基于声学分形特征的深海钴结壳识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济和科学技术的飞速发展,人类对矿产资源的需求量与日俱增,由于陆地资源的日趋枯竭,人们开始把目光转向海洋。深海钴结壳成为21世纪最具有商业开采价值的战略资源,世界主要发达国家已经开始了开采研究工作。面对国际社会对海洋资源争夺的形势,为维护我国的海洋权益,开辟我国新的矿产资源来源,本文在国家自然科学基金项目“深海钴结壳微地形监测技术与最佳采集深度建模研究”的资助下,对深海钴结壳的识别做了相关研究。
     根据分形理论在特征提取中的应用,本文提出了一种基于分形特征的声学回波识别深海钴结壳的方法。论文紧紧围绕特征提取、特征优化和分类器设计这三个问题,对钴结壳识别展开研究。根据超声波探测底质得到的回波信号具有分形特性,在讨论了利用单一维数不能完全刻画分形信号的基础上,提取了广义维数分形特征。由于原始特征的维数较高且存在非线性关系,利用核Fisher判别分析方法进行特征优化,得到了最佳非线性目标识别特征矢量。最后设计了概率神经网络分类器。在此理论基础上,对我国钴结壳调查区内的23种代表性海底底质,在实验室水池内进行钴结壳识别试验。试验结果表明:钴结壳正确识别率平均达到79.6%,非钴结壳被判为钴结壳的错判率平均仅为23%。由此可看出,本论文提出的钴结壳识别方法是有效可行的。
     本文的研究为深海钴结壳识别提供了良好的理论基础,为我国的深海采矿事业提供了有效的技术支持。
Along with the fast development of economy and science in the world, the need of mineral resources is growing day by day. However, the land resources are becoming less and less. In this situation, people tend to mine the resources in the ocean. Oceanic cobalt crust resource has been a commercial foreground strategically resource in 21 century and the head developed countries in the world have been doing the work of investigati-on and exploitation. In order to mine the new resources by our country independently, the investigation is done of the identification and classifiction of the cobalt-crust in the dissertation, imbursed by the national natural science fund item "study on the Abyssalbenthic Cobalt-rich Crusts Tiny terrain Detecting Technology and the Best collection deepness model".
     A classifiction method of deep-sea cobalt-crust was proposed based on the application of fractal theory in feature extraction. The questions of feature extraction, feature optimization and classifier design were sutdy. As provide more information than individual dimension, the generalized dimensions of echo signals were used for cobalt-crust classifiction based on the assumption that the sonar echo signals have a fractal structure. To deal with the problem of original features with the characteristic of large dimension and nonlinear relationship among them, Kernel Fisher discriminant analysis is adopted to extract the optimal nonlinear discriminant features. At the end, the Probability Neural Network was used as the classifier. Based on the theory mentioned above, the classification experiments of 23 kinds of seabed materials were done. The experimental results indicated that the exactness identification rate of cobalt-crust was about 79.6 percents and the error rate of mistaking the non-cobalt-crust as cobalt-crust was only 23 percents. Look from the results, this method was effective and reliable.
     The research of the dissertation affords favorable theoretic value for the identification and classification of the abyssalbenthic cobalt-crust. The important is that the research furnishes effective technique sustain for the country abyssal mining.
引文
[1]T.Yamazaka,R.Sharama,K.Tsurusaki.Influence of Distribution Characteristics and Associated Seabed Features Exploitation of Cobalt-Rich Manganese Deposits[A].Proceedings of the ISOPE Ocean Mining Symposium[C].1995,119-124.
    [2]简曲.中太平洋富钴结壳的研究[J].矿业研究与开发,1999,19(1):25-27.
    [3]P.Claude,H.Michel.Characteristics of Co-rich ferromanganese nodules and crust sampled in French Polynesia[J].Marine Geology,1987,77:109-119.
    [4]2001年中国大洋矿产资源研究开发学术研讨会论文集(上)[C].北京:中国大洋协会办公室,2001.
