勘探地震数据获取系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,石油和天然气是不可再生资源,是重要的战略物资,直接关系到人们生活和国家安全。地震数据获取系统是地球物理勘探最为核心的装备,有什么样的地震数据获取系统就决定了有什么样的勘探能力,也就决定了在采集装备方面的国际竞争力。综合而言,研发自主知识产权的地震数据获取系统,是利益竞争、国力竞争、价格竞争、市场竞争、人才竞争等各方面的综合需要。
     然而在石油物探仪器方面,长期以来我国一直处于落后的状态,国内勘探仪器基本全部依赖进口,这严重制约了我国石油地震物探事业和石油工业的发展。为了能更好地、更主动地设计勘探设备,而不盲目地设计系统,同时能够跟上国际大型地震勘探仪器的发展步伐,亟需从设计方法上对地震数据获取系统的设计进行分析和指导,为将最新发展出来的实用技术引入到地震勘探系统的设计中提供方法基础和实验方案,确立了“勘探地震数据获取系统设计方法”的博士研究课题。
     本文首先根据勘探地震原理,归纳和总结出地震数据获取系统的组成和特点。然后根据这些特点设计出数据获取系统的逻辑模型,该模型由前端数据采集、数据传输、后端数据处理以及分析控制系统组成,这四个子系统共同组成一种四层逻辑模型。接着分别描述采集系统、数据传输、数据处理和控制系统的设计细节。最后讲述利用该设计方法而设计成功的两个地震数据获取系统的设计实例。
     本文共分为八章,每章的主要内容如下:
     第一章:导言
     本章首先研究勘探地震原理和采集方式,归纳和总结出地震数据获取系统的组成和特点,接着叙述地震数据获取系统的发展现状,最后给出本论文的课题意义和主要研究内容。
     第二章:地震数据获取系统设计概论
     地震数据获取系统的设计应该采用适当的技术,满足石油勘探的需要,体现地球物理的前沿进展,而不是一味地追求新技术和高指标。本章给出地震数据获取系统的构成模型,该模型是后续各章节讨论的基础,也是实际系统设计的依据。本章最后也给出了在系统设计实现的过程中需要重点注意的几个方面。
     第三章:采集系统设计
     采集系统负责将模拟地震信号转换成数字信号,包括传感器、模拟的预处理和数字化处理电路三部分。采集系统是数据获取系统的前端模拟处理部分,决定了系统的关键指标,如动态范围和谐波失真等。本章描述了采集系统各组成部分的实现细节以及因地震勘探而提出的要求。
     第四章:传输系统设计
     数字化的地震数据获取系统采用分层架构,使用数字信号的传输方式,这就使得大覆盖面的2D/3D勘探成为可能。但当道数多时,对数据传输系统的设计提出了要求,主要包括拓扑结构和传输方式两方面的要求。本章重点分析数据传输系统流水线、总线和网络这三种拓扑结构,本章还分析了电传输、光传输和无线传输这三种传输方式,最后描述了一种适合地震应用的数据压缩算法。
     第五章:处理系统设计
     处理系统完成数据接收、格式转换和数据存储等功能。处理平台的结构直接关系到系统的最大道处理能力、系统扩展能力以及系统可靠性等。本章以海洋和VSP地震数据获取系统来讨论处理平台的设计和实现。
     第六章:控制系统设计
     针对地震勘探设计三层架构的控制系统,包括管理层、前端控制层和设备控制层。控制系统软件分成主控软件和质量控制软件。最后本章讨论了系统的同步设计。
     第七章:设计实例
     本章描述了两个地震数据获取系统的设计实例:海洋地震数据获取系统和VSP地震数据获取系统。
     第八章:总结与展望
     本章展望了地震数据获取系统的发展方向,针对这个发展方向,指出了本文中需要进一步研究内容。此外,本章还给出了本论文研究过程中所取得的创新和亮点,同时也指出了本人的工作。
As we all know, oil is the nonrenewable resource and the important strategic mineral resource. On the other side, oil is directly related to people's life and National Security. Seismic Data Acquisition System (SDAQ) is the kernel equipment for Geophysical exploration and it will restrict the ability of exploration and international competition. So researching SDAQ is the requirement of competition for interests, national power, price and market etc.
     But in the field of SDAQ, China has been in a backward state for a long time. The SDAQs in our exploration market are all imported, this seriously constraints the development of our oil exploration and petroleum industry. In order to design exploration equipments better and more initiatively, the research of Design of Exploration Seismic Data Acquisition System was established.
