悬浮隧道动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬浮隧道概念的问世时间虽然短暂,然而由于它在跨越深水域时的明显优势,悬浮隧道现已得到世人的广泛关注。悬浮隧道一般由悬浮在水中的管体组成,由浮力保持在适当的位置上,通过合理的锚固系统如锚索或张力腿锚固在海床上。因此,相对传统隧道而言,悬浮隧道在环境荷载作用下更容易产生振动。
     悬浮隧道的振动可以分为整体振动和局部振动。整体振动是指只考虑管体的振动,不考虑锚索的横向振动;局部振动是指单根锚索的振动。本文从悬浮隧道的整体振动和锚索的局部振动两个方面出发,考虑到中国地震的多发性和锚索振动的关键性,对地震作用下悬浮隧道体系的整体动力响应以及参数激励与强迫激励作用下锚索的振动特性进行了研究分析,并对锚索的被动控制进行了初探。主要内容如下:
     (1)介绍了悬浮隧道的概念、特点、发展历程及结构分析进展。无论怎样的现场条件、施工方法和设计方案,必须解决结构建模和分析方法问题。因此,本文从隧道管体结构、隧道锚固体系、作用荷载、模型试验等方面综述了国内外对悬浮隧道结构分析方面的研究进展,提出了其发展方向和应专门研究的关键技术问题,以供我国进一步开展有关研究和制定相关标准和规范时参考。
     (2)悬浮隧道尚未有实际结构物,模型试验不失为研究其受力特性和动力响应的重要手段。为模拟悬浮隧道-水体相互作用的真实情况,利用大连理工大学海岸和近海工程国家重点实验室的大型水下振动台,首次进行了悬浮隧道地震响应的模型试验。根据模型试验的试验现象和数据,分析了悬浮隧道地震时的反应特点,以及悬浮隧道动力反应的影响因素。
     (3)在势流理论的基础上,对悬浮隧道进行了地震响应数值分析。为确保数值模型的正确性,首先建立了贴近悬浮隧道地震响应模型试验的数值模型,将计算结果与试验结果进行了对比;然后在验证数值模型正确的基础上,参考国内外拟建悬浮隧道的设计参数,建立了悬浮隧道的数值模型,对悬浮隧道进行了模态分析和地震响应影响因素敏感性分析。
     (4)为研究参数激励作用下锚索的动力响应,提出了悬浮隧道锚索-管体耦合非线性参数振动模型,建立了锚索-管体的耦合振动方程,通过伽辽金法和龙格-库塔法分析了悬浮隧道锚索在参数激励作用下出现大幅振动的可能性。鉴于锚索垂度效应的重要性,分别采用两种不同的方式来考虑垂度—求解方便、规律性强的等效弹性模量法和体现锚索垂度效应的抛物线法。
     (5)将悬浮隧道锚索简化为受张力的简支梁,建立了锚索的涡激振动方程,研究了流场中锚索的多阶横向涡激振动问题,数值分析表明了锚索高阶涡激非线性振动的重要性。此外,建立了悬浮隧道锚索-管体耦合振动非线性模型,对参数激励进行了比较真实的模拟,考虑了隧道管体的运动对锚索横向振动的影响,并在此条件下探讨了流场中锚索的涡激振动问题。
     (6)以锚索和粘弹性阻尼器组成的系统为研究对象,考虑锚索的垂度效应,建立了锚索-粘弹性阻尼器的振动方程,通过伽辽金法得到了系统的振动常微分方程组,然后进行复特征值分析,得到了锚索可能达到的最优阻尼比以及相应的最优阻尼器系数,分析了锚索的倾角和垂度对锚索最优阻尼比的影响。
Though submerged floating tunnel (SFT) is an innovative concept, it has gained more and more attention worldwide for its advantages in the crossing of deep water. SFT basically consists of a tunnel floating in the water, due to positive net buoyancy, at some convenient depth and fixed to the seabed by means of a suitable anchoring system, encompassing tethers or tension legs. Thus, it can be seen that the SFT is much more prone to undergo significant oscillations due to dynamic effects than traditional tunnels.
     Vibration of submerged floating tunnel may be expressed as combination of global and local modes. Global mode is defined as the vibration of the tube in which the tethers are treated as elastic tendons with no independent transverse motion, while the local mode is that of a tether fixed at the two ends. In this paper, we dealt with dynamic response of submerged floating tunnel from two aspects: global mode and local mode. Taking the frequent earthquake in China and importance of tether vibration into account, the global dynamic response of submerged floating tunnel under the earthquake and the tether vibration under parametric excitation and forced excitation were performed. Moreover, a preliminary study on the passive control of tether vibration was presented. The main contributions are summarized as follows:
     (1) This paper introduced the concept, features, development of submerged floating tunnel and stated the state-of-art of its structural analysis from several aspects such as tube, anchor system, load and model experiment. Also, the development direction and key problems that need to be solved were presented. All of these are benificial to further research and new standards.
