用户名: 密码: 验证码:
陆架陆坡区内孤立波的演化:理论分析与数值实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋内波是发生在密度稳定层化的海水内部的一种波动,其最大振幅出现在海洋内部,波动频率介于惯性频率和Brunt-V?is?l?之间。经常观测到的一种特殊的内波就是内孤立波或者称为内孤立子,是一种自然界中常见的振幅大,周期短的非线性波,是单个的、孤立的波结构,其传播是单方向的,且速度、波形在传播过程中基本保持不变。内孤立波的研究对海洋声学,海洋资源开发,海洋生态环境保护,海洋军事和海洋工程等方面都具有重要影响。观测表明内孤立波是海洋中普遍存在的一种波动,尤其是在陆架陆坡区,潮流与变化的底地形的作用是这一波动的主要源。
     南海东北部是内孤立波的频发地带,这里既有吕宋海峡处生成的振幅达100多米,波峰线长达200千米以上的强非线性内孤立波,也有陆架陆坡区局地生成振幅可达几米到几十米的小振幅内孤立波波列。本文结合ASIAEX实验期间南海东北部陆架陆坡区内孤立波的观测资料,以理论与数值实验手段分析研究了内孤立波在变化地形上的传播演化特征,主要可以分为三个方面。
     首先,回顾了内孤立波研究中弱非线性KdV理论的发展及慢变孤立子理论在内孤立波演化中的应用,研究了内孤立波的分裂特征。基于摄动方法,导出了连续分层条件下的变系数KP方程,这一方程可以描述内孤立波的水平二维特性。
     其次,开发完成了一个用于分层流数值模拟的非静力近似海洋数值模式,基于这一模式,首次研究了南海东北部陆架陆坡区内孤立波(波列)的局地生成,结果表明,潮流与陆架波折处的相互作用可以激发生成振幅达几米到十几米的向岸传播的内孤立波波列,跃层位置及潮流强度是控制内孤立波生成强弱的主要因素。结合ASIAEX期间观测到的南海东北部陆架陆坡区的内孤立波演化特征,数值模拟了这一海区大振幅内孤立波在向岸传播演化过程中的运动学及动力学特征。研究了内孤立波在传播演化过程中的极性转化特征,采用经验正交函数(EOF)法分析了这一过程中模态演化特征,定量的分析了非静力压强效应。受地形效应的影响,内孤立波可能发生极性转换或强烈的破碎过程,这些过程往往伴随着高模态组分的生成。
     最后,介绍了新近开发的用于分层流及内波实验的粒子图像速度场仪(PIV)系统,实验研究了不同极性及振幅下内孤立波在斜坡地形上的破碎演化特征。重点分析了内孤立波在爬坡破碎过程中所引起的复杂流场结构。在实验的基础上,借助于前文开发的非静力近似数值模式,数值模拟了下凹型内孤立波在斜坡地形上的翻转破碎特征。揭示了内孤立波在斜坡地形上翻转破碎过程中,多个涡旋结构的形成及发展。
Internal waves are generated by disturbances to a stratified ocean at frequencies between the inertial and the buoyancy frequency. A primary source is the oscillating barotropic tidal flow over varying topography, which gives rise to the disturbance of the pycnocline. Under certain circumstances, this disturbance can transform into a set of high frequency, non-linear internal waves. This thesis mainly focuses on the evolution of internal solitary wave (hearafter“ISW”), which is a special kind internal wave. Internal solitary waves (hereafter“ISWs”) are typically observed as propagating in packets with the longer and larger amplitude waves leading, indicating that both nonlinear and dispersive (nonhydrostatic) effects may play a significant role in the evolution process. As ISWs propagate in the ocean, they carry considerable momentum and energy, resulting in significant transient hydrodynamic loading on any offshore structures, undersea navigation vehicles and subsurface storage facilities that they may encounter
     In the Northern South China Sea (SCS), ISW has been found to be active and frequently happened phenomenon. Observations have revealed the existence of large amplitude ISWs with amplitude more than 100m and wave crest more than 200km, which propagated out from the Luzon Straits and disappeared on the continental shelf in the Northern South China Sea. Combined with the in situ observation data on ISWs during ASIAEX, this thesis studied the evolution characteristics of ISW on variable topography, and can be resolved into three aspects.