    [5]文先保.海洋开发[M].北京:冶金工业出版社,1996.
    [6]F.T.Manheim.Marine cobalt resources[J].Science,1987,232:600-608.
    [7]国家海洋局海洋发展战略研究所,地矿部海洋地质办公室.海洋采矿前景预测[R],1995:110.
    [8]何清华,李爱强,邹湘伏.大洋富钴结壳调查进展及开采技术[J].金属矿山,2005,347(5):4-7.
    [9]吕东,何将三,刘少军.深海资源开采技术的研究现状[J].矿山机械,2004,9:6-8.
    [10]沈裕军,钟祥.大洋钴结壳资源研究开发现状[J].矿冶工程,1999,19(2):11-13.
    [11]John E.H.Technology for mining cobalt rich manganese crusts from seamounts [J].New York:IEEE,1985:352-374.
    [12]长沙矿山研究院.深海采矿中试整体系统研究开发[R].长沙:长沙矿山研究院,2002.
    [13]莫杰.中国大洋矿产资源勘查进展概况[J].海洋地质动态,2000,16(3):6-8.
    [14]长沙矿冶研究院.“深海采矿中试破碎机的研究开发”课题研究报告[R].长沙,2000.
    [15]国家海洋局第二海洋研究所.中国大洋矿产资源勘查航次调查报告(DY95-6、DY95-8)[R].杭州,1994,4.
    [16]中国大洋矿产资源研究开发协会办公室.国际海底区域研究开发“十五”计划项目总体设计(审查稿).北京,2001,3.
    [17]国家海洋局第二海洋研究所.DY95-6/8航次调查报告[R].中国大洋矿产资源协会,1999.
    [18]刘勇.深海钴结壳螺旋滚筒切削法采掘头设计理论与方法虚拟研究[D].长沙:中南大学,2002
    [19]秦宣云.基于微地形重构的深海钴结壳最佳采集切削深度控制模型研究[D].长沙:中南大学,2005
    [20]夏毅敏.深海钴结壳螺旋切削采集过程仿真和螺旋采集头工作参数优化研究[D].长沙:中南大学,2006
    [21]罗柏文.深海钴结壳采集之微地形探测技术浅水试验阶段研究[D].长沙:中南大学,2008
    [22]朱艳.声学方法海底沉积物类型分类研究[D].哈尔滨:哈尔滨工程大学,2007.
    [23]武光海,马维林,刘捷红等.海山钴结壳的圈矿方法[J].海洋学研究,2005,23(4):15-19.
    [24]周怀阳,武光海,杨树锋.关于对我国大洋富钴结壳进行地质经济评价工作的讨论[J].地质与勘探.2001,37(2):1-5.
    [25]马维林,初凤友,金翔龙.富钴结壳资源评价和圈矿方法探讨[J].海洋学报.2007,29(2):67-73.
    [26]张富元,章伟艳,朱克超等.钴结壳矿区圈定和资源评价的参数指标[J].地球科学-中国地质大学学报,2008,33(2):251-257.
    [27]王润田.海底声学探测与底质识别技术的新进展[J].声学技术,2002,21(1-2):96-98.
    [28]吴自银,郑玉龙,初凤友等.海底浅表层信息声探测技术研究现状及发展[J].地球科学进展,2005,20(11):1210-1217.
    [29]潘国富.声学方法进行海底沉积物遥测分类:综述[J].海洋技术,1997,16(1):14-19
    [30]R.H.Bennett.Geoacoustic and Geological Characterization of Surficial Marine Sediments by Insitu Probe and Remote Sensing Techniques[M].Boca Raton:CRC Press,1992:295-350.
    [31]C.Moustier.Seafloor Acoustic Remote Sensing with Multibeam Echo-sounders and Bathymetric Sidescan Sonar Systems[J].Marine Geophysical Researches,1993,15(1):27-42.
    [32]J.H.Clarke.Toward Remote Seafloor Classification Using the Angular Response of Acoustic Back scattering:A Case Study from Multiple Overlapping GLORIA Data[J].IEEE Journal of Oceanic Engineering,1994,19(1):112-127.
