长江中下游红土剖面中1.4nm过渡矿物的成因及气候环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球变化研究中,气候变化框架的构建主要基于对海洋沉积物研究的基础上。近年来,随着全球变化研究的逐步深入,陆地第四纪气候变化的研究引起了地质学家的广泛关注,而利用古土壤对气候环境信息的记录来研究全球变化问题,已成为当前地球科学研究的前缘课题。中国北方黄土高原分布的黄土-古土壤序列精确的记录了第四纪多旋回的气候环境信息,与深海同位素揭示的古气候信息十分吻合,引起了国内外古气候工作者的极大关注。中国位于典型的季风控制区,冬季风为中国南方输送了大量粉尘物质,而湿热的夏季风也对南方气候格局产生了一定的影响。中国南方第四纪研究结果显示,长江中下游地区广泛分布着更新世沉积物。作为对湿热气候的响应,土壤发育逐渐向南迁移。中国南方的风成沉积经历强烈的风化-沉积改造,掩盖了风成沉积的痕迹,严重影响了沉积物中气候及环境信息的解译。中国南方的第四纪沉积属于典型的加积型沉积,能有效揭示热带、亚热带气候条件下的同沉积成土作用。中国南方发育的第四纪沉积物主要为红土,而西北的黄土-古土壤序列具有清晰的颜色和组构,两者存在明显的区别。尽管近年来,中国南方沉积物古气候及环境的重建备受土壤学家和地质学家的关注,红土气候意义的揭示仍存在争议。长江中下游地区宣城剖面红土的氧化铁含量及有机碳同位素结果显示,红土为强烈成土作用改造的风成物质,形成时代可能与中国西北地区的黄土沉积基本一致。然而,由于红土和黄土在磁化率、氧化铁含量及有机碳同位素的变化存在着明显的差别,两者之间的相关性还不是很明确。另外,两者在成土强度方面存在着明显的差异。成土改造确实掩盖了蕴含在红土中的气候及环境演变信息,然而成土过程中会产生与当时气候环境相适应的粘土矿物。因此,南方第四纪红土形成时的气候及环境信息有效的保存在粘土矿物组分中。
     以往的研究主要集中在磁性地层、有机碳同位素及粒度分析等方面,而红土中的粘土矿物学研究较为缺乏。虽然沉积物中粘土矿物的组合、相对含量、结晶度等,已被广泛地应用于古气候的重建。然而,要获得更加准确的气候环境信息,必须借助特征矿物相的研究。1.4nm过渡矿物作为一种特殊的粘土矿物过渡相,通常被认为是蛭石向蒙脱石或者绿泥石向蒙脱石转变过程中的过渡矿物,在中国南方红土中广泛存在。过去由于研究方法和研究思路上的局限,很多情况下都将1.4nm粘土矿物过渡相笼统地称为绿泥石、蛭石、或蒙脱石,从而影响到对土壤物理化学性能内在因素的认识,也影响到对古土壤中粘土矿物演化、土壤发生分类、以及气候环境意义的解析。因此,本次研究将采用X射线衍射(XRD)、高分辨率透射电镜(HRTEM)、扫描电子显微镜(SEM)及电感耦合等离子体发射光谱(ICP-AES)等现代测试手段对长江中下游地区九江及宣城红土剖面不同层位中的1.4nm过渡矿物的具体种属、成因、演化、及其气候环境意义开展研究,这对粘土矿物学、土壤矿物学、乃至于全球变化研究等,均具有重要的科学价值。
     X射线衍射结果表明,九江及宣城剖面红土中普遍存在着1.4nm过渡矿物,在九江剖面上部黄色砂土中含量最高。1.4nm过渡矿物的1.4m衍射峰在镁饱和-甘油饱和后不发生变化,随着温度的升高1.4nm衍射峰发生有规律的变动:1.4nm→1.38nm→1.20nm,说明1.4nm过渡矿物为羟基间层蛭石。自然干燥片、镁饱和-甘油饱和片、镁饱和高温片和钾饱和高温片的X射线衍射结果显示,九江剖面上部黄色砂土中主要粘土矿物有伊利石、羟基间层蛭石、蛭石、高岭石,并含有少量伊利石-蛭石或伊利石-羟基间层蛭石及高岭石-蛭石或者羟基间层蛭石混层粘土矿物;中部均质红土中粘土矿物以伊利石、蛭石、高岭石为主,并含有少量羟基间层蛭石及伊利石-蛭石或伊利石-羟基间层蛭石混层粘土矿物、高岭石-蛭石或高岭石-羟基间层蛭石混层粘土矿物;下部网状红土中粘土矿物组成主要有高岭石、伊利石、伊利石-蛭石或伊利石-羟基间层混层粘土矿物、蛭石,并含有少量高岭石-蛭石或高岭石-羟基间层蛭石混层粘土矿物。宣城剖面上部均质红土中主要粘土矿物组成为伊利石和高岭石,含有少量蛭石、羟基间层蛭石及伊利石-蛭石或伊利石-羟基间层蛭石混层粘土矿物及微量高岭石-蛭石或者高岭石-羟基间层蛭石混层粘土矿物。下部网状红土中主要粘土矿物组分与上部均质红土基本相同,但高岭石和伊利石-蛭石或者伊利石-羟基间层蛭石混层粘土矿物含量高于上部均质红土,也含有微量高岭石-蛭石或者高岭石-羟基间层蛭石混层粘土矿物。九江及宣城剖面从下至上伊利石和蛭石含量增加,高岭石和伊利石-蛭石或者伊利石-羟基间层蛭石混层粘土矿物含量降低,也说明长江中下游地区中更新世以来气候环境有干冷化的趋势。羟基间层蛭石九江剖面上部黄色砂土含量较高,也表明九江剖面上部的黄色砂土形成的环境条件跟均质红土及网状红土有着明显的差异。
     高分辨透射电子显微镜下可清楚观察到伊利石-蛭石或伊利石-羟基间层蛭石混层粘土矿物及高岭石-蛭石或羟基间层蛭石混层粘土矿物,也可观察到伊利石晶层向蛭石或羟基间层蛭石及蛭石或羟基间层蛭石晶层向高岭石晶层转化的现象。上述现象表明,九江及宣城剖面红土中粘土矿物可能经历了如下的风化转变过程:伊利石→伊利石-蛭石或羟基间层蛭石混层粘土矿物→蛭石(或羟基间层蛭石)→高岭石-蛭石或羟基间层蛭石混层粘土矿物→高岭石。剖面从上往下随着风化程度的加深,加速了伊利石及蛭石或羟基间层蛭石向高岭石的演化过程,导致长江中下游地区黄色砂土、均质红土及网状红土中高岭石及伊利石-蛭石或羟基间层蛭石混层粘土矿物含量依次增加,而伊利石、蛭石或羟基间层蛭石含量逐渐降低。
     在扫描电子显微镜下,九江及宣城剖面红土中粘土矿物均呈片状产出,多发育不规则的、残缺的边缘,说明粘土矿物在形成过程中均经历了较强的风化作用。从黄色砂土到均质红土再到网状红土,其中的粘土矿物结晶程度依次降低,说明剖面从上至下风化作用在逐步增强,同时表明中更新世气候与晚更新世相比更为温暖潮湿。能谱分析结果表明,九江及宣城地区红土中片状粘土矿物化学成分主要为Si、Al、Fe、K、Mg、Na等元素,黄色砂土粘土矿物富K和Mg,表明伊利石和蛭石含量较高,均质红色粘土层和网状红土层中粘土矿物中Mg含量明显降低,表明中部均质红色粘土层和下部网状红土层中蛭石类矿物含量较低。均质红土及网状红土中Fe含量明显较上部黄色砂土高,红色调较为明显,表明Fe可能是以针铁矿或者赤铁矿微晶的形式吸附在粘土矿物的表面。
     电感耦合等离子体发射光谱测试结果表明,九江剖面上部黄色砂土层中粘土矿物的离子交换总量在45.1-67.3cmol(+)/kg之间,(Mg+Ca+Na)/Al比值在11.9~22.7之间;中部均质红土中粘土矿物的离子交换总量在85.1~116.2cmol(+)/kg之间,(Mg+Ca+Na)/Al比值在358.4~577.6之间;下部网状红土中粘土矿物的离子交换总量在在89.1~116.9cmol(+)/kg之间;(Mg+Ca+Na)/A1比值在465.9~644.2之间。宣城剖面上部均质红土中粘土矿物的离子交换总量在52.4~88.2cmol(+)/kg之间,(Mg+Ca+Na)/Al比值在193.1~406.6之间;下部网状红土中粘土矿物的离子交换总量在41.9~96.7cmol(+)/kg之间,(Mg+Ca+Na)/Al比值在260.6~413.3之间。明显可以看出,九江剖面上部黄色砂土层中粘土矿物的(Mg+Ca+Na)/Al比值及离子交换总量低于九江及宣城剖面的均质红土及网状红土,说明Al可能以羟基离子的形式赋存在粘土矿物的层间,其活性不仅控制着粘土矿物的转化,也对粘土矿物的离子交换量影响较大。