     First, we summarize the structure and characters of the SDAQ based on the principles of seismic exploration. Then we design the SDAQ logical model which is composed of front-end data acquisition, data transmission, back-end data processing and analysis controlling system. These four sub-systems constitute a four-level architecture model. Thirdly, we describe these four sub-systems in detail. Finally two real SDAQs, marine SDAQ and VSP SDAQ, are described. These two SDAQ are designed on the direction of the method presented by this article.This thesis is composed of 8 chapters, whose abstracts are listed below:
     Chapter 1: Instroduction
     In this chapter, we summarize the structure and characters of SDAQ based on researching ofthe principles and methods of seismic exploration. Then we describe the SDAQ developmentstatus. Finally, the thesis meaning and contents are presented.
     Chapter 2: Brief Description of SDAQ Design
     SDAQ should be designed to meet the need of oil exploration and development of physical geography with the help of proper technologies. Designers should not pursue new technologies and high performances. In this chapter, we design the model of SDAQ. This model is the basic subject for the chapters followed and is the guider for actual system design. Finally, some points are presented in the realizing of SDAQ.
     Chapter 3: Design of Acquisition System
     Acquisition is the front-end sub-system which converts analog seismic signal to digital signals. This sub-system is composed of sensors, analog pre-processing and digital processing circuit. Acquisition system is the bottle-neck of the SDAQ. It restricts the key performances of the SDAQ, such as Dynamic Range and Total Harmonic Distortion. In this chapter, we describe the design detail and restrictions of the acquisition system.
     Chapter 4: Design of Transmission System
     The digital SDAQ has a multi-level architure which uses digital signal transmission method. This makes it possible to carry out 2D/3D survey. But great capacity of channels increase the pressure on the transmission system including the topology and transmission method. In this chapter, we describe the topologies of pipeline, bus and network. We also describe the electronic, optic and wireless transmission method. Finally, we describe a data compressing algorithm for seismic data.
     Chapter 5: Design of Processing System
     Processing system fulfills the functions of data receiving, formatting and storing. The structure of processing system restricts the maximum number of channels, expansibility and high availability. In this chapter, we describe the design and realizing of processing system combined with the marine and VSP SDAQ.
     Chapter 6: Design of Control System
     A three-level architecture control system is presented. This architecture adapts to the seismic exploration. Manage level, front-end control level and device control level constitute the control system. The control software system includes main control software and quality control software. Finally, we also describe the synchronization system.
     Chapter 7: Examples of SDAQ
     In this chapter, we describe two SDAQs which are actual systems and have been tested andaccepted by departments related. The two SDAQs are marine SDAQ and VSP SDAQ.
     Chapter 8: Conclusions and Future
     In this we describe the developments of SDAQ. Then we point out the research aspects of the SDAQ because of the trends of developments. Furthmore, original idears, highlight points and the author contributions are pointed out.
引文
1.谢礼立.颤抖的地球:地震科学.北京:清华大学出版社,2005.4
    2.黄绪德.油气预测与油气藏描述:地震勘探直接找油气.南京:江苏科技出版社,2003.12
    3. Q-Marine specs.http://www.slb.com
    4. http://www.sercel.com
    5.潘爱民.计算机网络.北京:清华大学出版社,2004.8
    6.孙传友.地震勘探仪器原理.东营:石油大学出版社,1996.12