     (2) Until now, no submerged floating tunnel has been built yet. Thus, model experiments are very important to dynamic response of submerged floating tunnel. To simulate the real situation of coupled submerged floating tunnel-water, the first model experiment of submerged floating tunnel under the earthquake at home and abroad was performed on the large-scale underwater shaking table in Dalian University of Technology. According to the experimental phenomena and data, the seismic characteristics and main effect factors for dynamic response of submerged floating tunnel were analyzed.
     (3) Based on the potential fluid theory, seismic response of submerged floating tunnel was studied by numerical analysis. To ensure the validity of numerical model, firstly, numerical model close to the seismic response model experiment was set up. The results were compared with those of model experiment. It can be seen that the numerical results are basically identical with those of shaking table test. Numerical model adopted is effective for dynamic response of SFT. Secondly, according to the parameters of designed SFT at home and abroad, modal analysis and main effect factors for dynamic response of submerged floating tunnel were analyzed by numerical method.
     (4) To analyze dynamic response of tether under parametric excitation, a theoretical model of coupled tether-tube was developed. Also, the corresponding vibration equation is set up. By Galerkin method and Runge-Kutta method, the possibility of large-amplitude vibration of submerged floating tunnel tether under parametric excitation was on discussion. Since the tether sag effect is very importance, sag in this paper was considered by two methods—convenient equivalent elastic modulus method and parabola method that may reflect the sag effect.
     (5) Taking the tether of submerged floating tunnel as a beam with strain, the equation of vortex-induced vibration of tether was set up. Multi-order vortex-induced nonlinear vibration of submerged floating tunnel tether subjected to current was discussed. The importance of its high-order vortex-induced nonlinear vibration was illustrated in numerical examples. In addition, to simulate the parametric excitation accurately, a nonlinear tether-tube model of submerged floating tunnel was proposed. Under this condition, the transversal oscillation response of tether under vortex-induced vibration and parametric vibration was analyzed.
     (6) Taking the system that consists of tether and visco-elastic dampers as research object, the vibration equation of tether and visco-elastic damper was set up considering tether sag effect. By means of Galerkin method, the partial differential equation was transformed into a set of ordinary ones. Subsequently, maximum damping ratios and corresponding optimal damper coefficients were obtained by complex eigenvalue analysis.
引文
[1]宋克志,王梦恕.烟大渤海海峡隧道的可行性研究探讨.现代隧道技术,2006,43(6):1-8.
    [2]康宁.对美国几个城市地铁和水下隧道的观感.现代隧道技术,2001,38(4):9-13.
    [3]董国贤.论水下隧道抗灾的生命力与优越性.地下空间,2001,21(2):117-120.
    [4]宋建,陈百玲,范鹤.水下隧道穿越江河海湾的综合优势.隧道建设,2006,26(3):9-10,16.
    [5]夏明耀.地下工程设计施工手册.北京:中国建筑工业出版社,1999.
    [6]李剑.水中悬浮隧道概念设计及其关键技术研究:(博士学位论文).上海:同济大学,2003.
    [7]麦继婷,关宝树.琼州海峡悬浮隧道的可行性研究.铁道工程学报,2003,(4):93-96.
    [8]王长春.水中悬浮隧道方案可行性初探.北方交通,2008,(2):147-150.
    [9]王变革.水下悬浮隧道锚索的动力响应研究:(硕士学位论文).大连:大连理工大学,2007.
    [10]Jakobsen B,Remseth S N,Udahl G.Crossing wide and deep fjords with submerged floating tunnels.Strait Crossings 2001,Krobeborg,2001:569-574.
    [11]项贻强,薛静平.悬浮隧道在国内外的研究.中外公路,2002,22(6):49-52.
    [12]董满生,葛斐,惠磊等.水中悬浮隧道研究进展.中国公路学报,2007,20(4):101-107.
    [13]黄国君,吴应湘,洪友士.跨越水域交通的阿基米德桥.中国造船,2002,43:13-18.
    [14]孔祥金.水下隧道新结构一悬浮隧道.2003年全国公路隧道学术会议论文集,太原,2003:223-226.