     长江中下游地区黄色砂土形成于~100ka以来,对应于晚更新世,而均质红土和网状红土分别形成于400ka~100ka和800ka~400ka,为中更新世的产物。在中等风化程度、PH值介于4.5~5.0的条件下,土壤中的Al以羟基铝离子的形式进入到蛭石层间形成羟基间层蛭石,而风化作用加剧,促使伊利石和蛭石(包括羟基间层蛭石)向蒙脱石转化,最终形成高岭石。在透射电子显微镜下,伊利石-蛭石或者伊利石-羟基间层蛭石混层粘土矿物的存在即伊利石晶层向蛭石(或者羟基间层蛭石)晶层的转化现象,说明蛭石(包括羟基间层蛭石)是伊利石风化过程中的产物。因此,我们可以认为羟基铝间层蛭石的母质矿物为伊利石。在酸性的红土中,Mg、Ca、Na等离子只能以简单离子的形式存在于粘土矿物层间,而Al可在适当的酸性环境下以羟基铝离子的形式进入到蛭石中形成羟基铝间层蛭石,改变了土壤的矿物组分及离子交换量。长江中下游地区红土剖面从下至上羟基间层蛭石及伊利石含量逐渐增多,高岭石和伊利石-蛭石或伊利石-羟基间层蛭石混层粘土矿物含量逐步降低,表明长江中下游地区中更新世气候经历了从温暖潮湿向冷干的转变,与全球气候变化格局较为一致。因此,1.4nm过渡矿物羟基间层蛭石不仅能反应红土形成时期的气候环境变化,也可作为区分中更新世和晚更新世界限的特征矿物。
The framework of climate change is mainly based on Marine sediments in global change research. In recent years, the quaternary climate research has attracted a great attention of geologists with the development of the global change research. However, the reasearch on global climate change using ancient soils have become a hot subject of earth science. The loess-palaeosol sequences in the Loess Plateau, northwest China, contain an excellent record of multiple-cycle change of Quaternary climate, which is quite consistent with the results revealed by deep-sea isotope and has attracted great attention of the palaeoclimatic workers at home and abroad. China is located in a typical monsoon-influenced region. The summer monsoon brings abundant moisture and heat to the continent, while the winter monsoon transports large volumes of aeolian dust to areas of east and south China. Recent studies of Quaternary sediments in south China suggest that deposits from the Pleistocene onwards cover the mid-lower reaches of the Yangtze River. In response to a warmer and wetter climate, soil development migrated progressively southwards. Aeolian deposits in south China may be subject to relatively intense syndepositional pedogenic alteration, resulting in the removal of some imprints of Aeolian provenance and consequently making it difficult todecipher the climatic and environmental information documented in the sediments. The Quaternary sediments in south China were accretionary in nature, reflecting some degree of syndepositional pedogenesis under tropical to subtropical climate conditions. Unlike the loess-palaeosol sequence with clearly defined soil layers of different colours and structures in northwest China, Quaternary sediments in south China were mainly red earth. Although in recent years the deposits have attracted the interest of many pedologists and geologists for the purpose of reconstructing palaeoenvironments and palaeoclimates in south China, interpretations of the climatic significance of the red earth are still debatable. Investigations of the Fe2O3content and organic13C composition of the Xuancheng red earth profile in the mid-lower reaches of the Yangtze River, south China suggested that the red earth in fact comprised aeolian deposits with intense pedogenic modification, which could be stratigraphically correlated with the loess deposits in northwest China. However, the correlation between the red earth and the loess deposits was not clear, as the differences in the multiple cyclic changes in magnetic susceptibility, Fe2O3content and organic13C composition were very small. Moreover, there was a major pedogenic discrepancy in the soil-forming periods between the two materials. Pedogenic alteration indeed removed some imprints indicating the environmental and climatic conditions. However, this process would also have produced clay minerals corresponding to the conditions of weathering or hydrolysis of the materials. Hence, evidence for environmental and climatic conditions is probably preserved in the clay fraction of the sediments.
