海洋工程用钢疲劳裂纹扩展速率试验研究及有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋工程结构不仅结构复杂,而且其工作环境也非常恶劣,当海洋工程结构局部萌生了疲劳裂纹,在一定的疲劳裂纹的扩展速率的情况下,疲劳裂纹扩展会对海洋工程结构造成一定破坏,这就需要研究怎样保证海洋工程的结构安全。因此研究海工用钢的疲劳裂纹扩展速率是很有意义。
     本文的研究内容分为四部分:(1)关于海工用钢的疲劳裂纹扩展速率试验研究(第二章);(2)关于海工用钢疲劳裂纹扩展速率与断裂韧性CTOD的关系(第三章);(3)是关于海工用钢疲劳裂纹扩展速率的有限元分析(第四章);(4)是关于基于FRANC2D/L的海工用钢疲劳裂纹扩展细观研究。海工用钢具有厚度大,强度高,疲劳性能要求高等特点,本文选取具有代表性的海工用钢EH40钢作为研究对象。
     首先,本文分析得到确定疲劳裂纹扩展载荷的公式,对海工用钢EH40进行疲劳裂纹扩展速率试验,将规范中的七点递增多项式法修改成五点递增多项式法,并编程对试验数据进行分析,得到疲劳裂纹扩展速率公式。结果表明:EH40钢的疲劳裂纹扩展速率在疲劳裂纹扩展的中速区。
     其次,本文在疲劳裂纹扩展速率试验中测得裂纹嘴张开位移CMOD,通过转换得到CTOD,并计算了CTOD和疲劳裂纹扩展速率da/dN之间的关系式。同时进行了CTOD低温韧性试验,通过断口分析了预制疲劳裂纹扩展速率与断裂韧性CTOD的关系。结果表明疲劳裂纹扩展速率与断裂韧性成反比关系。
     然后,本文通过虚拟裂纹闭合法(VCCT)和FRANC2D/L软件两种有限元方法模拟了疲劳裂纹扩展速率,结果表明有限元模拟得到的值与试验值基本吻合,有限元模拟疲劳裂纹扩展速率具有良好的精度。
     最后,基于耦合内聚力模型(CCZM)理论,本文通过FRANC2D/L软件对两种尺寸的海工用钢EH40钢的多晶体模型,在九种边界条件下分析了晶体界面裂纹的形成和扩展。同时也分析了含有夹杂颗粒多晶体界面和疲劳载荷作用下多晶体界面的疲劳裂纹的形成和扩展。结果表明:宏观疲劳裂纹扩展在某一程度上是细观条件下晶体界面的损伤的积累形成的。研究材料细观条件下多晶体裂纹的萌生与扩展为更深入地了解疲劳裂纹扩展奠定了基础。
Not only the Marine engineering structures are complicated, but the working condition is very serious. When there are local cracks exit in the Marine engineering structure, under the certain crack propagation rate, fatigue crack propagation of Marine engineering structure will cause some damage to it. So it needs to study how to keep the Marine engineering structure safe. Therefore, the research of the propagation of the Marine engineering structure rate is a very meaningful work.
     This study includes four parts:the first part is about experimental studies of the fatigue crack growth rate of steel of marine engineering (Chapter Two); the second part is about relationship between the fatigue crack growth rate and fracture toughness of steel of marine engineering (Chapter three); the third part is about finite-element analysis of the fatigue crack growth rate of steel of marine engineering(Chapter four); the last part is about detail study of the fatigue crack growth rate of steel of marine engineering bases on FRANC2D/L. steel of marine engineering has its own characteristic such as thick, high strength, good fatigue resistance and so on, so steel of marine engineering EH40 was choosed as the object of study in this paper.
     Firstly, this paper got the formulas of the load which decides the fatigue crack propagation, then made a test of fatigue crack propagation rate about steel EH40.After that,this paper changed the seven point incremental polynomial technique which exited in the standard into five point incremental polynomial technique, programming of the it to analysis the data of the test and getting the formula of fatigue crack propagation rate. The result showed that the fatigue crack propagation rate of steel EH40 locate in the medium-speed area of fatigue crack propagation.
     Secondly, this paper measured the crack mouth opening displacement (CMOD) through the test of fatigue crack propagation rate, changing it into CTOD, and calculating the equation between the CTOD and the fatigue crack propagation rate da/dN.Simultaneously, this paper tested the crack opening displacement under temperature which below zero, studying the relationship between prefabricated fatigue crack propagation rate and fracture toughness CTOD. The result showed that the fatigue crack propagation had a inverse relation to fracture toughness.
     Then the fatigue crack growth rate was simulated by two finite element methods which included virtual crack close technique and software of FRANC2D/L respectively. The result showed that the value which got through simulated by finite element methods inosculate to experimental value, and finite element methods has the feature of good precision in simulating fatigue crack growth rate.