    [15]Pilatoa M D,Perottia F,Fogazzi P.3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation.Engineering Structures,2008,30(1):268-281.
    [16]Brancaleoni F,Castellani A,Asdia P.The response of submerged tunnels to their environment.Engineering Structures,1989,11:47-56.
    [17]golf M L.Measured dynamic response of submerged floating tunnels:a tool for further development.Strait Crossings 2001,Krobeborg,2001:521-528.
    [18]朱彤.结构动力模型相似问题及结构动力试验技术研究:(博士学位论文)。大连:大连理工大学,2004.
    [19]李宏男,肖诗云,霍林生.汶川地震震害调查与启示.建筑结构学报,2008,29(4):10-19.
    [20]林怀存,许萍,代磊.四川汶川8.0级地震及未来地震趋势分析.国际地震动态,2008,(7):30-35.
    [21]陈学良,徐超,夏珊.5.12汶川地震灾评工作中的几点认识.国际地震动态,2008,(7):24-29.
    [22]陈健云,孙胜男.海底岩土性质对悬浮隧道所受动水压力的影响—P波.自然科学进展,2007,17(1):79-85.
    [23]麦继婷.波流作用下悬浮隧道的响应研究:(博士学位论文).成都:西南交通大学,2005.
    [24]王华.沉管隧道与悬浮隧道(6).隧道译丛,1994,(12):26-45.
    [25]Donna A.Submerged floating tunnels-a concept whose time has arrived.Tunnelling and Underground Space Technology,1997,112(4):317-336.
    [26]Ingerslev L C F.Water crossings-the options.Tunnelling and Underground Space Technology,1998,13(4):357-363.
    [27]干湧.水下悬浮隧道的空间分析与节段模型试验研究:(博士学位论文).杭州:浙江大学,2003.
    [28]张佳文.水下悬浮隧道.西部探矿工程,1995,7(1):71-81,86.
    [29]φstlid H.Submerged floating tunnel(sft),a new type of structure for efficient transport,energysaving,minimizing pollution and environmental impact.Strait Crossings 2001,Krobeborg,2001:545-546.
    [30]Tveit P.Ideas on downward arched and other underwater concrete tunnels.Tunnelling and Underground Space Technology,2000,15(1):69-78.
    [31]Tveit P.Design of a submerged floating tube with a free span of 1750 m.International Conference on submerged floating tunnels,Sandnes,1996.
    [32]Geir M.Design philosophy of floating bridges with emphasis on ways to ensure long life.Journal of Marine Science and Technology,1997,2:182-189.
    [33]Hiroshi K,Yuzo M,Susumu M,et al.Numerical analysis of wave force and dynamic response to the submerged floating tunnels.Strait crossings 94,Rotterdam,1994:637-644.
    [34]James F.The Seattle-Bellevue loop with the still-water submerged floating tunnel.Strait Crossings 2001,Krobeborg,2001:581-588.
    [35]Haugerud S A,Olsen T O,Muttoni A.The lake Lugano crossing-technical solutions.Strait Crossings 2001,grobeborg,2001:563-568.
    [36]Muttoni A,Haugerud S A,Olsen T O.A crossing proposal for the lake Lugano for the new Alptransit railway across the Alps.Strait Crossings 2001,Krobeborg,2001:575-579.
    [37]兰利敏.水下悬浮隧道一谁将是第一个成功者.隧道译丛,1997,4:47-52.
    [38]Lidvard S,Ostlid H.Owners experience with the pilot project Hogsfjord submerged floating tunnel.Strait Crossings 2001,Krobeborg,2001:547-550.
    [39]陈健云,孙胜男.水下悬浮隧道结构分析研究进展.海洋工程,2008,26(3):111-118.
    [40]Sato M,Kanie S,Mikami T,et al.Modeling of submerged floating tunnel as a beam on elastic foundation under bending vibration.Strait Crossings 2001,Krobeborg,2001:535-540.
    [41]Sato M,Kanie S,Mikami T.Mathematical analogy of a beam on elastic supports as a beam on elastic foundation.Applied Mathematical Modelling,2008,32:688-699.
    [42]Fogazzi P,Perotti F.The dynamic response of seabed anchored floating tunnels under seismic excitation.Earthquake Engineering and Structural Dynamics,2000,29:273-295.
    [43]Faggiano B,Mazzolani F M,Landolfo R.Design and modeling aspects concerning the submerged floating tunnel:an application to the Messina Strait crossing.Strait Crossings 2001,Krobeborg,2001:511-519.