    [33]K.V.Mackenzie.Reflection of sound from coastal bottoms[J].Acoust.Soc.Am.Vol,1960,32(2):221-231
    [34]M.A.Biot.Theory of propagation of elastic waves in a fluid-saturated porous solid,I Low frequency range[J].Acoust.Soc.Am.Vol,1956,28(1):168-178
    [35]E.L.Hamilton,George Shumway.Acoustic and Other Physical Properties of Shallow-Water Sediments off San Diego[J].Acoust.Soc.Am.Vol,1956,28(1):1-15
    [36]潘福林,卢博,黄韶健.用声学遥测进行沉积层分类的可能性探讨[A].中国科学院南海海洋研究所.南沙海域声光场研究论文集[C].北京:科学出版社,1996.
    [37]陶春辉,金翔龙,许枫等.海底声学底质分类技术的研究现状与前景[J].东海海洋,2004,22(3):28-33.
    [38]潘福林,卢博,黄韶健.用声学遥测进行沉积层分类的可能性探讨[A].中国科学院南海海洋研究所.南沙海域声光场研究论文集[C].北京:科学出版社,1996.
    [39]陶春辉.UltrasonicModel and Mathematical Research of Manganese Nodules[A].国家海洋局海底科学重点实验室.中国海洋学文集(14)[C].北京:海洋出版社,2002:45-51.
    [40]林俊轩,王辉照.参数法实时遥测液态沉积层的声学特性[J].水运工程,1995,1:3-7.
    [41]王宁,赵犁丰.关于Goupilaud层模型反演算法的稳定性[J].青岛海洋大学学报,1996,26(3):279-286.
    [42]徐铭.基于相平面的声学方法浅海海底底质分类研究[D].青岛:中国海洋大学,2006.
    [43]刘胜旋.海底底质分类技术的最新进展[A].中国地球物理学会年刊2002-中国地球物理学会第十八届年会论文集[C],2002.
    [44]刘胜旋,关永贤.介绍几种典型的海底底质分类技术[A].第十四届海洋测绘论文集[C].天津:海军测绘研究所,2002:412-416.
    [45]W.T.Collins and K.P.Rhynas.Acoustic Seabed Classification Using Echo Sounders:Operational Consideration and Strategies[C].Proceedings of the Canadian Hydrographic Conference.1998,384-390.
    [46]Schiagintweit,G.E.O..Real-Time Acoustic Bottom Classification for Hydrograp-hy-A Field Evaluation of Roxann[J].OCEANS'93,(3):214-219.
    [47]W.T.Collins and J.L.Galloway.Dual-frequency acoustic classification of seafloor habitat using the QTC VIEW[J].OCEANS'98 Conference Proceedings,1998(3):1296-1300.
    [48]W.T.Collins and J.L.Galloway.刘胜旋译.海底底质分类与多波束测深:多学科绘图工具[J].海洋地质.2001,(3):31-38.
    [49]AKari E.Ellingsen,John S.Gray,Erik Bjombom.Acoustic classification of seabed habitats using the QTC VIEWsystem[J].ICES Journal of Marine Science,2002(59):825-835.
    [50]Claudia Wienberg,Alexander Bartholoma.Acoustic seabed classification in a coastal environment(outer Weser Estuary,German Bight)-a new approach to monitor dredging and dredge spoil disposal[J].Continental Shelf Research,2005(25):1143-1156.
    [51]Rosa Freitas,Ana Maria Rodrigues,Victor Quintino.Benthic biotopes remote sensing using acoustics[J].Journal of Experimental Marine Biology and Ecology,285-286(2003):339-353.
    [52]Bernhard M.Riegla,Ryan P.Moyer,Lori J.Morris.Distribution and seasonal biomass of drift macroalgae in the Indian River Lagoon(Florida,USA)estimated with acoustic seafloor classification(QTCView,Echoplus)[J].Journal of Experimental Marine Biology and Ecology 326(2005):89-104.