     Finally, based on the theory of couple cohesive zone model(CCZM),this paper study the formation and extension of polycrystal interface on marine used EH40 steel by FRANC2D/L,under nine boundary conditions. Meanwhile, this paper studied the formation and extension of polycrystal interface which contains includes and the polycrystal interface under the fatigue loads. The result showed that the macro fatigue crack propagation revealed the accumulation of damage of polycrystal interface in mesoscopic condition. The study of formation and extension on polycrytal interface in mesoscopic condition laid a foundation to in-depth understanding of fatigue crack propagation in macro condition.
引文
[1]曹春晓.选材判据的变化与损伤容限钛合金的发展.金属学报,2002,38:4-11.
    [2]程靳,赵树山.断裂力学[M].北京:科学出版社,2006.
    [3]张君尧.航空结构用高纯高韧性铝合金的进展.轻金属,1994,6:54-63.
    [4]郑修鳞.材料的力学性能[M].西安:西北工业大学出版社,1996.
    [5]吴欢,赵永庆,曾卫东.疲劳裂纹扩展行为的研究现状及钛合金的疲劳裂纹扩展特征[J].稀有金属快报.2007,26(07):1-6.
    [6]王泓.材料疲劳裂纹扩展和断裂定量规律的研究:(博士论文).西安:西北工业大学,2002..
    [7]Paris P C,Erdogan F.A critical analysis of crack propagation laws[J] Journal of BasicEngineering.1963,85(4):528-534.
    [8]Mcclintock F.A. On the plasticity of the fatigue cracks [J].Fracture of Solids.1963,20(01):65-102..
    [9]Schmidt R A,Paris P C.Threshold for fatigue crack propagation and the effects of load ratio and frequency[C].Philadelphia:ASTM-Special Technical Publication 536,1973.79-94.
    [10]Forman R G,Keamey V E,Engle R M.Numerical analysis of crack propagation in a cyclic-loaded structure[J] Journal of Basic Engineering.1967,89(03):459-464.
    [11]陈篪.论裂纹扩展的判据[J].金属学报.1977,13(1):57-72.
    [12]吴建国.裂纹扩展与损伤演化理论与应用研究:(博士论文).北京:北京航空航天大学,2009.
    [13]姜娜.2.25Cr-1Mo钢热疲劳裂纹扩展特性数值模拟分析:(硕士).北京:中国石油大学,2009.
    [14]Elber.W. The significance of fatigue crack closure[J]. ASTM STP 1971,486:230-42
    [15]Suresh. S著,王中光译.材料的疲劳[M].北京:国防工业出版社,1993.
    [16]Walker. N and Beevers. C. J, A fatigue crack closure mechanism in titanium[J].
    Fatigue of Engineering Materials and Struetures,1979,1(1):135-148
    [17]Pendse. R. D&Ritehie. R. O. A Study of Fatigue Crack Propagation in Prior Hydrogen Attacked Pressure Vessel Steels [J]. Metal lurgieal Transactions A,1985,16A(8):1491-1501
    [18]Solanki. K, Daniewicz. S. R and Newman. J. C. Finite Element Analysis of Plastieity-Induced Fatigue Crack Closure:An Overview[J]. Engineering Fraeture Mechanics,2004, 71:149-171
    [19]李雪.2124铝合金板材断裂韧性和高周疲劳特性研究:(硕士).湖南:中南大学,2007.
    [20]陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2001.
    [21]李国强AI-Cu-Mn-Ti-ce合金热疲劳性能的研究.镇江:江苏大学,2005.13-14.
    [22]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006.
    [23]Ma B T, Laird C. Overview of fatigue behavior in copper single crystals-I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude. Acta. Metallurgica,1989,36:325-336.
    [24]何柏林,李树祯,于影霞42crMo钢M+F双相组织接触疲劳、多冲疲劳及弯曲疲劳性能研究.机械强度,2004,26(4):431-435.
    [25]中国国家技术监督局GGB/T6398-2000金属材料疲劳裂纹扩展速率试验方法[S].
    [26]ASTM E647-08.Standard test method for measurement of fatigue crack growth rates [S].
    [27]BS ISO-12108(2002).Metallic materials Fatigue testing and Fatigue crack growth method [S].
    [28]翁永刚.改进的FCG软件试验数据处理方法.实验室研究与探索,2007,26(10):299-301.
    [29]刘绍伦,谢济州.高温低周疲劳裂纹扩展速率实验数据处理及其计算机程序.材料工程,1982,2.
    [30]翁永刚.电解加钛ZL101A合金的疲劳可靠性研究:(硕士).郑州:郑州大学,2007.
    [31]A. R. SHAHANI, H. MOAYERI KASHANI,. A unified model for the fatigue crack growth rate in variable stress ratio. Fatigue & Fracture of Engineering Materials Structures,2008, 32:105-118.
    [30]ASTM E1290-1989.Standard Test Method for Crack-Tip Opening Displacement(CTOD) Fracture Toughness Measurement[S].
    [31]ASTM E1290-1993.Standard Test Method for Crack-Tip Opening Displacement(CTOD) Fracture Toughness Measurement[S].