     Previous studies have mainly focused on magnetic strata, organic carbon isotope and grain size analysis, etc., and the clay mineralogy of red earth is rarely lack. Although the asseblage, relative content and crystallinity of clay minerals in sediments have been widely used in the reconstruction of the paleoclimate. However, the characteristic mineral phases must be used to obtain more accurate climate information. As a special intergrade clay mineral,1.4-nm Spacing intergrade mineral, widely existing in red earth of southern China, is usually considered as a intergrade mineral transforming from vermiculite to montmorillonite or chlorite to montmorillonite. Due to the limited methods and ideas in the past,1.4-nm Spacing intergrade minteral was mistaken as chlorite, vermiculite or smectite, which would influence the understanding the internal factors of physical and chemical properties of soil,also the clay mineral evolution in the ancient soil, as well as soil classification and its climate significance. Therefore, specific species, Genesis, evolution, and climate environment of1.4nm intergrade minteral from different soil layers of Jiujiang and Xuancheng section are investigated using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), High resolution transmission electron microscope (HRTEM), Scanning electron microscope (sem) and Inductively coupled plasma emission spectrum (ICP-AES), which is of great importance to clay mineralogy, soil mineralogy, and even the global change research and so on.
     The XRD patterns of the clay fractions show that1.4-nm Spacing intergrade minteral is widely distributed in Jiujiang and Xuancheng red earth section, with the highest levels in yellow sandy soil of Jiujiang section. The1.4nm peak of1.4-nm Spacing intergrade minteral did not expand after Mg saturation and glycerol solvation, and the1.4nm peak shifted to1.38nm and afterwards1.20nm with temperature, indicating that1.4-nm Spacing intergrade minteral is hydroxy-interlayered vermiculite (HIV). The XRD patterns of Air-dried, Mg-saturated and glycerol solvated, Mg-saturated and heated and K-saturated and heated samples show that the clay mineral assemblages of yellow sandy soil were mainly illite, HIV and kaolinite, with minor illite-vermiculie or illite-HIV and kaolinite-vermiculite or kaolinite-HIV mixed-layer clays. The clay mineral assemblages of homogeneous red earth were dominated by illite, vermiculite and kaolinite, with minor HIV, illite-vermiculie or illite-HIV and kaolinite-vermiculite or kaolinite-HIV mixed-layer clays. The clay mineral assemblages of net-like red earth were composed of kaolinite, illite, illite-vermiculie and vermiculite, with kaolinite-vermiculite or kaolinite-HIV mixed-layer clays. The clay mineral assemblages of homogeneous red earth in Xuncheng section were dominated by illite and kaolinite, with minor HIV, illite-vermiculie or illite-HIV and trace kaolinite-vermiculite or kaolinite-HIV mixed-layer clays. Net-like red earth had the same clay assemblages with homogeneous red earth, but contained more kaolinite and illite-vermiculie or illite-HIV mixed-layer clays. The increase of illite and vermiculte and the decrease of kaolinite and illite-vermiculie or illite-HIV mixed-layer clays occurred from the bottom up along the two sections, indicating that since middle pleistocene the climate advanced toward cold and dry in the mid-lower reaches of the Yangtze river. The relatively high content of HIV in Jiujiang yellow sandy soil suggests that yellow sandy soil apparently experienced a different pedogenic process with homogeneous red earth and net-like red earth.
     Under HRTEM, illite-vermiculite or illite-HIV mixed-layer minerals and kaolinite-vermiculite or kaolinite-HIV mixed-layer minerals can be clearly observed. Meanwhile, lattice fringe image presented the transformation of illite layers to vermiculite or HIV layers, and also showed the transformation of vermiculite or HIV layers to kaolinite layers. These observations show that the weathering sequence of clay mineral of Jiujiang and Xuancheng red earth section may be as this:illite→illite-vermiculite or illite-HIV mixed-layer minerals→vermiculite (HIV)→kaolinite-vermiculite or kaolinite-HIV mixed-layer minerals→kaolinite. An increased weathering trend towards the bottom of section, the transformation of illite and vermiculite or HIV to kaolinite was accelerated, causing the downward increase of illite-vermiculite or illite-HIV mixed-layer minerals and the downward decrease of illite and vermiculite or HIV.
     Under the observation of SEM, the clay minerals in the Jiujiang and Xuancheng section occurred as flakiness shape with irregular and fragmentary edges, indicating the clays have undergone intensive weathering during its formation. The crystallization of clay minerals exhibited a decreased tendency from the yellow sandy soils to homogenous red earth and to net-like red earth, suggesting the weathering of the section enhanced downwards, meanwhile showing the climate in mid-Pleistocene was warmer and wetter than that in late Pleistocene. The EDS showed that the chemical composition of the flakiness shape clays in the red earth of the Jiujiang and Xuancheng section were mainly composed of Si, Al, Fe, K, Mg and Na, with enrichment of K and Mg in the yellow sandy soils. These results with more enrichment of K and Mg might mean the higher content of illite and vermiculite. The element Mg presented a lower value in the homogenous red earth and net-like red eath, indicating a lower content of vermiculiteic minerals in these soils. However, the homogenous red earth and net-like red earth were richer in Fe and showed distinctly red hues, suggesting Fe might occur as goethite and/or hematite microcrystalline minerals adsorbed onto the surface of the clay minerals.