     First, the weakly nonlinear variable coefficients KdV theory for ISWs was reviewed and the application of the slowly varying solitary wave theory was discussed, the fission characteristic of ISW was studied numerically. Even further, the two dimensional KP equation for ISWs in continuously stratified fluid was derived, which can be used for the simulation of the two dimensional characteristics of ISW
     Second, a nonhydrostatic numerical model for density stratified flow was developed. With this model, we studied the local generation of ISW trains around the continental shelf break; it revealed that the interaction of barotropic tide with the continental shelf break can promote the generation of ISW trains with amplitude of several meters propagating towards the continental shelf. The pycnocline depth and the intensity of the tidal current were two main factors controlling the generation process. After that, we numerically studied the evolution characteristics of large amplitude ISWs on the continental shelf. The simulation captured the depression to elevation conversion the large amplitude ISWs, the effect of topography on the ISW propagation. The nonhydrostatic pressure was quantified. Empirical Orthogonal Function (EOF) method was employed on the analysis of the mode evolution characteristics during this whole process. Results revealed the generation of higher mode during the interaction of the first mode ISW with the shelf break.
     Finally, we report the recently developed PIV (Particle Image Velocity) systems for the laboratory experiment on density stratified flow and internal wave research. Experiments were carried out on the run-up of ISW on a slope. Different polarity ISW with different amplitude has been considered. The main focus is on the complex velocity and vorticity field during the strong breaking process, development of vortices structure were analyzed. Furthermore, a typical numerical experiment has been accomplished, results were compared with the laboratory experiment, numerical results provided a clearer picture on the whole breaking process, and revealed the strong mixing process during the ISW run-up and breaking process.
引文
[1]蔡树群,甘子钧,尤小敏.南海北部孤立子内波的一些特征和演变.科学通报, 2001,46(15): 1245~1250
    [2]蔡树群,尤小敏,黄企洲.南海北部孤立子内波生成条件的初步数值研究.海洋学报, 2003, 25 (4): 119~124
    [3]杜涛.南海北部的内波.地学前缘, 2000, 7 (特刊): 188~188
    [4]杜涛,方欣华.内潮研究的数值模式.海洋预报, 1999, 16(4):26~30
    [5]杜涛,吴巍,方欣华.海洋内波的产生与分布.海洋科学, 2001, 25 (4): 25~27
    [6]方文东,陈荣裕,毛庆文.南海北部大陆坡区的突发性强流.热带海洋, 2000, 19(1): 70~74
    [7]方欣华,杜涛.海洋内波基础和中国海内波.青岛:中国海洋大学出版社. 2005, p337
    [8]江明顺,方欣华,单正强,魏明建.陆架陆坡潮成内波的二维三层模式.青岛海洋大学学报, 1995, 25(3):277~285
    [9]吕红民,徐肇廷,方欣华.实验室用内波动态测量仪.水动力学研究与进展, 1995, 10(3):328~334
    [10]沈国光,叶春生.内波孤立子的非波导载荷计算.天津大学学报. 2005, 12:1046~1050
    [11]徐肇廷,分层海洋中的内孤立波.青岛海洋大学学报. 1989, 19(3): 1~9
    [12]徐肇廷,方欣华,汪一明.偶板造波机生成内波的振幅——理论与实验的比较.水动力学研究与进展, 1989, 14(4):89~95
    [13]徐肇廷,王景明.小型内波实验水槽及其供水、造波及测量系统.青岛海洋大学学报,1988, 18(1): 95~102
    [14]徐肇廷.海洋内波动力学.北京:科学出版社, 1999
    [15]徐肇廷等.新型三维内波-分层流水槽系统.青岛海洋大学学报, 2002, 32 (6): 868~876
    [16] Apel J R et al. Observations of oceanic internal and surface waves from the earth resources technology satellite, J. Geophys. Res. 1975, 80 (6): 865~881