    [44]麦继婷,罗忠贤,关宝树.波流作用下悬浮隧道的涡激动力响应.铁道学报,2005,27(1):102-105.
    [45]麦继婷,罗忠贤,关宝树.波流作用下悬浮隧道动态响应的分析估算.铁道工程学报,2006,(6):51-54.
    [46]麦继婷,杨显成,关宝树.水流作用下悬浮隧道的响应分析.现代隧道技术,2005,42(4):25-31.
    [47]麦继婷,杨显成,关宝树.波流作用下悬浮隧道的动态响应分析.水动力学研究与进展A辑,2005,20(5):616-623.
    [48]麦继婷,杨显成,关宝树.悬浮隧道在波浪作用下的动力响应分析.铁道工程学报,2007,(3):45-49.
    [49]麦继婷,杨显成,关宝树.波流作用下张力腿悬浮隧道的响应分析.中外公路,28(1):159-163.
    [50]谢立广.水中悬浮隧道管段接头的力学行为分析:(硕士学位论文).成都:西南交通大学,2007.
    [51]麦继婷,罗忠贤,关宝树.流作用下悬浮隧道张力腿的涡激动力响应.西南交通大学学报,2004,39(5):600-604.
    [52]葛斐,董满生,惠磊等.水中悬浮隧道锚索在波流场中的涡激动力响应.工程力学,2006,23(S1):217-221.
    [53]Ge F,Dong M S,Hui L,et al.Vortex-induced nonlinear vibrations of submerged floating tunnel tethers.Proceedings of the Second International Conference on Dynamics Vibration and Control,Beijing,2006.
    [54]Kanie S,Mikami T,Horiguchi H,et al.Effect of non-linearity in restoring force on dynamic response of SFT.Strait Crossings 2001,Krobeborg,2001:529-534.
    [55]Hiroshi K,Susumu M,Yuzo M,et al.Study on submerged floating tunnel characteristics under the wave condition.Proceedings of the Fourth(1994) International Offshore and Polar Engineering Conference,Osaka,1994:27-32.
    [56]麦继婷,关宝树.用Morison方程计算分析悬浮隧道所受波浪力初探.石家庄铁道学院学报,2003,16(3):1-4.
    [57]麦继婷,杨显成,关宝树.悬浮隧道所受波浪荷载的计算分析.铁道科学与工程学报,2007,4(5):83-87.
    [58]王广地,周晓军,高波.水下悬浮隧道波流荷载分析研究.铁道建筑,2007,10:48-51.
    [59]Terje H,Svein R.Global dynamic analysis of floating submerged tunnels preliminary study.Trondheim:Norwegian University of Science and Technology,1997.
    [60]Svein R,Bernt J L,Knut M O,et al.Dynamic response and fluid/structure interaction of submerged floating tunnels.Computers and Structures,1999,72:659-685.
    [61]Satoshi M,Toshihiko Y,Yuzo M,et al.Earthquake response analysis of submerged floating tunnels considering water compressibility.Proceedings of the Fourth(1994)International Offshore and Polar Engineering Conference,Osaka,1994:20-26.
    [62]Roberto C.The dynamic seismic analysis of SFT.International Conference on Submerged Floating Tunnels,Sandnes,1996.
    [63]惠磊,葛斐,洪友士.水中悬浮隧道在冲击荷载作用下的计算模型与数值模拟.工程力学,2008,25(2):209-213.
    [64]董满生,葛斐,洪友士.曲线形水中悬浮隧道的温度内力研究.工程力学,2006,23(S1):21-24.
    [65]Katta V,Susumu Y,Shozo T,et al.Current-induced vibration of submerged floating tunnels.Proceedings of the Fourth(1996) International Offshore and Polar Engineering Conference,Los Angeles,1996:111-118.
    [66]王长春.水中悬浮隧道与洋流耦合作用的模型试验:(硕士学位论文).成都:西南交通大学,2005.
    [67]Nishio S,Incecik A.Synchronization of vortex shedding from an oscillating cylinder in uniform flow.Proceedings of the International Offshore and Polar Engineering Conference,Hague,1995:603-610.
    [68]李静,林祥金.水中悬浮隧道施工风险分析的BP神经网络模型.建筑管理现代化,2007,(1):40-42.
    [69]林祥金.悬浮隧道风险分析:(硕士学位论文).大连:大连理工大学,2006.
    [70]王广地,周晓军,高波.水下悬浮隧道管段结构流阻特性分析.西南交通大学学报,2007,42(6):715-719.