     The ICP-AES results showed that total extracted cations of clay minerals in Jiujiang yellow sandy soils ranged from45.1to67.3cmol (+)/kg, and the (Mg+Ca+Na)/Al raios ranged from11.9to22.7; total extracted cations of homogeneous red earth ranged from85.1to116.2cmol (+)/kg, and the (Mg+Ca+Na)/Al raios ranged from358.4to577.6; total extracted cations of net-like red earth ranged from89.1to116.9cmol(+)/kg, and the (Mg+Ca+Na)/Al raios ranged from465.9to644.2. Total extracted cations of clay minerals in Xuancheng homogeneous red earth ranged from52.4to88.2cmol (+)/kg, and the (Mg+Ca+Na)/Al raios ranged from193.1-406.6; Total extracted cations of clay minerals in Xuancheng net-like red earth ranged from41.9to96.7cmol (+)/kg. It is clear that the (Mg+Ca+Na)/Al raios and total extracted cations of Jiujiang yellow sandy soils were smaller than those of homogeneous and net-like red earth from Jiujiang and Xuancheng, suggesting that The Al cations are adsorbed as hydroxyl ions in the interlayer of clay minerals. The activity of hydroxyl-Al not only controlled the transformation of clay minerals, also influenced their total extracted cations.
     The yellow sandy soils of Jiujiang in the lower reaches of Yangtze River formed since100ka, corresponding to late-pleistocene. However, homogeneous and net-like red earth formed during the period of400ka to100ka and the period of800ka to400ka, which were the product of mid-pleistocene. Al was adsorbed in the interlayer region of vermiculite as hydroxyl-Al, resulting in the formation of HIV. Illite and vermiculite or HIV might transform into smectite wih weathering, and kaolinite formed as weathering proceeded. The occurrence of illite-vermiculite or illite-HIV mixed-layer minerals and the transformation of illite to vermiculite or HIV indicated that vermiculite or HIV was the weathering product of illite. Therefore, HIV may have an illite precursor. Since Mg, Ca, Na occurred to be simple ions in the interlayer of clay minerals from acid red earth, whereas Al entered in the interlayer of vermiculite in the form of hydroxyl-Al, altering mineral composition and icon exchange capacity. A gradual crease of HIV and illite and a gradual decrease of illite-vermculite or illite-HIV mixed-layer minerals suggest that a gradual climate change from warm and humid to cool and dry in the mid-lower reaches of Yangtze River region since mid-pleistocene, in good agreement with global climate change. Thus, not only HIV can reveal the climate change during the forming period of red earth, but also can be used as a characteristic mineral to define the boundary of Middle Pleistocene and Late Pleistocene.
引文
[1]Stockhausen H, Zolitschka B. Environmental changes since 13,000 cal. BP reflected in magnetic and sedimentological properties of sediments from Lake Holzmaar (Germany) [J]. Quaternary Science Reviews,1999,18 (7):913-925.
    [2]Stuiver M. Climate versus changes in 13C content of the organic component of lake sediments during the Late Quarternary[J]. Quaternary Research,1975,5 (2):251-262.
    [3]常凤鸣,庄丽华,阎军.放射虫研究在古海洋学中的进展[J].海洋科学,2002,26(4)20-24.
    [4]Baker A, Smart P L, Edwards R L, et al. Annual growth banding in a cave stalagmite[J]. Nature,1993,364:518-520.
    [5]Chen J, An Z, Wang Y, et al. Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka[J]. Science in China Series D:Earth Sciences, 1999,42 (3):225-232.
    [6]Fairbanks R G. The age and origin of the "Younger Dryas climate event" in Greenland ice cores[J]. Paleoceanography,1990,5 (6):937-948.
    [7]刘兴起,童国榜.青海湖16 ka以来的花粉记录及其古气候古环境演化[J].科学通报,2002,47(17):1351-1355.
    [8]刘晓宏,秦大河,邵雪梅,等.祁连山中部过去近千年温度变化的树轮记录[J].中国科学(D辑:地球科学),2004,34(1):89-95.
    [9]洪汉烈,薛惠娟,张克信,等.临夏盆地晚渐新世沉积物中坡缕石的发现及其环境气候意义[J].地球科学,2007,32(5):598-604.
    [10]洪汉烈,于娜,薛惠娟,等.临夏盆地晚更新世沉积物粘土矿物的特征及其古气候指示[J].现代地质,2007,21(2):406-414.
    [11]刘东生.黄土与环境[M].北京:科学出版社,1985.
    [12]Kukla G, An Z. Loess stratigraphy in central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1989,72:203-225.
    [13]Zhisheng A, Tunghseng L, Yanchou L, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China[J]. Quaternary International,1990, 7:91-95.
    [14]Xiao J, An Z. Three large shifts in East Asian monsoon circulation indicated by loess-paleosol sequences in China and late Cenozoic deposits in Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,154 (3):179-189.
    [15]鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比:红粘土风成成因的新证据[J].沉积学报,1999,17(2):226-232.
    [16]熊尚发.黄土-红粘土记录的构造尺度气候变化[J].第四纪研究,2007(2):242-250.
    [17]Guo Z T, Ruddiman W F, Hao Q Z. On set of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature,2002,416 (6877):159-163.
    [18]文启忠,刁桂仪,贾蓉芬,等.黄土剖面中古气候变化的地球化学记录[J].第四纪研究,1995,3:223-231.
    [19]朱丽东,周尚哲,叶玮,等.中国南方红土沉积与环境变化研究[J].浙江师范大学学报:自然科学版,2005,28(2):206-210.
    [20]朱丽东.中亚热带加积型红土及其所记录的第四纪环境变化探讨[D].兰州大学,2007.