    [17] Apel J R, Holbrook J R, Liu A K, Tsai J J. The Sulu Sea internal soliton experiment. J. Phys. Oceanogr., 1985, 15: 1625~1651
    [18] Apel J R, Ostrovsky L A, Stepanyants Y A. Internal solitons in the ocean. Report GOA, 1998, No. 98-3
    [19] Baines P G. The generation of internal tides over steep continental slopes. Phil. Trans. R. Soc. London, 1973, 277(A): 27~58
    [20] Baines P G. On internal tides generation models. Deep-Sea Res., 1982, 29(3A): 307~338
    [21] Baines P G and Fang X H. Internal tide generation at a continental shelf/slope junction: A comparison between theory and a laboratory experiment, Dynamics of Atmospheres and Oceans, 1985, 9: 297~314
    [22] Bell T H. Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech,. 1975, 67:705~722
    [23] Benjamin T B. Internal waves of finite amplitude and permanent form. J. Fluid Mech., 1966, 25: 241~270
    [24] Benjamin T B. Internal waves of permanent form in fluids of great depth. J. Fluid Mech,. 1967, 29:559~592
    [25] Blumberg A F. and Mellor G L. A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal ocean Models, edited by N. Heaps, American Geophysical Union., 1987. 1-228
    [26] Bole J B, Ebbesmeyer C C, Evans-Hamilton Inc, Romea R D. Soliton currents in the South China Sea: Measurements and Theoretical Modeling. Offshore Technology Conference, 1994, 7417: 367~376.
    [27] Bogucki, D., Redekopp L., and Barth J. Internal Solitary Waves in the Coastal Mixing and Optics Experiment 1996: multimodal structure and resuspension. Journal of Geophysical Research, 2005, 110:C02024
    [28] Boussinesq M J. The′orie de l’intumescence liquide appell′ee onde solitaire ou de translation, sepropageant dans un canal rectangulaire. Comptes Rendus Acad. Sci (Paris), 1871, 72:755~759
    [29] Brandt P., Alpers W. and Backaus J O. Study of the generation and propagation of internal waves in the strait of Gibraltar using a numerical model and synthetic aperture radar images of European ERS 1 Satellite. J. Geophys. Res., 1996, 101: 14237~14252
    [30] Brandt P, Rubino A, Alpers W, et al. Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar images from the ERS1/2 satellites [J]. J. Phys. Oceanogr., 1997, 27: 648~663.
    [31] Cai Shu-qun, Gan Zi-jun and Long Xiao-min. Some characteristics and evolution of the internal soliton in the northern South China Sea. Chinese Science Bulletin, 2002, 47(1): 21~26
    [32] Cai Shu-qun, Long Xiao-min and Gan Zi-jun. A numerical study of the generation and propagation of internal solitary waves in the Luson Strait. Oceanlogica Acta, 2002, 25: 51~60
    [33] Carr M. and Davies P A. The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Physics of Fluids, 2006, 18(1): 016601
    [34] Chen C Y., Hsu R C., Chen M. H., Chen H. H. and Kuo C F. An investigation on internal solitary waves in a two layer fluid: propagation and reflection from steep slopes. Ocean Engineering, 2007a, 34, 171~184.
    [35] Chen C Y., Hsu R C., Chen H H., Kuo C F. and Cheng M H. Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 2007b, 34, 157~170.
    [36] Cummins P F. Stratified flow over topography: time-dependent comparisons between model solutions and observations. Dynam. Atmos. Oceans., 2000, 33:43–72.