    [71]Fujita R,Mikami T.Development of submerged floating tunnel in shallow rater.Strait Crossing 2001,Krobeborg,2001:555-562.
    [72]Toru I,Fumukazu T,Hideo K,et al.Characteristics of air spouting actuator acting on the tension-leg-supported SFT subjected to sinusoidal flow.The 1999 ASME Pressure Vessels and Piping Conference,Boston,1999:129-135.
    [73]杨俊杰.相似理论与结构模型试验.武汉:武汉理工大学出版社,2005.
    [74]左东启.模型试验的理论和方法.北京:水利电力出版社,1984.
    [75]徐挺.相似理论与模型试验.北京:中国农业机械出版社,1982.
    [76]梅秀道.大连市星海湾1号桥模型试验研究:(硕士学位论文).大连:大连理工大学,2006.
    [77]任亮.光线光栅传感技术在结构健康监测中的应用:(博士学位论文).大连:大连理工大学,2008.
    [78]胡聿贤.地震工程学.北京:地震出版社,1988.
    [79]首培杰,刘曾武,朱镜清.地震波在工程中的应用.北京:地震出版社,1982.
    [80]黄浩华.地震模拟振动台的设计与应用技术.北京:地震出版社,2008.
    [81]曲卓杰.基于通用软件的水工钢筋混凝土结构程序开发与应用:(博士学位论文).南京:河海大学,2004.
    [82]沈德建,吕西林.地震模拟振动台及模型试验研究进展.结构工程师,2006,22(6):55-58,63.
    [83]张艳红.大型渡槽抗震理论.北京:地震出版社,2004.
    [84]李忠献.工程结构试验理论与技术.天津:天津大学出版社,2004.
    [85]杨旭东.振动台模型试验若干问题的研究:(硕士学位论文).北京:中国建筑科学研究院,2005.
    [86]林皋,朱彤,林蓓.结构动力模型试验的相似技巧.大连理工大学,2000,40(1):1-8.
    [87]董汝博.多点地震动作用下悬跨海底管道破坏机理研究:(博士学位论文).大连:大连理工大学,2008.
    [88]周晶,李昕,马恒春等.地震时海底悬跨管道动力特性试验研究.水利学报,2003,1:12-16.
    [89]张彦兵,陈树礼,冯小利.几种常用应变测试技术的比较分析.山西建筑,2006,32(3):77-78.
    [90]孙汝蛟,孙利民,孙智.FBG传感技术在大型桥梁健康监测中的应用.同济大学学报,2008,36(2):149-154.
    [91]Li H N,Li D S.Recent applications of fiber optic sensors to health monitoring in civil engineering.Engineering Structures,2004,26(11):1647-1657.
    [92]李宏男等著.结构健康监测.大连:大连理工大学出版社,2005.
    [93]李宏男,任亮.结构健康监测光纤光栅传感技术.北京:中国建筑工业出版社出版,2008.
    [94]李世海,魏作安,张俊红等.光纤光栅传感技术在抗滑桩模型试验中的应用.传感器与微系统,2006,25(3):84-86.
    [95]朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998.
    [96]王勖成.有限单元法.北京:清华大学出版社,2003.
    [97]Olson L G,Bathe K J.Analysis of fluid-structure interactions-a direct symmetric coupled formulation based on the fluid velocity potential.Journal of Computers and Structures,1985,21(1):21-32.
    [98]王建涌.大岗山拱坝动力模型破坏试验研究:(硕士学位论文).大连:大连理工大学,2007.
    [99]李晓莉.独塔斜拉桥的设计理论研究:(硕士学位论文).上海:同济大学,2006.
    [100]Xia Y,Fujino Y.Auto-parametric vibration of a cable-stayed-beam structure under random excitation.Journal of Engineering Mechanics,2006,132(3):279-286.
    [101]Nayfeh A H,Mook D T.Nonlinear oscillations.New York:John Willey & Sons,1979.
    [102]Kovacs I.Zur frage der seilschwingunge und der seidampfung.Die Bautechnik,1982,10:325-332.
    [103]Tagata G.Garmonically forced,finite amplitude vibration of a string.Journal of Sound and Vibration,1977,51(4):483-492.
    [104]Takahashi K.Dynamic stability of cables subjected to anaxial periodic load.Journal of Sound and Vibration,1911,144(2):322-330.
    [105]Perkins N C.Nodal interactions in the non-linear response of elastic cables under parametric external excitation.International Journal of Non-linear Mechanics,1992,27(2):233-250.