    [32][10] BS7448:Part 1.Method for determination of KIC, critical CTOD and critical J values of metallic materials[S].British Standards Institution, London,1991.
    [33]Rybicki E F, Kanninen M F.A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics,1977,9:931-938.
    [34]Shivakumar KN,Tan PW,Newman Jr JC.A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies. International Journal of Fracture 1988,36:R43-R50.
    [35]Raju IS.Calculation of strain energy release rates with higher order and singular finite elements.Engineering Fracture Mechanics 1987,28:251-274.
    [36]Krueger R. The virtual crack closure technique:history, approach and applications. NASA/CR-2002-211628.
    [37]De Xie,Sherrill B.Biggers Jr.Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique。Part Ⅰ: Formulation and validation.Engineering Fracture Mechanics 2006,73:771-785.
    [38]De Xie,Sherrill B.Biggers Jr..Strain energy release rate calculation for a moving delamination front of arbitrary shape based on virtual crack closure technique,Part Ⅱ:Sensitivity study on modeling details.Engineering Fracture Mechanics 2006,73:786-801.
    [39]De Xie,Sherrill B.Biggers Jr.Progressive crack growth analysis using interface element based on the virtual crack closure technique.Finite Elements in Analysis and Design 2006,42:977-984.
    [40]Xie,D.,Waas,A.M.,Shahwan,K.W.et al..Computation of strain energy release rate for kinking cracks based on virtual crack closure technique, CMES:Computer Modeling in Engineering&Sciences.2004,6:515-524.
    [41]Waas,A.M.,Shahwan,K.W.Schroeder et al.Fracture criteria for kinking cracks in triple material bonded joints,Engineering Fracture Mechanics,2005,72:2487-2504.
    [42]Xie,D.,Chung,J.,Waas et al.Failure analysis of adhesively bonded structures:from coupon level data to structure level predictions and verification, International Journalof Fracture,2005,134:231-250.
    [43]Qin Qian, De Xie.Analysis of mixed-mode dynamic crack propagation by interface element based on virtual crack closure technique.Eneering Fracture Mechanics 2007,74:807-814.
    [44]Xie De,and Biggers,Jr.,S.B..Calculation of transient strain energy release rate under impact loading based on virtual crack closure technique.International Journal of Impact Engineering,2007,34:1047-1060.
    [45]解得,钱勤,李长安.断裂力学中的数值计算方法及工程应用.北京:科学出版社,2009.
    [46]李长安.基于虚拟裂纹闭合法的裂纹扩展与疲劳寿命研究:(硕士).武汉:华中科技大学,2008.
    [47]付磊,王瑜,石立君FRANC2D/L软件在断裂分析中的应用.山西建筑,2009,35(25):100-101.
    [48]刘斌,沈士明.基于FRANC2D的疲劳裂纹扩展数值模拟.中国制造业信息化,2007,36(15):32-34.
    [49]Cornell Fracture Group. FRANC2D Users Guide [EB/OL].http:\www.cfg.cornell.edu, 2006-12-23..
    [50]李华清.平面微裂纹扩展的模拟程序设计及相关试验[硕士学位论文].兰州:兰州理工大学,2004.
    [51]杨卫.宏微观断裂力学.北京:国防工业出版社,1995.
    [52]K. S.Ravichandran and Xu-Dong.Li, Fracture mechanical character of small cracks in polycrystalline material:Concept and numerical K calculations [J].Acta Metall,2000,48(2):525-540.
    [53]H.J.Bunge,R.Kiewel Th Reinert L.Fritsche.Elastic properties of polycrystals-influence of texture and stereology. Journal of the Mechanics and Physics of Solids,2000,48:29-66.
    [54]V.Tvergaard and J.W.Hutchinson.The relation between crack growth resistence and fracture process parameters in elastic-plastic solids.Journal of the Mechanics and Physics and Solids,40(100):1377-1397,1992.
    [55]Erin Iesulauro,Ketan Dohdia. Simulations on Statistical Representations of Polycrystals using FRANC2D/L.Cornell University, Polycrystal User's Guide.2001.
    [56]Vigdis Olden,Christian Thaulow.Influence of hydrogen from cathodic protection on the fracture susceptibility of 25%Cr duplex stainless steel-Constant load SENTtesting and FE-modelling using hydrogen influenced cohesive zone elements. Engineering Fracture Mechanics,76:827-844,2009.
    [57]M.Erinc,P.J.G.Schreurs,M.G.D.Geers. Integrated numerical-experimental analysis of interfacial fatigue fracture in SnAgCu solder joints. International Journal of Solids and Structures,44:5680-5694,2007.
    [58]M. Rakin, N. Gubekjak. Modelling of ductile fracture initiation in strength mismatched welded joint. Engineering Fracture Mechanics 75(2008) 3499-3510
    [59]Jeffrey Edward Bozek.A 2D Mul-tiscale procedure for fatigue crack nucleation (Master):Graduate School of Cornell University,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700