    7. Mark Products L-4 Seismometer, http://www.sercel.com
    8. Overview of Seismic Exploration, http://walter.kessinger.com/work/seisx_outline.html
    9.牛毓荃.反射波地震勘探技术.北京:石油工业出版社,1985.9
    10.单娜琳。工程地震勘探,北京:冶金工业出版社,2006.2
    11. Allan Campbell et al. Vertical Seismic Profiles——More Than Just a Corridor Stack. The Leading Edge. 2005(7):694~697
    12.谢明道.垂直地震剖面法应用技术,北京:石油工业出版社,1991.9
    13.李德胜等.MEMS微机电系统技术.哈尔滨:哈工大出版社,2002.3
    14.王文良.I/O System Four全数字遥测地震仪的性能、特点及与以往地震仪器的对比.物探装备.2005.15(4):232~246
    15.王文良.从428XL的推出看地震数据采集系统的新发展.物探装备.2006.16(1):1~15
    16. VectorSeis Receiver. http://www.i-o.com
    17. PERMAFROST, TUNDRA AND FROZENGROUND IMAGING SOLUTIONS. http://www.i-o.com
    18.易碧金,穆群英,罗富龙.当前地震勘探仪器的应用技术分析.地球物理学进展.2004.19(4):837~846
    19.张莉,解文荣等.基于微电子系统mems加速度地震勘探三分量数字检波器简介.中国煤田地质.2006(4):54~59
    20.陆基孟.地震勘探原理,东营:石油大学出版社,2004.1
    21. Sigma-delta ADCs and DACs. Alanalog Device Applicatio note AN-283, http://www.analog.com
    22.阙大顺,高勇等.∑-Δ模数转换器工作原理及应用.武汉理工大学学报(交通科学与工程版),2003(12):864~867
    23.刘松强.计算机控制系统的原理与方法,北京:科学出版社,2007.1
    24.曾翔.地震拖缆多级数据传输系统.中国科学技术大学硕士毕业论文,2006
    25.郭云.井下地震采集系统DesFAR数据采集控制功能设计.中海油服VSP设计文档,2006
    26. MIL-STD-1553 Tutorial. http://www.condoreng.com
    27. Rochester Stock Type 7-H-464D Dataline 2004-06-08,revision Q. http://www.rochestercables.com
    28.朱江,陈四平.电缆遥测技术.江汉石油职工大学学报.2004-11 142
    29.饶运涛.现场总线CAN原理与应用技术.北京:北京航空航天大学出版社,2003.6
    30.快电子学实验室.陆地万道系统总体设计方案,中国科学技术大学快电子学实验室,2007.3
    31.郎波.千兆以太网技术与应用.北京:机械工业出版社,2000.9
    32. MPC8540 Integrated Processor Hardware Specifications. http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8540
    33.王洪体,陈阳等.SEED格式STEIM2数据压缩算法在实时地震数据传输中的应用.地震地磁观测与研究,2004(8):14~19
    34.罗新恒,张哲等.SEED数据压缩率的比较.地震地磁观测与研究,2003(8):41~47
    35.孙宏志.一种24位实时地震数据压缩方法的研究.东北地震研究,2005(6):57~61
    36.万永革,李鸿吉等.SEED格式台站卷及带有可变头段节数据记录的实例剖析.地震地磁观测与研究,1995(10):6~12
    37. Hewlett C J M, Hatton L. Seismic data compression with CD-ROM archiving. EAEG 57th Conference and Technical Exhibition, 1995
    38.武文波,杨志高等.基于小波变换的地震信号压缩.石油地球物理物探,2005(6):349~352
    39.申龙斌,任海亭等.基于变换的地震数据压缩技术.油气地质与采收率,2003(8):19~21
    40.刘财.王培茂等.离散余弦变换DC/编码在地震勘探数据压缩中的应用.吉林大学学报(地球科学版),2004(4):277~282
    41.http://www.seg.org
    42.邹逢兴等.现代控制系统.北京:高等教育出版社,2002.12
    43.曹平,宋克柱,阮福明.海洋石油勘探数据采集与记录系统主控软件设计与实现.中国科学技术大学学报.2006,36(3):258~263
    44.陈佳.宋克柱.曹平.分布式海洋石油勘探系统关键算法.计算机工程与应用.2006,42(8):230~232
    45.程涛.宋克柱.曹平.VSP数据采集与记录系统主控软件的设计与实现.计算机工程与应用,2007.8
    46. SEG Subcommittee of the Technical Standards Committee on digital seismic recorder specifications [S]. Digital Seismic Recorder Specification Standards. Society of Exploration Geophysicists. 1988
    47.孙航.Xilinx可编程逻辑器件的高级应用与设计技巧.北京:电子工业出版社,2004.8
    48.刘大杰.全球定位系统(GPS)的原理与数据处理.上海:同济大学出版社,2001.7
    49. Mohl D S. IEEE 1588-Precese Time Synchronization as the Basis for Real Time Applications in Automation. http://www.industrialnetworking.com
    50.快电子学实验室.主控软件详细设计文档,中国科学技术大学快电子学实验室,2006.5
    51.快电子学实验室.海洋地震数据获取系统系列文档,中国科学技术大学快电子学实验室,2006.5
    52.快电子学实验室.VSP地震数据获取系统系列文档,中国科学技术大学快电子学实验室,2006.5
    53. Murari Kejariwal et al. A Low-Power High-precision Self-testing Data Acquisition System for a Large Seismic Exploration Grid. http://www.cirrus.com/en/pubs/whitePaper/WP_SeismicGridDataAcquisitionSystem.pdf
    54. AdvancedTCA Specifications R2.0. http://www.picmg.com, 2005.3
    55. InfiniBand Architecture Specification R1.2. http://www.infinibandta.org, 2004. 10
    56. Marc Bautista-Palacios et al. Configurable Hardware/software Architecture for Data Acquisition: Implementation on FPGA. Field Programmable Logic and Applications. 2005(8):241-246
    57. A.J.N.Batista et al. A distributed, hardware reconfigureable and packet switched real-time control and data acquisition system. Fusion Engineering and Design. 2002(60):443-448
    58.郭建.2004年SEG年会地震勘探技术最新进展.勘探地球物理进展,2005(4):137~150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700