    [106]Uhrig R.On kinetic response of cables of cable-stayed bridges due to combined parametric and forced excitation.Journal of Sound and Vibration,1993,165(1):185-192.
    [107]Fujino Y,Warnitchai P,Pacheco B M.Anexperimental and analytical study of auto parametric response in 3DOF model of cable-stayed-beam.Nonlinear Dynamics,1993,(4):111-138.
    [108]Lilien J L.Vibration amplitudes caused by parametric excitation of cable stayed structures.Journal of Sound and Vibration,1994,174(1):69-90.
    [109]Pinto D C A,Martins J A C,Branco F,et al.Oscillations of bridge stay cables induced by periodic motions of deck and/or towers.Journal of Engineering Mechanics,1996,122(7):613-622.
    [110]Michel V.Cable vibration in cable-stayed bridges.Bridge Aerodynamics,1998,213-233.
    [111]亢战,钟万勰.斜拉桥参数共振问题的数值研究.土木工程学报,1998,31(4):14-22.
    [112]Zhang Q L,Peil U.Dynamic behaviours of cables in parametrically unstable zones.Computers and Structures,1999,73:437-443.
    [113]Caetano E,Cunba A,Taylor C A.Investigation of dynamic cable-deck interaction in a physical model of a cable-stayed bridge.Part Ⅰ:modal analysis.Earthquake Engineering and Structural Dynamics,2000,29:484-498.
    [114]汪至刚,孙炳楠.斜拉桥参数振动引起的拉索大幅振动.工程力学,2001,18(1):103-109.
    [115]陈水生.大跨度斜拉桥拉索的振动及被动、半主动控制:(博士学位论文).杭州:浙江大学,2002.
    [116]陈水生,孙炳楠.斜拉桥索一桥耦合非线性参数振动数值研究.土木工程学报,2003,36(4):70-75.
    [117]陈水生,孙炳楠,胡隽.斜拉索受轴向激励引起的面内参数振动分析.振动工程学报,2002,15(2):133-150.
    [118]Vincenzo G,Marssimiliano M,Achille P.A parametric analytical model for non-linear dynamics in cable-stayed beam.Earthquake Engineering and Structural Dynamics,2002,31:1281-1300.
    [119]Vincenzo G,Marco L.Nonlinear interaction in a planar dynamics of cable-stayed beam.International Journal of Solids and Structures,2003,40:4729-4748.
    [120]Wu Q,Takahashi K,Okabayashi T,et al.Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge.Journal of Sound and Vibration,2003,261:403-420.
    [121]李忠献,陈海泉,李延涛.斜拉桥参数振动有限元分析与半主动控制.工程力学,2004,21(1):131-135.
    [122]Georgakis C T,Taylor C A.Nonlinear dynamics of cable stays.Part 1:sinusoidal cable support excitation.Journal of Sound and Vibration,2005,281:537-564.
    [123]Georgakis C T,Taylor C A.Nonlinear dynamics of cable stays.Part 2:stochastic cable support excitation.Journal of Sound and Vibration,2005,281:565-591.
    [124]Berlioz A,Lamarque C H.A non-linear model for the dynamics of an inclined cable. Journal of Sound and Vibration,2005,279:619-639.
    [125]Iakahashi K,Wu Q,Nakamura S,et aI.Analysis on local vibrations of stay cables in cable stayed bridges.Journal of Structural Engineering,2000,46:501-510.
    [126]Wu Q,Takahashi K,Nakamura S.Non-linear response of cables subjected to periodic support excitation considering cable loosening.Journal of Sound and Vibration,2004,271:453-463.
    [127]汪至刚.大跨度斜拉桥拉索的振动与控制:(博士学位论文).杭州:浙江大学,2000.
    [128]Sun B N,Wang Z G,Kao J M,et al.Cable oscillation induced by parametric excitation of cable-stayed bridge.Advances in Structural Dynamics,2000,(1):553-560.
    [129]苗家武.超大跨度斜拉桥设计理论研究:(博士学位论文).上海:同济大学,2006.
    [130]韦达洁.碳纤维拉索斜拉桥非线性分析:(博士学位论文).长沙:湖南大学,2005.
    [131]尹超.大跨度斜拉桥几何非线性分析:(博士学位论文).成都:西南交通大学,2005.
    [132]施溪溪,李鸿晶.斜拉桥拉索单元模型及其计算模拟.钢结构,2005,20(5):53-56,89.
    [133]李传习,夏桂云,张建仁等.斜拉索静力分析综述.中南公路工程,2001,26(2):32-34,37.