    [37] Cox C and Sandstrom H. Coupling of internal and surface waves in water of variable depth. J. Oceanog. Soc. Janpan, 1962, 20: 499~513
    [38] Diamessis P J., and Redekopp L G. Numerical investigation of solitary internal wave-induced global instability in shallow water benthic boundary layers. J.Phys. Oceanogr., 2005, 36(5): 784~812.
    [39] Du Tao, Fang Guohong and Fang Xinhua. A layered numeracal model for simulating thegeneration and propagation of internal tides over continental slope I. Model design. Chin. J. Oceanol. Limnol., 1999, 17(2):125~132
    [40] Du Tao, Fang Guohong and Fang Xinhua. A layered numeracal model for simulating the generation and propagation of internal tides over continental slope II. Stability analysis. Chin. J. Oceanol. Limnol., 1999, 17(3):252~257
    [41] Du Tao, Fang Guohong and Fang Xinhua. A layered numeracal model for simulating the generation and propagation of internal tides over continental slope III. Numeracal experiments and simulation. Chin. J. Oceanol. Limnol., 2000, 18(1):18~24
    [42] Duda T F. et al. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 2004, 4:1105~1129.
    [43] Ebbesmeyer C C. et al. New observations on internal waves (solitons) in the South China Sea using an acoustic Doppler current profiler. Marine Technology Society 91 Proceedings,1991, New Orleans: 165~175.
    [44] Fett R W, Rabe K. Satellite observation of internal waves refraction in the South China Sea. Geophys. Res. Let., 1977, 4(5): 189~191.
    [45] Farmer D M. and Smith J D. Nonlinear internal wave in a fjord. In Hydrodynamics of Estuaries and Fjord(ed. Nihoul J C J.) Elsevier, 1982, 465~493.
    [46] Farmer D. and Armi L. The generation and trapping of internal solitary wave over topography. Science. 1999, 283:188~190
    [47] Fu L L. Observations and models of inertial waves in the deep ocean. Rev.Geophys.Space Phys., 1981, 19: 141~170
    [48] Gerkema T. and Zimmerman J T F. Generation of nonlinear internal tides and solitary waves. J. Phys. Oceanogr., 1995, 25: 1081~1094
    [49] Gerkema T. A unified model for the generation and fission of internal tides in a rotation ocean. J. Mar. Res, 1996, 54: 421~450
    [50] Gerkema T. Internal and interfacial tides: beam scattering and local generation of solitary waves. J. Mar. Res., 2001, 59: 227~255
    [51] Grimshaw R. Internal solitary waves. In: Grimshaw R (ed) Environmental stratified flows, chapter 1. Kluwer, Boston, 2001, pp 1–28
    [52] Grimshaw R. Pelinovsky E. and Talipova T. Solitary wave transformation due to a change in polarity. Stud Appl Math, 1998, 101:357–388
    [53] Grimshaw R. Pelinovsky E. and Talipova T. Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Physica D, 1999, 132:40–62
    [54] Grimshaw R, Pelinovsky E, Talipova T, Kurkin A. Simulation of the transformation of internal solitary waves on oceanic shelves. J Phys Ocean, 2004, 34:2774–2779
    [55] Grimshaw R, Pelinovsky E, Stepanyants Y, Talipova T. Modelling internal solitary waves on the Australian North West Shelf. Mar Freshwater Res, 2006, 57:265–272
    [56] Grue J. Generation, propagation, and breaking of internal solitary waves. Chaos An Interdisciplinary Journal of Nonlinear Science, 2005, 15(3): 037110
    [57] Guo Y, Sveen J K, Davies P A, Grue J, Dong P. Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Environmental Fluid Mechanics,2005, 4(4): 415~441
    [58] Halpern D. Observations on short-period internal waves in Massschusetts Bay. J. Mar. Res, 1971, 29: 116~132
    [59] Haury L R., Briscoe M G., and Orr M H. Tidally generated internal wave packets in Massachusetts Bay. Nature, 1979, 278(5702):312~317
    [60] Haury L R., Wiebe P H., Orr M H. and Briscoe M G. Tidally generated high-frequency internal wave packets and their effects on the plankton in Massachusetts Bay. J. Marine Res., 1983, 41:5~112.