    [53]Mapping image texture on side-scan Sonar records.http://www.Geoacoustics.com.
    [54]Mapping Image Texture with the Geotexture Mapping System.http://www.Sea-tronics group.com.
    [55]许枫,魏建江.第七讲侧扫声纳[J].物理,2006,35(12):1034-1037.
    [56]杨词银,许枫,魏建江.基于邻域灰阶共生矩阵的海底沉积物分类[J].哈尔滨工程大学学报,2005,26(5):561-564.
    [57]阳凡林.多波束和侧扫声纳数据融合及其在海底底质分类中的应用[D].武汉大学,2003年11月.
    [58]杨振林.便携式侧扫声纳在探测海底地物中的应用[J].水运工程,2002,345(10):28-30.
    [59]潘国富,付晓明,荀诤慷等.侧扫声纳在海底光缆维护工程中的应用[J].工程地球物理学报,2004,1(5):389-394.
    [60]李军峰,孟庆敏,胡平.侧扫声纳在香港海洋物探工程调查中的应用[J].物探与化探,2004,28(4):369-372.
    [61]Pal N R,Bezdeck J C,Tsao E C K.Generalized clustering networks and Kohonen's self_organizing scheme[J].IEEE Transaction on Neural Networks,1993,4(4):549-557.
    [62]Tang Q H,Zhou X H,Liu Z C,et al.Processing multibeam backscatter data.Marine Geodesy[J].2005,28(3):251-258
    [63]唐秋华,周兴华,丁继胜等.多波束反向散射强度数据处理研究[J].海洋学报,2006,28(2):51-55
    [64]唐秋华,陈义兰,周兴华等.多波束海底声像图的形成及应用研究[J].海洋测绘,2004,24(5):9-12.
    [65]唐秋华,刘忠臣,周兴华等.多波束海底底质分类软件SimradTriton的应用[J].海洋测绘,2002,22(4):21-24.
    [66]唐秋华,刘保华,陈永奇等.结合遗传算法的LVQ神经网络在声学底质分类中的应用[J].地球物理学报,2007,50(1):313-319.
    [67]孟金生,关定华.海底沉积物的声学方法分类[J].声学学报,1982,7(6):337-343
    [68]P.M.Baggenstoss.Improved echo classification in shallow water[J].IEEE OCEANS 96 MTS/IEEE Proceedings,1996,1197-1203.
    [69]P.A.van Walree,D.G.Simnos,J.Janmaat.Seabed Discrimination with Downward and Forward-Looking Sonars[J].Proceedings of the Sixth European Conference on Underwater Acoustic,ECUA'2002 24-27 June 2002,Gdansk,POLAND,49-52.
    [70]蔡悦斌,张明之,史习智等.舰船噪声波形结构特征提取及分类研究[J].电子学报,1999,27(6):129-130.
    [71]任新敏,徐铭.基于相空间方法的海底底质分类[J].声学技术,2007,26(4):574-578.
    [72]高大治,王宁,林俊轩.基于相平面轨迹方法的海底底质分类研究[J].声学学报,2005,30(5),447-451.
    [73]李蓉艳.水下爆炸信号特征分析方法研究[D].西安:西北工业大学,2001.
    [74]Roos A D,Sinton J J,Gough P T,et al.The detection and classification of objects lying on the seafoor[J].J.A.S.A.,84:1456-1477.
    [75]Pace N.G.,Gao H..Swathe seabed classification[J].Journal of Oceanic Engineering,1988,13(2),83-90.
    [76]Delachartre P,Vray D,Gimenez G..Classification of lake bottom echo signals using a wideband sonar system[C].14th ICA,1992,(1)B2-2.
    [77]J.Tegowski,Z.Lubniewski.Seabed characterisation using spectral moments of the echo signal[J].Acta Acustica united with Acustica,2002,88(5):623-626.
    [78]王正垠,马远良.宽带湖底沉积物分类研究[J].声学学报,1996,21(4):517-524.