    [134]陈常松.超大跨度斜拉桥施工全过程几何非线性精细分析理论及应用研究:(博士学位论文).长沙:中南大学,2007.
    [135]郭棋武.大跨斜拉桥的非线性及可靠性分析:(博士学位论文).长沙:湖南大学,2007.
    [136]白文轩.斜拉桥拉索的受力分析与合理成桥状态的确定:(硕士学位论文).重庆:重庆大学,2006.
    [137]李成绩.碳纤维索结构(桥梁)试验研究和理论分析:(硕士学位论文).镇江:江苏大学,2005.
    [138]邓静.大跨度混凝土斜拉桥静力稳定性分析:(硕士学位论文).成都:西南交通大学,2007.
    [139]张晓壳,陈宁,王应良等.斜拉桥的数学建模.国外桥梁,1998,2:52-56.
    [140]陈刚.振动法测索力与实用公式:(硕士学位论文).福州:福州大学,2004.
    [141]王建平.复合材料斜拉桥设计理论研究:(博士学位论文).武汉:武汉理工大学,2001.
    [142]李远林.近海结构水动力学.广州:华南理工大学出版社,1999.
    [143]唐友刚.高等结构动力学.天津:天津大学出版社,2002.
    [144]Cook R D.有限元分析的概念与应用.西安:西安交通大学出版社,2007.
    [145]江理平,唐寿高,王俊民.工程弹性力学.上海:同济大学出版社,2002.
    [146]商大中,李宏亮,韩广才.结构动力分析.哈尔滨:哈尔滨工程大学出版社,2005.
    [147]林元培.斜拉桥.北京:人民交通出版社,2004.
    [148]Visweswara G R,Iyengar R N.Internal resonance and non-linear response of a cable under periodic excitation.Journal of Sound and Vibration,1991,149(1):25-41.
    [149]李庆扬,王能超,易大义.数值分析.武汉:华中理工大学出版社,2004.
    [150]李桂成.计算方法.北京:电子工业出版社,2005.
    [151]马东升.数值计算方法.北京:机械工业出版社,2006.
    [152]Wang P H,Yang C G.Parametric studies on cable-stayed bridges.Computer and Structures,1996,60(2):243-260.
    [153]陈自力.集中荷载作用下悬索的面内运动非线性分析与应用:(博士学位论文).长沙:湖南大学,2006.
    [154]Irvine H M,Cable Structures.Cambridge:Massachusetts Institute of Technology Press,1981.
    [155]聂武,刘玉秋.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社,2002.
    [156]姚熊亮.结构动力学.哈尔滨:哈尔滨工业大学出版社,2007.
    [157]姚熊亮.船舶结构振动冲击与噪声.北京:国防工业出版社,2007.
    [158]王颖,杨建民,杨晨俊.Spar平台涡激运动关键特性研究进展.中国海洋平台,2008,23(3):1-10.
    [159]王一飞.深海立管涡激振动疲劳损伤预报方法研究:(博士学位论文).上海:上海交通大学,2008.
    [160]董艳秋.波、流联合作用下海洋平台张力腿的涡激非线性振动.海洋学报,1994,16(3):121-129.
    [161]董艳秋.深海采油平台波浪载荷及响应.天津:天津大学出版社,2005.
    [162]马驰,董艳秋,杨丽婷.海洋平台张力腿在两种边界条件下的涡激非线性振动的比较研究.船舶力学,2000,4(1):56-65.
    [163]王东耀,凌国灿.在平台振荡条件下TLP张力腿的涡激非线性响应.海洋学报,1998,20(5):119-128.
    [164]Ling G C,Wang D Y.Predication of dynamic response of TLP tethers to vortex shedding under circumstances of platform oscillation.International Offshore and Polar Engineering Conference,Los Angeles,1996.
    [165]余建星,罗延生,方华灿.海底管线管跨段涡激振动响应的实验研究.地震工程与工程振动,2001,21(4):93-97.
    [166]时米波,陈国明,孙友义.基于管土耦合模型的海底管道管跨涡激振动分析.石油矿场机械,2007,36(10):5-8.
    [167]葛斐,惠磊,洪友士.水中悬浮隧道锚索的非线性涡激振动研究.中国公路学报,2007,20(6):85-89.
    [168]葛斐,惠磊,洪友士.水中悬浮隧道锚索在剪切流中的涡激响应.中国科学院研究生院学报,2007,24(3):351-356.
    [169]陈健云,王变革,孙胜男.悬浮隧道锚索的涡激动力响应分析.工程力学,2007,24(10):186-192.