    [61] Helfrich K R., Melville W K. and Miles J. On interfacial solitary waves over slowly varying topography. J. Fluid Mech., 1984, 149:305~317
    [62] Helfrich K R. Internal solitary waves run-up and breaking on a uniform slope. J. Fluid Mech., 1992, 243:133~154
    [63] Helfrich K R. and Melville W K. Long nonlinear internal wave. Annu. Rev. Fluid. Mech. 2006, 38:395~425
    [64] Hibiya T. Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 1986, 91:7697~7708
    [65] Hibiya T. Generation mechanism of internal waves by a vertically sheared tidal flow over a sill. J. Geophys. Res., 1990, 95:1757~1764
    [66] Holloway P E., Pelinovasky E. and Talipova T., et al. A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceangr., 1997, 27: 871~896.
    [67] Holloway P E, Pelinovasky E. and Talipova T. A generalised Korteweg-de-Vries model of internal tide transformation in the coastal zone. J. Geophys. Res., 1999,104, (C8): 18333~18350.
    [68] Holloway P E. and Merrifield M A. Internal tide generation by seamounts, ridges and islands. Journal of Geophysical Research, 1999, 104:25937–25951.
    [69] Holloway P., Pelinovsky E. and Talipova T. Internal tide transformation and oceanic internal solitary waves. In“Environmental Stratified Flows”, 2001, Kluwer, Boston.
    [70] Hosegood P. and van Haren H. Near-bed solibores over the continental slope in the Faeroe-Shetland Channel. Deep-Sea Res. II, 2004, 51:2943~2971
    [71] Hosegood P., Bonnin J. and van Haren, H. Solibore-induced sediment resuspension in theFaeroe-Shetland Channel. Geophys. Res. Lett., 2004, 31:L09301
    [72] Hsu M K., Liu A K., Liu C. A study of internal waves in the China seas and Yellow Sea using SAR. Continental Shelf Res., 2000, 20: 389~410
    [73] Hsu M K., Liu A K. and Liang N K. Evolution of nonlinear internal waves Northeast of Taiwan, The Proceedings of the Eighth International Offshore and Polar Engineering Conference (ISOPE’98), Montreal, Canada, May 1998, 18~24
    [74] Ivey G N. and Nokes R I. Vertical mixing due to the breaking of critical internal waves on sloping boundaries. J. Fluid Mechanics, 1989, 204:479~500
    [75] Johnson R S. On the development of a solitary wave moving over an uneven bottom. Proc. Camb.Phil. Soc., 1973, 73:183~203
    [76] Joseph R I. Solitary waves in a finite depth fluid. J. Phys. A: Math. 1977, 10: 225~227
    [77] Kadomtsev B B. and Petviashvili V I. On the stability of solitary waves in weakly dispersing media. Soviet Phys.Dokl., 1970, 15: 539~541
    [78] Kao T W., Pan F S., and Renouard D. Internal solitons on the pycnocline: generation, propagation, and shoaling and breaking over a slope. J. Fluid Mech., 1985, 159:19~53
    [79] Klymak J M, Pinkel R., Liu C., Liu A K. and David L. Prototypical solitons in the South China Sea. Geophysical Research Letters, 2006, 33(11): L11607
    [80] Klymak J M. and Moum J N. Internal solitary waves of elevation advancing on a shoaling shelf. Geophysical Research Letters, 2003, 30(20): 10.1029/2003GL017706
    [81] Koop C. and Bulter G. An investigation of internal solitary waves in a two layer system. J. Fluid Mech., 1981, 112:225~251
    [82] Korteweg D J. and de Vries H. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine, 1895, 39:422~443
    [83] Lamb K G. A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J. Fluid Mech., 2002, 451:109~144