    [21]朱照宇,郑洪汉,张国梅,等.华南热带红土期及风化矿物初步研究[J].第四纪研究,1991,1:18-28.
    [22]洪汉烈.黏土矿物古气候意义研究的现状与展望[J].地质科技情报,2010,29(1):1-8.
    [23]陈涛,王河锦,张祖青,等.浅谈利用黏土矿物重建古气候[J].北京大学学报(自然科学版),2005,41(2):309-316.
    [24]张磊.内蒙古中部第四纪沉积物中黏十矿物组合特征与古气候演化关系[D].中国地质大学(北京),2008.
    [25]Biscaye P. Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans [J]. Geological Society of America Bulletin,1965,76 (7) 803-832.
    [26]马光祖,梁国立.地质样品的X射线荧光光谱分析[J].岩矿测试,1992,11(Z1):37-43.
    [27]戈尔茨坦,张大同.扫描电子显微技术与X射线显微分析[M].北京:科学出版社,1988.
    [28]龙天才.关于应用硼判别沉积环境的有效性问题[J].见:中国地质学会第四纪冰川与第四纪地质专业委员会等编.第四纪冰川与第四纪地质论文集(第5集)[M].北京:地质出版社,1988.
    [29]Sediments L. Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco) [J]. Clays and Clay Minerals, 1997,45 (3):378-389.
    [30]Vicente M A, Elsass F, Molina E, et al. Palaeoweathering in slates from the Iberian Hercynian Massif (Spain); investigation by TEM of clay mineral signatures[J]. Clay Minerals,1997,32 (3):435-451.
    [31]郑淑蕙.稳定同位素地球化学分析[M].北京大学出版社,1986.
    [32]赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].海洋出版社,1990.
    [33]Pandarinath K, Prasad S, Gupta S K. A 75 ka record of palaeoclimatic changes inferred from crystallinity of illite from Nal Sarovar, western India[J]. Journal Geological Society of India, 1999,54 (5):515-522.
    [34]Migo P, Lidmar-Bergstr M K. Deep weathering through time in central and northwestern Europe:problems of dating and interpretation of geological record[J]. Catena,2002,49 (1-2):25-40.
    [35]Merriman R J. Contrasting clay mineral assemblages in British lower Palaeozonic slate belts: the influence of geotectonic setting[J]. Clay Minerals,2002,37 (1):207-219.
    [36]Ingles M, Salvany J M, Mu O A. Relationship of mineralogy to depositional environments in the non-marine Tertiary mud-stones of the southwestern Ebro Basin (Spain) [J]. Sedimentary Geology.1998,116 (34):159-176.
    [37]Manalt F, Beck C, Disnar J R. Evolution of clay mineral assemblages and organic matter in the late glacial Holocene sedimentary infill of Lake Annecy (northwestern Alps) paleoenvironmental implications[J]. Journal of Paleolimnology,2001,25 (2):179-192.
    [38]Perederij V I. Clay mineral composition and palaeoclimatic interpretation of the Pleistocene deposits of Ukraine[J]. Quaternary International,2001,76:113-121.
    [39]M6dard T. Palaeoclimatic interpretation of clay minerals in marine deposits:an outlook from the continental origin[J]. Earth-Science Reviews,2000,49 (14):201-221.
    [40]Weaver C E, Pollard D L. The Chemistry of Clay Minerals[M]. Amsterdam:Elsevier scientific,1973.
    [41]汤艳杰,贾建业,谢先德.黏十矿物的环境意义[J].地学前缘,2002,9(2):337-344.
    [42]Singer A. The Paleoclimatic interpretation of clay minerals in sediment:a review[M]. Earth Science Reviews,1984:251-293.
    [43]Quigley R, Martin R. Chloritized weathering products of a New England Glacial Till[J]. Clays and Clay Minerals.1963,10:107-116.
    [44]Ducloux J, Meunier A, Velde B. Smectite, chlorite and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body, Massif Central France [J]. Clay Minerals.1976,11:121-135.
    [45]Chamley H. Clay Sedimentology[M]. Heidelberg:Springerverlag,1989.
    [46]Keller W D. Environmental aspects of clay minerals[J]. Journal of Sedimentary Petrology. 1970,40 (3):788-854.
    [47]Rateev M A, Gorbunova Z N, Ap Lisitzyn G. The distribution of clay minerals in the oceans[J]. Sedimentology,2006,13 (1-2):21-43.
    [48]Tateo F, Sabbadini R, Morandi N. Palygorskite and sepiolite occurrence in Pliocene lake deposits along the River Nile:evidence of an arid climate[J]. Journal of African Earth Science,2000:633-645.
    [49]Khadkikar A S, Chamyal L, Ramesh R. The character and genesis of calcrete in Late Quaternary alluvial deposits, Gujarat,Western India, and its bearing on the interpretation of ancient climates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,162 (324): 239-261.
    [50]郑自立,宋绵新,易发成,等.中国坡缕石[M].北京:地质出版社,1997:10-13.
    [51]Hong H, Zhang K, Li Z. Climatic and tectonic uplift evolution since-7 Ma in Gyirong basin, southwestern Tibet plateau:clay mineral evidence[J]. International Journal of Earth Sciences,2009,99 (6):1005-1315.
    [52]Harlan J R, Zohary D. Distribution of wild wheats and barley[J]. Science.1966,153 (3740): 1074-1080.
    [53]曾方明,向树元,路玉林,等.甘肃临洮晚更新世黄土环境变迁[J].地球科学(中国地质大学学报),2007,32(5):703-712.
    [54]李双建,张然,王清晨.沉积物颜色和粘土矿物对库车坳陷第三纪气候变化的指示[J].沉积学报,2006,24(4):521-530.
    [55]彭淑贞,郭正堂.风成三趾马红土与第四纪黄土的粘土矿物组成异同及其环境意义[J].第四纪研究,2007,27(2):277-285.
    [56]万世明,李安春,胥可辉,等.南海北部中新世以来粘土矿物特征及东亚古季风记录[J].地球科学(中国地质大学学报),2008,33(3):289-300.