    [170]陈健云,孙胜男,王变革.水下悬浮隧道锚索的动力分析.计算力学学报,2008,25(4):488-493.
    [171]王振东.漫话卡门涡街及其应用.力学与实践,2006,28(1):88-90.
    [172]傅强.海洋输液立管动力特性及涡激振动响应理论研究:(硕士学位论文).青岛:中国海洋大学,2004.
    [173]白长旭.波流耦合作用下的立管涡激振动分析:(硕士学位论文).大连:大连理工大学,2007.
    [174]竺艳蓉.海洋工程波浪力学.天津:天津大学出社,1991.
    [175]毕家驹.近海力学导论.上海:同济大学出版社,1989.
    [176]陈渝,周璐,钱方等.数值方法(MATLAB版).北京:电子工业出版社,2002.
    [177]马良.海底油气管道工程.北京:海洋出版社,1987.
    [178]Michael E.Mccormick.Ocean engineering wave mechanics.NewYork:Wiley,1973.
    [179]Pacheco B M,Fujino Y,Sulekh A.Estimation Curve for Modal Damping in Stay Cables with Viscous Damper.Journal of Structural Engineering,1993,119(6):1961-1979.
    [180]Duan Y F.Vibration control of stay cables using semi-active magnero-rheological dampers:[dissertation].HongKong:The HongKong Polytechnic University,2004.
    [181]Tabatabai H,Mehrabi A B.Design of mechanics viscous dampers for stay cables.Journal of Bridge Engineering,2000,5(2):114-123.
    [182]Xu Y L,Yu Z.Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers-I:formation.Journal of Sound and Vibration,1998,214(4):659-673.
    [183]Yu Z,Xu Y L.Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers-Ⅱ:application.Journal of Sound and Vibration,1998,214(4):675-693.
    [184]Main J A,Jones N P.Evaluation of viscous dampers for stay-cable vibration mitigation.Journal of Bridge Engineering,2001,(6):385-397.
    [185]Main J A,Jones N P.Free vibration of taut cable with attached damper,I:linear viscous damper.Journal of Engineering Mechanics,2002,(10):1062-1071.
    [186]Fujino Y,Susumpow T.Active control of cables by axial support motion.Smart Materials and Structures,1995,4:A41-A51.
    [187]Johnson E A,Christenson R E,Spencer B F.Semi-active damping of cables with sag.Advances in Structure Dynamics,2000,1:327-334.
    [188]Johnson E A,Christenson R E.Semiactive damping of cables with sag.Computer-aided civil and infrastructure engineering,2003,18:132-146.
    [189]邬喆华.磁流变阻尼器对斜拉索振动控制的研究:(博士学位论文).杭州:浙江大学,2003.
    [190]左晓宝.形状记忆合金阻尼器一斜拉索减振控制的试验与分析研究:(博士学位论文).南京:东南大学,2005.
    [191]Ni Y Q,Chert Y,Ko,J M,et al.Neuro-control of cable vibration using semi-active magnetorheological dampers.Engineering Structures,2002,24:295-307.
    [192]王修勇.斜拉桥拉索振动控制新技术研究:(博士学位论文).长沙:中南大学,2002.
    [193]陈勇.采用ER/MR阻尼器作斜拉索振动的半主动控制:(博士学位论文).杭州:浙江大学,2001.
    [194]何旭辉,陈政清,黄万林等.MR阻尼器在抑制斜拉桥拉索风雨振中的应用研究.湖南大学学报(自然科学版),2002,29(3):91-95.
    [195]张笈玮.应用形状记忆合金拉索高层钢结构风振控制研究:(硕士学位论文).天津:天津大 学,2004.
    [196]Rabih A,Golnataghi M F.Active structural vibration control:a review.The Shock and Vibration Digest,2003,35(5):367-383.
    [197]欧进萍.结构振动控制.北京:科学出版社,2003.
    [198]肖志荣.大跨度斜拉桥拉索的非线性振动及智能半主动控制研究:(博士学位论文).杭州:浙江大学,2008.
    [199]李彤.地震作用下土-群桩-结构-水相互作用体系的动力反应分析:(硕士学位论文).上海:同济大学,1999.
    [200]郑万山.粘性剪切型阻尼器设计方法及工程应用研究:(硕士学位论文).西安:长安大学,2002.
    [201]俞载道.结构动力学基础.上海:同济大学出版社,1987.
    [202]徐树方.矩阵计算的理论与方法.北京:北京大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700