    [79]杨峰.声学方法浅海表层沉积物分类识别研究[D].青岛:中国海洋大学,2004.
    [80]赵建平,黄建国,谢一清等.用小波变换进行水下回波边缘特征提取与分类识别[J].声学学报,1998,23(1):31-37.
    [81]黄海宁.水下宽频带信号处理的理论与技术研究[D].西安:西北工业大学,1999
    [82]黄海宁,李志舜.湖底沉积物分类的新方法研究[J].西北工业大学学报,1998,16(3):421-426.
    [83]马艳,李志舜.基于正交小波包的水下宽带回波特征提取与识别[J].系统工程与电子技术,2003,21(1):54-57.
    [84]马艳,李志舜.基于连续小波变换的水下目标特征提取与分类[J].系统工程与电子技术,2003,25(3):375-378.
    [85]李霞.基于连续小波变换的水下信号处理技术研究[D].西安:西北工业大学,2003.
    [86]余秋星.水下目标识别的相关技术研究[D].西安:西北工业大学,2004.
    [87]刘建国,李志舜.基于连续小波变换的湖底回波特征提取[J].西北工业大学学报,2006,24(1):111-114.
    [88]刘建国,李志舜.湖底回波的包络特征提取[J].计算机仿真,2005,22(10):151-154.
    [89]刘建国,李志舜,刘东.基于平稳小波变换及奇异值分解的湖底回波分类[J].声学学报,2006,31(2):167-172.
    [90]符新伟.基于高阶统计量和小波分析的特征提取[D].西安:西北工业大学,2004.
    [91]张静远,张冰,蒋兴舟.基于小波变换的特征提取方法分析[J].信号处理,2000,16(2):156-162.
    [92]Dung T.V.,Stepnowski A.,Kazmierczak M..Comparison of Fuzzy Decision Tree and Multistage Neuro-Fuzzy Classifiers of Seafloor Using Wavelet Coefficients of Acoustic Echoes[C].Proceedings of the Sixth European Conference on Underwater Acoustics ECUA 2002,Gdansk,Poland,2002:24-27.
    [93]Dung T.V.,Stepnowski A.,Kazmierczak M..Analysis of the Influence of Wavelet Coefficients and Other Back scattered Echo Parameters on the Performance Seabed Neuro-fuzzy Classifiers[C].Proc.of the 5th European Conference on Underwater Acoustics,Lyon,2000.
    [94]Russell Priebe,Nicholas P.Chotiros,Donald J.Walter,et al.Sea floor classification by wavelet decomposition of fathometer echoes[C].OCEANS '95.MTS/IEEE.Challenges of Our Changing Global Environment Conference Proceedings,San Diego,1995,(3):1814-1821.
    [95]A.Stepnowski,M.Moszy ski,Tran Van Dung.Adaptive Neuro-Fuzzy and Fuzzy Decision Tree Classifiers As Applied to Seafloor Characterization[J].Acoustical Physics,2003,49(2):193-202.
    [96]潘家华,刘淑琴,杨亿等.西太平洋富钴结壳的类型、分布与产状[J].矿床地质,2002;21:44-47.
    [97]国家海洋局第二海洋研究所,中国大洋矿产资源勘查航次调查报告(DY95-6,DY95-8)[R],杭州,1999
    [98]J.M.Berkson,J.E.Matthews.Statistical properties of seafloor roughness[M].Bath:Bath Univ Press,1983:215-223.
    [99]何高文.富钴结壳分布的分形特征[J].海洋地质第四纪地质,2001,21(1):89-92.
    [100]杨克红,章伟艳,胡光道等.分形理论在富钴结壳资源量评价方面的应用研究[J].地质与勘探,2004,40(6):61-64.
    [101]秦宣云,卜英勇,夏毅敏等.基于分形理论的微地形的重建[J].国防科技大学学报,2003,25(5):44-47.