    [57]Pai C W, Wang M K, Chiu C Y. Clay mineralogical characterization of a toposequence of perhumid subalpine forest soils in northeastern Taiwan[J]. Geoderma,2007,138 (1-2) 177-184.
    [58]Rich C I. Hydroxy interlayers in expansible layer silicates[J]. Clays Clay Miner.1968,16 (1):15-30.
    [59]Harris W G, Hollien K A, Bates S R, et al. Dehydration of hydroxy-interlayered vermiculite as a function of time and temperature[J]. Clays and Clay Minerals.1992,40 (3):335-340.
    [60]Harris W G, Morrone A A, Coleman S E. Occluded mica in hydroxy-interlayered vermiculite grains from a highly-weathered soil[J]. Clays and Clay Minerals.1992,40 (1) 32-39.
    [61]Uehara M, Yamzaki A, Umezawa T, et al. A nickel hydroxide-vermiculite complex: Preparation and characterization[J]. Clays and clay minerals.1999,47 (6):726-731.
    [62]Carstea D D, Harward M E, Knox E G. Formation and stability of hydroxy-Mg interlayers in phyllosilicates[J]. Clays and Clay Minerals.1970,18 (4):213-222.
    [63]Pal D K, Bhattacharyya T, Sinha R, et al. Clay minerals record from Late Quaternary drill cores of the Ganga Plains and their implications for provenance and climate change in the Himalayan foreland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology doi:10.1016/j.palaeo.2011.05.009,2010.
    [64]Kidder G, Reed L W. Swelling characteristics of hydroxy-aluminum interlayered clays[J]. Clays and Clay Minerals.1972,20:13-20.
    [65]Yamanaka S, Brindley G W. Hydroxy-nickel interlayering in montmorillonite by titration method[J]. Clays and Clay Minerals.1978,26 (1):21-24.
    [66]Brindley G W, Kao C C. Formation, composition and properties of hydroxy-A 1-and hydroxy-Mgmontmorillonite[J]. Clays and Clay Minerals.1980,28:434-443.
    [67]Brown G. The dioctahedral analogue of vermiculite[J]. Clay Min. Bull.1953,2:64-69.
    [68]Brown G. Soil morphology and mineralogy. A qualitative study of some gleyed soils from North-West England[J]. Journal of Soil Science.1954,5(1):145-155.
    [69]Grim R E, Johns W D. Clay mineral investigation of sediments in the northern Gulf of Mexico[J]. Clays and clay minerals.1954,2:81-103.
    [70]Lin C W, Hseu Z Y, Chen Z S. Clay mineralogy of Spodosols with high clay contents in the subalpine forests of Taiwan[J]. Clays and clay minerals,2002,50 (6):726-735.
    [71]Liu J C, Chen Z S. Soil characteristics and clay mineralogy of two subalpine forest Spodosols with clay accumulation in Taiwan[J]. Soil science,2004,169 (1):66-80.
    [72]Righi D, Petit S, Bouchet A. Characterization of hydroxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a Cryorthod[J]. Clays and Clay minerals,1993,41 (4):484-495.
    [73]Buurman P, Meijer E L, Van Wijck J H. Weathering of chlorite and vermiculite in ultramafic rocks of Cabo Ortegal, northwestern Spain[J]. Clays and Clay minerals,1988,36 (3):263-269.
    [74]Carnicelli S, Mirabella A, Cecchini G, et al. Weathering of chlorite to a low charge expandable mineral in a spodosol on the Apennine mountains, Italy[J]. Clays and Clay Minerals,1997,45 (1):28-41.
    [75]Nieto F, Ortega-Huertas M, Peacor D R, et al. Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin[J]. Clays and Clay Minerals,1996,44 (3):304-323.
    [76]黄镇国.中国南方红色风化壳[M].北京:海洋出版社,1996.
    [77]黄镇国,张伟强,陈俊鸿.中国红土与自然地带变迁[J].地理学报,1999(3):3-13.
    [78]胡雪峰,朱煜,沈铭能.南方网纹红土多元成因的粒度证据[J].科学通报,2005,50(9):918-925.
    [79]洪汉烈,杜登文,李荣彪,等.安徽宣城红土剖面中粘土矿物过渡相及其意义[J].地球科学(中国地质大学学报),2012(3):424-432.
    [80]Xiong S, Sun D, Ding Z. Aeolian origin of the red earth in southeast China[J]. Journal of Quaternary Science,2002,17 (2):181-191.
    [81]Hu X, Cheng T, Wu H. Do multiple cycles of aeolian deposit-pedogenesis exist in the reticulate red clay sections in southern China?[J]. Chinese Science Bulletin,2003,48 (12) 1251-1258.
    [82]Costantini E A C, Makeev A, Sauer D. Recent developments and new frontiers in paleopedology[J]. Quaternary international,2009,209:1-5.
    [83]May J H, Veit H. Late Quaternary paleosols and their paleoenvironmental significance along the Andean piedmont, Eastern Bolivia[J]. Catena,2009,78 (2):100-116.
    [84]席承藩.土壤是气候变化的长期记录者[J].第四纪研究,1990,10(1):82-90.
    [85]Catt J A. Soils as indicators of Quaternary climatic change in mid-latitude regions[J]. Geoderma,1991,51 (1-4):167-187.
    [86]Vogt T, Clauer N, Larque P. Impact of climate and related weathering processes on the authigenesis of clay minerals:Examples from circum-Baikal region, Siberia[J]. Catena, 2010,80 (1):53-64.
    [87]Singer A. The Paleoclimatic interpretation of clay minerals in soil and weathering:a review[J]. Earth Science Reviews,1980,15 (4):303-326.
    [88]洪汉烈.粘土矿物古气候意义研究的现状与展望[J].地质科技情报,2010,29(1):1-8.
    [89]殷科,洪汉烈,李荣彪,等.青海循化盆地晚渐新世沉积物中坡缕石的特征及其古气候指示意义[J].现代地质,2010,24(1):187-194.
