42]李亚臣,胡健,黎远忠.基于Vega Prime的航天器视景仿真中的多坐标系问题[J].宇航学报.2007.9(7):14-17页
    [43]黄健熙,毛峰,许文波.基于Vega Prime的大型流域三维管理系统实现[J].系统仿真学报,2006.2(4):71-73页
    [44]Kruglinski David J.Inside Visual C++,4th Edition[M].Redmond:Microsoft Press,1997: 55-62P
    [45]张继伟.基于Multigen Vega虚拟现实平台的开发与应用[D].中国海洋大学硕士学位论文,2006:31-34页
    [46]D.Terzopoulos, A.Witkin, Physically Based Models with Rigid and Deformable Components. IEEE Computer Graphics & Applications, Nov.1988:41-45P
    [47]Michel Carignan, Ying Yang, Nadia Magnent-Thalmann, Daniel Thalmann Dressing, Animated Synthetic Actors with Comples Deformable Clothes, Computer Graphics, 26(2):99-104P
    [48]Cheng Xianghong, Wan Dejun. Singular Value Decomposition Approach to in-Flight Alignment of Strapdown Navigation System. Proceeding of ICEMI'97, Journal of EMI, 1997:10-17P
    [49]D.Goshen-Meskin, I.Y.Bar-Itzhack. Observability Analysis of Piece-Wise Constant Systems. IEEE Transaction on Aerospace and Electronic Systems,1992,28(4): 1056-1075P
    [50]Cheng Xianghong, Wan Dejun. Singular Value Decomposition Approach to in-Flight Alignment of Strapdown Navigation System. Proceeding of ICEMI'97, Journal of EMI, 1997:10-17P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700