    [84] Lamb K G. Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech., 2003, 478:81~100
    [85] Lamb K G. Numerical experiments of internal wave generation by strong tidal flow across a finite-amplitude bank edge. J. Geophys. Res. Oceans.1994, 99:843~864
    [86] Lamb K G. and Yan L. The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly-nonlinear theory. J. Phys. Oceanogr., 1996, 26:2712~2734
    [87] Lacombe H. and Richez C. The regime of the Strait of Gibraltar. Hydrodynamics of Semi-Enclosed Seas, J. C. J. Nihoul, Ed., Elsivier, 1982, 13–74
    [88] LaViolette P E. and Arnone R A. A tide-generated internal waveform in the western approaches to the Strait of Gibraltar. J. Geophys. Res., 1988, 93:15,653~667
    [89] Lee C Y. and Beardsley R C. The generation of long non-linear internal waves in a weakly stratified shear flow. J. Geophysical Res., 1974, 79:453~462
    [90] Liu A K., Apel J R. and Holbrook J R. Nonlinear internal wave evotution in the Sulu Sea. J. Phys. Oceanogr., 1985, 15:1613~1624
    [91] Liu A K., Chang Y S., Hsu M K. and Liang N K. Evolution of nonlinear internal waves in China Seas. J. of Geophys. Res., 1998, 103(C4):7997~8008
    [92] Liu A K and Hsu M K. Internal Waves in the South China Sea during ASIAEX. Porsec 2002 Bali Proceedings, 2002:35~38
    [93] Lord Rayleigh. On waves. Phil. Mag. 1876, 1:257~279
    [94] Matsuura T. and Hibiya T. An experimental and numerical study of internal wave generation by tide-topography interaction. J. Phys. Oceanogr., 1990, 20:506~521
    [95] Maxworthy T. A note on the internal solitary waves produced by tidal flow over a three dimension ridge. J. of Geophys. Res., 1979, 84(C1): 338~346
    [96] Maxworthy T. On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions. J. Fluid. Mech., 1980, 96:47~64
    [97] Maxworthy T., Leilich J., Simpson J. E. and Meiburg E. The propagation of a gravity current into a linearly stratified fluid. J. Fluid Mech. 2002, 453:371–394
    [98] Meng J M. Zhang Z L, et al. The simulation of the SAR image of internal solitary waves in Alboran Sea. J. Hydrodynamics, 2001, 3:88~92
    [99] Michallet H. and Barthelemy E. Experimental study of solitary waves, J. Fluid Mech., 1998, 366, 159–177
    [100] Michallet H. and Ivey G M. Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res., 1999, 104(C6):13467–13477
    [101] Moum J N. and Smyth W D. The pressure disturbance of a nonlinear internal wave train [J]. Journal of Fluid Mechanics., 2006, 558:153~177.
    [102] Muller P. On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech.,1976, 77: 789~823
    [103] Nakamura T., Awaji T., Hatayama T. et al. The Generation of Large Amplitude Unsteady Lee Waves by Subinertial K1 Tidal Flow: A Possible Vertical Mixing Mechanism in the Kuril Straits. J. Phys. Oceanogr., 2000, (30):1601~1621
    [104] Nash J D. and Moum J N. River plumes as a source of large amplitude internal waves in the coastal ocean. Nature. 2005, 437:400~403
    [105] New A L. and Pingree R D. Local generation of internal soliton packets in the central Bay of Biscay. Deep Sea Res., 2002, 39: 1541~1534.
    [106] Ono H. Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jan., 1975, 39:1082~1091
    [107] Orr M H. and Mignerey P C. Nonlinear internal waves in the South China Sea: Observation of the convection of depression internal waves to elevation internal waves. J. Geophy. Res., 2003, 108, C3: 3064, doi:10.1029/2001JC001163.