    [90]殷科,洪汉烈,李荣彪,等.循化盆地晚渐新世早-中新世沉积物中黏土矿物特征及其古气候指示意义[J].地质科技情报,2010,29(3):41-48.
    [91]邓焰平,洪汉烈,殷科,等.兰州盆地永登剖面晚古新世—早渐新世沉积物中粘土矿物的特征及其古气候指示意义[J].现代地质,2010,24(4):793-800.
    [92]杜鹃,洪汉烈,张克信,等.新疆其木干剖而中新世-上新世沉积物粘十矿物特征及其古气候指示意义[J].生态学杂志,2010,29(5):923-932.
    [93]洪汉烈,王朝文,徐耀明,等.青藏高原新生代以来气候环境演化的粘土矿物学特征[J].地球科学(中国地质大学学报),2010,35(5):728-736.
    [94]王朝文,洪汉烈,向树元,等.东昆仑阿拉克湖早更新世沉积物黏土矿物特征及其古气候环境意义[J].地质科技情报,2008,27(5):37-42.
    [95]Hong H, Churchman G J, Gu Y, et al. Kaolinite-smectite mixed-layer clays in the Jiujiang red soils and their climate significance[J]. Geoderma,2012,173-174:75-83.
    [96]Hong H, Gu Y, Li R, et al. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China[J]. Journal of Quaternary Science,2009,25 (5):662-674.
    [97]Hanlie H, Na Y, Ping X, et al. Authigenic palygorskite in Miocene sediments in Linxia basin, Gansu, northwestern[J]. Clay Minerals,2007,42:45-58.
    [98]Hong H, Li Z, Xue H, et al. Oligocene clay mineralogy of the Linxia Basin:evidence of Paleoclimatic evolution subsequent to the initial-stage uplift of the Tibetan Plateau[J]. Clays and Clay Minerals,2007,55 (5):491-503.
    [99]Wang L, Jiang B, Peng H, et al. Characteristics and genesis of clay minerals in the northern margin of the Qaidam Basin[J]. Mining Science and Technology (China),2011,21 (2): 141-145.
    [100]Fonseca R, Barriga F, Tazaki K. Land erosion and associated evolution of clay minerals assemblages from soils to artificial lakes in two distinct climate regimes in Portugal and Brazil[J]. Clay Minerals,2007,42 (2):161-179.
    [101]李明霖,莫多闻,孙国平,等.浙江田螺山遗址古盐度及其环境背景同河姆波文化演化的关系[J].地理学报,2009,64(7):807-816.
    [102]贺纪正,李学垣,徐凤琳,等.土壤中蒙脱石形成的1.4 nm过渡矿物[J].科学通报,1993,38(22):2096-2098.
    [103]Barnhisel R I, Bertsch P M. Chlorites and hydroxyl-interlayered vermiculite and smectite. In:Minerals in Soil Environments, ed. J. B. Dixon, S. B. Weed, pp.728-788.[J]. Madison, WI:Soil Science Society of American,1989:729-788.
    [104]Funakawa S, Watanabe T, Kosaki T. Regional trends in the chemical and mineralogical properties of upland soils in humid Asia:With special reference to the WRB classification scheme[J]. Soil science and plant nutrition,2008,54 (5):751-760.
    [105]Nakao A, Thiry Y, Funakawa S, et al. Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand[J]. Soil Science and Plant Nutrition,2008,54 (4):479-489.
    [106]Barre P, Velde B. Clays Developed Under Sequoia Gigantia and Prairie Soils:150 Years of Soil-Plant Interaction in the Parks of French Chateaux[J]. Clays and Clay Minerals,2010, 58 (6):803-812.
    [107]Bortoluzzi E C, Velde B, Pernes M, et al. Vermiculite, with hydroxy-aluminium interlayer, and kaolinite formation in a subtropical sandy soil from south Brazil[J]. Clay Minerals,2008, 43 (2):185-193.
    [108]Bahmanyar M A. The influence of continuous rice cultivation and different waterlogging periods on morphology, clay mineralogy, Eh, pH and K in paddy soils[J]. Pakistan Journal of Biological Sciences,2007,10 (17):2844-2849.
    [109]Huang L, Tan W, Liu F, et al. Composition and transformation of 1.4 nm minerals in cutan and matrix of Alfisols in central China[J]. Journal of Soils and Sediments,2007,7 (4) 240-246.
    [110]Egli M, Mirabella A, Sartori G, et al. Effect of slope aspect on transformation of clay minerals in Alpine soils[J]. Clay Minerals,2007,42 (3):373-398.
    [111]Egli M, Zanelli R, Kahr G, et al. Soil evolution and development of the clay mineral assemblages of a Podzol and a Cambisol in'Meggerwald', Switzerland[J]. Clay Minerals, 2002,37 (2):351-366.
    [112]Mirabella A, Egli M. Structural transformations of clay minerals in soils of a climosequence in an Italian alpine environment[J]. Clays and clay minerals,2003,51 (3) 264-278.
    [113]Pal D K, Srivastava P, Durge S L, et al. Role of microtopography in the formation of sodic soils in the semi-arid part of the Indo-Gangetic Plains, lndia[J]. Catena,2003,51 (1):3-31.
    [114]许良峰,魏骥,姜伟.皖南网纹红土的剖而风化特征及其古气候意义[J].土壤通报, 2010,41(1):7-12.
    [115]王秋兵,王慧强,韩春兰,等.辽宁地区古红土粘土矿物特征及其环境学意义[J].土壤通报,2008,39(4):924-927.
    [116]朱立军.碳酸盐岩红土中1.4nm间层矿物及其环境意义[J].矿物岩石地球化学通报,1996,15(3):167-170.
    [117]srodon J. Nature of mixed-layer clays and mechanisms of their formation and alteration[J]. Annual Review of Earth and Planetary Sciences,1999,27:19-53.
    [118]Dunlop D J, ozdemir O. Rock magnetism:fundamentals and frontiers[M]. Cambridge University Press,2001.