    [102]秦宣云,卜英勇,夏毅敏等.基于分形理论的深海钴结壳微地形仿真[J].计算机工程与应用,2004,8:190-192.
    [103]秦宣云,卜英勇,邓跃红.基于分形理论的富钴结壳微地形可视化实现[J].矿业研究与开发,2005,25(1):43-45
    [104]邱长军,钴结壳和基岩的特性与模拟研究[D].长沙:中南大学,2002
    [105]L M Linnett,S J Clarke,C St J Reid,et al.Mointoring of the seabed using sidescan sonar and fractal processing[J].Proc IoA,15(2):49-64
    [106]D R Carmichael,L M Linnet,S J Clark,et al.Seabed Classification through multifractal analysis of sidescan sonar imagery[J].IEE Proc.Radar,Sonar Navig,1996,143(3):140-148.
    [107]杨词银,许枫.基于分形维的底质分类[J].海洋测绘,2004,24(6):5-8.
    [108]Z.Lubniewski,M.Moszynski,A.Stepnowski.MODELLING OF SURFACE AND VOLUME BACKSCATTERING OF ECHOSOUNDER SIGNALS ON SEA BED USING FRACTAL ANALYSIS AND IMPULSE RESPONSE[C].Fifth European Conference on Underwater Acoustics(ECUA 2000),Villeurbarme,Lyon,France,2000(1):307-312.
    [109]Z.Lubniewski,A.Stepnowski.SEA BOTTOM RECOGNITION USING FRACTAL ANALYSIS AND SCATTERING IMPULSE RESPONSE[C].4th European Conference on Underwater Acoustics.Rome,Italy,1998,(1):179-184.
    [110]Yamamoto,T..Acoustic scattering in the ocean from velocity and density fluctuations in the sediments[J].Journal of the Acoustical Society of America 99,1996,866-879.
    [111]L.J.Hamilton,P.J.Mulhearn,R.Poeckert.Comparison of RoxAnn and QTC-View acoustic bottom classification system performance for theCaims area,Great Barrier Reef,Australia[J].Continental Shelf Research 19(1999) 1577-1597
    [112]丁玉薇,被动声纳目标识别技术的现状与发展[J].声学技术,2004,23(4):253-257
    [113]李新欣,基于拖曳式水平渔探仪目标信号的特征提取及分类识别研究[D],哈尔滨工程大学,2007.3,工学
    [114]B.B.Mandelbrot.Fractal:From,Chance and Dimension,San Francisco:Freeman,1997.
    [115]Falconer K J.Fractal Geometry:Mathematical Foundation and Application.[M]New York:John Wiley and Sons,1990
    [116]朱春红,罗雪松,水声信号的分形特性及其应用研究[J],声学与电子工程,1998,3,10-15
    [117]王安良,杨春信,小波变换方法评价曲线的分形特征[J],机械工程学报,2002,38(5),80-85
    [118]飞思科技产品研发中心.小波分析理论与实现[M].北京:电子工业出版社,2005.14-16.
    [119]Simonsen,I.,Hansen,A.,Nes,O.M..Determination of the Hurst exponent by use of wavelet transforms[J].Physical Review E,1998,58(3),2779-2787.
    [120]乔忠云.基于Matlab复合材料磨损表面形貌W-M分形模型及其模拟[J],煤矿机械,2007,28(10):37-38.
    [121]Brown,G.On the multifractal analysis of measure[J].J Statist Phy,1992,66(3):775-790.
    [122]谢和平,薛秀谦.分形应用中的数学基础和方法[M].北京:科学出版社.
    [123]李国宾,关德林.振动信号多重分形分析改进算法[J].测试技术学报,2006,20(6):543-548.
    [124]Hotelling H.Analysis of a ComPlex of Statistical Variables into Principal Components[J].Journal of Educational Psychology,1933,1(24):417-520.
    [125]王双维.基于PCA的医疗数据特征提取方法研究及应用[D].长沙:中南大学,2008.5.
    [126]Scholkopf B,Smola A,Muller K.R.Nolinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10:1299-1319.