    [108] Osborne A R., Burch T I. and Scarlet R I. The influence of internal waves on deep water drilling. J. Petroleum Tech., 1978, 30:1497–1509
    [109] Osborne A R. and Burch T L. Internal solitons in the Andaman Sea. Science, 1980, 5: 451~460.
    [110] Ostrovsky L A. and Grue J. Evolution equations for strongly nonlinear internal waves. Physics of Fluids, 2003, 15(10): 2934~2948
    [111] Ostrovsky L A. and Pelinovsky L N. Wave transformation on the surface of a fluid of variable depth. Akad. Nauk SSSR, Izv. Atmos. Ocean Phys., 1970, 6:552~555
    [112] Ostrovsky L A. and Pelinovsky E N. Refraction of nonlinear sea waves in a coastal zone. Akad.Nauk SSSR, Izv. Atmos. Ocean Phys., 1975, 11:37~41
    [113] Pacanowski R. and Philander S G H. Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans. J. Phys. Oceanogr., 1981, (11):1443~1451
    [114] Pierini S. A model for the Alboran Sea internal solitary wave. J. Phys. Oceangr., 1989, 19:755~772.
    [115] Phillips O M. The Dynamics of the Upper Ocean. 2nd ed., Cambridge University Press,London, 1977
    [116] Ramp S R., et al. Internal solitons in the Northeastern South China Sea PartⅠ: solitons and deep water propagation. IEEE Journal of Oceanic Engineering, 2004, 4: 1157~1181
    [117] Rattray M. On the Coastal Generation of Internal Tides. Tellus, 1960, 12: 54~62
    [118] Rosenfeld L K., Paduan J D., Petruncio E T. and Goncalves J E. Numerical simulations and observations of the internal tide in a submarine canyon. Internal Wave Modeling (Eds. P. Muller and D. Henderson), Proc. Aha Huliko'a Hawaiian Winter Workshop, 63-71.
    [119] Russell J S. Report on Waves, 14th meeting of the British Association for the Advancement of Science, 1894, 311~390
    [120] Sabinin K. and Serebryany A. Intense short-period internal waves in the ocean. J. Mar. Res., 2005, 63: 227~261
    [121] Sandstrom H. and Elliott J A. Internal tide and solitons on the Scotian Shelf: A nutrient pump at work, J. Geophys. Res., 1984, 89:6415~6426.
    [122] Shroyer E L., Moum J N. and Nash J D. Observation of polarity reversal in shoaling nonlinear internal waves. J. Phys. Oceangr. (In press)
    [123] Small J. A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part I: development of the model and investigations of the sholing effect. J. Phys. Oceangr., 2001a, 11: 3163~3183.
    [124] Small J. A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part II: Oblique refraction across a continental slope and propagation over a seamount. J Phys Ocean 2001b, 31:3184–3199
    [125] Small J. and Hornby R P. A comparison of weakly and fully non-linear models of the shoaling of a solitary internal wave. Ocean Modelling, 2005, 8:395–416
    [126] Scotti A. and Pineda J. Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophysical Research Letters. 2004, 31, L22307, doi:10.1029/2005GL21052.
    [127] Stacey M W., Zedel L J. The time-dependent hydraulic flow and dissipation over the sill of Observatory Inlet. J. Phys. Oceanogr, 1986, (16), 1062–1076
    [128] Stashchuk N. and Vlasenko V. Numerical modelling of stratified tidal flow over a fjord sill. Ocean Dynamics, 2007, 57:325-338
    [129] Stashchuk N. and Vlasenko V. Topographic generation of internal waves by nonlinear superposition of tidal harmonics. Deep-Sea Research I, 2005, 52, 605-620
    [130] Sveen J K., Guo Y K., Davies P A. and Grue J. On the breaking of internal solitary waves at a ridge., J. Fluid Mech. 2002, 469:161-188
    [131] Tharawechrak S. In-situ observations of internal waves on the continental slope and shelf of the South China Sea. Florida state university, Master thesis. 2007
    [132] Venayagamoorthy S K., and Fringer O B. Numerical simulations of the interaction of internal waves with a shelf break. Physics of Fluids, 2007, 18(7): 076603
    [133] Vlasenko V., Stashchuk N. and Hutter K. Baroclinic Tides: Theoretical Modelling and Observational Evidence. Cambridge University Press, 2005, 372 pp.