    [127]John Shawe-Taylor,Nello Cristianini著.赵玲玲,翁苏明,曾华军等译.模式分析的核方法[M].机械工业出版社,2006,15-51.
    [128]高华庆.人脸自动识别方法的研究[D].大连:大连理工大学,2007.
    [129]李岳,温熙森,吕克洪.基于核主成分分析的铁谱磨粒特征提取方法研究[J].国防科技大学学报,2007,29(2):113-116.
    [130]边肇祺,张学工等编著.模式识别[M].清华大学出版社,2005年:87-90.
    [131]何勇军.几种有效的特征提取算法的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [132]赵旭.基于统计学方法的过程监控与质量控制研究[D].上海:上海交通大学,2006
    [133]Scholkopf,B.,Mika,S.,Burges,C.Input space versus feature space in kernel-based methods[J].IEEE Tran.Neural Networks,1999,10(5):1000-10160.
    [134]Smola A.J.Learning with kernels[D].Berlin:Technical University of Berlin,1998.
    [135]边肇祺,张学工等编著.模式识别[M].清华大学出版社,2005年:250-270.
    [136]specht D.F.probabilistic neural network and general regression neural network[D],Chpater 3,Fuzzy logic and neural network hnadbook,McGraw Hill,1996:3.1-3.44.
    [137]李朝锋,杨茂农.概率神经网络与BP网络模型在遥感图像分类中的对比研究[J].国土资源遥感,2004,62(4):11-18.
    [138]Sergios Theodoridis,Konstantinos Koutroumbas著.李晶皎,王爱侠,张广渊等译.模式识别[M].电子工业出版社,北京:5-30.
    [139]何敏.基于概率神经网络的桥梁损伤定位研究[D].西南交通大学,2008.
    [140]张卫东.基于概率神经网络的鲁棒性云检测研究[D].青岛:青岛海洋大学.
    [141]秦树基,徐春花,王占山.人工神经网络对电子鼻性能的影响[J].同济大学学报,2005,33(6):804-808.
    [142]张超.基于尾波包络特征提取的超声波海底沉积物分类识别研究[D].长沙:中南大学,2007年12月.
    [143]乔文孝,杜光升,刘仲一.岩石声学性质与孔隙参数之间的关系[C].1994年中国地球物理学会第十届学术年会,74.
    [144]安勇,牟永光,方朝亮.沉积岩的速度、衰减与岩石物理性质间的关系[J].石油地球物理勘探,2006,41(2):188-192.
    [145]周知进,卜英勇.海底富钴结壳物理特性的试验研究[J].地球物理学进展,2008,23(5),1456-1459.
    [146]李月,刘立,李玉梅.地基层状岩石纵波波速与密度相关性试验研究[J].四川建筑科学研究,2009:1(35):125-127.
    [147]谈振藩.从声呐反射信号判断海底沉积物类型[J].哈尔滨工程大学学报,1996,17(02):26-33.
    [148]李允武.研究海底物理特性的声学方法[J].海洋技术,1982,01(02)10-17.
    [149]长沙矿业研究院,钴结壳模拟矿料研制,中国大洋协会“十五”项目研究报告[R],长沙,2005年12月.
    [150]Larson,D.A.,Tandanand,S.,Boucher,M.L.,etal.Physical Properties and Mechanical Cutting Characteristics of Cobalt-rich Manganese Crusts[R].Report of Investigations United States,Bureau of Mines,1987.
    [151]王文远.大朝山水电站枢纽区工程地质条件[J].水力发电,1998,9:28-31.
    [152]范秋雁,吴起星,周国贵.广西第三系泥岩桩端承载力确定方法[J].工程地质学报,2004,12(04):408-411.
    [153]黄润秋,苟定才,屈科等.圆梁山特长隧道施工地质灾害问题预测[J].成都理工学院学报,2001,28(4):111-113.
    王纪婵.基于互相关理论的高精度水下超声波测距系统研究[D].长沙:中南大学,2006年12月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700