    [134] Vlasenko V., and N. Stashchuk. Three-dimensional shoaling of large-amplitude internal waves. Journal of Geophysical Research , 2007, C11018, doi: 10.1029/2007JC004107.
    [135] Vlasenko V.and N. Stashchuk. Amplification and suppression of internal waves by tides over variable bottom topography. Journal of Physical Oceanography, 2006, 36(10), 1959-1973.
    [136] Vlasenko V., L. Ostrovsky, and K. Hutter. Adiabatic behavior of strongly nonlinear internal solitary waves in slope-shelf areas. Journal of Geophysical Research, 2005, 110(C4), C04006.
    [137] Vlasenko V. and K. Hutter. Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. Journal of Physical Oceanography, 2002, 32(6), 1779-1793.
    [138] Vlasenko V. and Hutter K. Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes. Annales Geophysicae, 2002, 20, 2087-2103.
    [139] Vlasenko V I. and Hutter K. Generation of second mode solitary waves by the interaction first mode soliton with sill. Nonlinear Processes in Geophysics, 2001, 8(4/5), 223-240.
    [140] Vlasenko V., Brandt P. and Rubino A. On the structure of large-amplitude internal solitary waves. Journal of Physical Oceanography, 2000, 30, 2172-2185
    [141] Wallace B C. and Wilkinson D L. Run-up of internal waves on a gentle slope. Journal of Fluid Mechanics., 1988, 191:419–442
    [142] Wang B J., Bogucki D J. and Redekopp L G. Internal solitary waves in a structured thermocline with implications for resuspension and the formation of thin particle-laden layers, Journal of Geophysical Research, 2001,106 (C5): 9565-9585
    [143] Wessels F. and Hutter K. Interaction of internal waves with a topographic sill in a two-layered fluid. J.Phys.Oceanogr.,1996, 26 (1):5-20
    [144] Xu Zhaoting et al. Generation of nonlinear internal waves on continental shelf. J. of Hydrodynamics, Ser. B, 2001, 3: 127~132
    [145] Xu Zhaoting, The propagation of internal waves in non~homogeneous ocean with the basic currents. Science in China, Ser. B. 1992, 35(6): 709~721
    [146] Yuan Y, Zheng Q, Dai D, Hu X, Qiao F,Meng J. Mechanism of internal waves in the Luzon Strait. Journal of Geophysical Research, 2006, 111(c11): C11S17
    [147] Zabusky N J., and Krusal M D. Interaction of solitons in a collisionless plasma and the recurrence of the initial states. Phys. Rev. Lett., 1965, 15(4):240~243
    [148] Zhao Z., V. Klemas, Q. Zheng. and X. H. Yan. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea, Geophys. Res. Lett., 2004, 31: L06302, doi:10.1029/2003Gl019077.
    [149] Zheng Q, Klemas V, Yan X-H and Pan J. Nonlinear evolution of ocean internal solitons as propergating along an inhomogeneous thermocline. J. Geophys. Res., 2001a, 106(C7), 14083~14094
    [150] Zheng Q, Yuan Yeli, Klemas V and Yan X-H. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. J. Geophys. Res., 2001b, 106 (C11), 31415~31423
    [151] Ziegenbein J. Short internal waves in the Strait of Gibraltar. Deep Sea Res., 1969, 16:479~487

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700