    [119]刘彩彩,邓成龙.南方红土磁性地层年代学研究进展[J].地学前缘,2011,18(4)158-170.
    [120]Opdyke M D, Channell J E. Magnetic stratigraphy[M]. Academic Press,1996.
    [121]乔彦松,郭正堂,郝青振,等.皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义[J].科学通报,2004,48(13):1465-1469.
    [122]袁宝印,夏正楷,李保生,等.中国南方红土年代地层学与地层划分问题[J].第四纪研究,2008,28(1):1-12.
    [123]杨浩,赵其国,李小平,等.安徽宣城风成沉积—红土系列剖面ESR年代学研究[J].土壤学报,1996,33(3):293-300.
    [124]赵志中,乔彦松,王燕,等.成都平原红土堆积的磁性地层学及古环境记录[J].中国科学:D辑,2007,37(3):370-377.
    [125]Wintle A G, Huntley D J. Thermoluminescence dating of sediments[J]. Quternary Science Review,1982,1(1):31-35.
    [126]于振江,黄多成.安徽省沿江地区网纹红土和下蜀土的形成环境及其年龄[J].安徽地质,1996,6(3):48-56.
    [127]蒋复初,王苏民.九江地区网纹红土的时代[J].地质力学学报,1997,3(4):27-32.
    [128]吴正,地理.华南海岸风沙地貌研究[M].北京:科学出版社,1995.
    [129]吴正.风沙地貌研究论文选集[M].北京:海洋出版社,2004.
    [100]曾从盛,陈居成,吴幼功,等.闽东南沿海老红砂研究[M].北京:地质出版社,1999.
    [131]张家富,袁宝印,周力平.福建晋江“老红砂”的释光年代学及对南方第四纪沉积物释光测年的指示意义[J].科学通报,2007,52(22):2646-2654.
    [132]Hong H, Gu Y, Yin K, et al. Clay record of climate change since the mid-Pleistocene in Jiujiang, south China[J]. Boreas,2013,42 (1):173-183.
    [133]乔彦松,郭正堂,郝青振,等.安徽宣城黄土堆积的磁性地层学与古环境意义[J].地质力学学报,2002,8(4):369-375.
    [134]张明强,朱丽东,姜永见,等.九江JL红土剖面记录的中更新世气候转型事件[J].海洋地质与第四纪地质,2011,30(6):115-123.
    [135]黄慰文,冷健,员晓枫,等.对百色石器层位和时代的新认识[J].人类学学报,1990,9 (2):105-112.
    [136]郭士伦,郝秀红,陈宝流,等.用裂变径迹法测定广西百色旧石器遗址的年代[J].人类学学报,1996,15(4):347-350.
    [137]冯金良,崔之久,张威,等.云贵高原碳酸盐岩风化壳的古地磁定年探讨[J].中国岩溶,2003,22(3):14-26.
    [138]冯金良,崔之久,张威,等.云贵高原红土性风化壳定年对象——锰结核的基础研究[J].海洋地质与第四纪地质,2003(3):45-54.
    [139]孙承兴,王世杰,刘秀明,等.风化壳剖面的定年研究[J].矿物岩石地球化学通报,2000,19(1):54-59.
    [140]黄慰文.南方砖红壤层的早期人类活动信息[J].第四纪研究,1991(4):373-379.
    [141]黄姜侬,方家骅,邵家骥,等.南京下蜀黄土沉积时代的研究[J].地质论评,1988,34(3):240-247.
    [142]赵其国,杨浩.中国南方红土与第四纪环境变迁的初步研究[J].第四纪研究,1995(2):107-116.
    [143]朱艳.庐山地区中更新世晚期地层最佳剖面——下岸角剖面[J].地层学杂志,1998,22(2):58-63.
    [144]袁宝印,夏正楷,李保生,等.中国南方红土年代地层学与地层划分问题[J].第四纪研究,2008,28(1):1-13.
    [145]Chardia B T D, Young C C, Pei W C, et al. On the Cenozoic formations of Kwangsi and Kwangtung[J]. Bulletin of the Geological Society of China,1935,14 (2):179-210.
    [146]Young C C, Bien M N, Lee Y Y. "Red Beds" of Hunan[J]. Bulletin of the Geological Society of China,1938,18 (3-4):259-300.
    [147]袁宝印,侯亚梅,王頠,等.百色旧石器遗址的若干地貌演化问题[J].人类学学报,1999,18(3):215-224.
    [148]Lien Chieh L. Physiographical significance of the occurence of red earth in Nanning basin [J]. Bulletin of the Geological Society of China,1936,15 (4):529-552.
    [149]黄宁生,关康年.鄂东阳逻地区早更新世砾石层研究[J].地球科学,1993,18(5)589-596.
    [150]吴锡浩,徐和聆,蒋复初,等.长江中下游地区网纹红土中撞击事件记录的首次发现与初步研究[J].地质地球化学,1995(4):83-86.
    [151]袁宝印,叶莲芳.雷公墨的地层年代学研究[J].科学通报,1979,24(6):271-273.
    [152]严正,袁宝印,叶莲芳.海南岛玻璃陨石(雷公墨)裂变径迹年龄的测定[J].地质科学,1979,1(9):37-42.
    [153]安芷生,魏兰英.离石黄土中的第五层古土壤及其古气候的意义[J].土壤学报,1980,17(1):1-10.
    [154]Qiao Y, Guo Z, Hao Q, et al. Loess-soil sequences in southern Anhui Province: Magnetostratigraphy and paleoclimatic significance[J]. Chinese Science Bulletin,2003,48 (19):2088-2093.
    [155]邵家骥.苏南及沿江地区柏山组、下蜀组的时代及成因[J].江苏地质,1999,23(1)12-18.
    [156]Guo Z, Liu T, Fedoroff N, et al. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic [J]. Global and Planetary Change, 1998,18 (3):113-128.
    [157]杨立辉,叶玮,朱丽东,等.第四纪加积型红土与黄土的风成相似性探讨[J].干旱区地理,2008(3):341-347.
    [158]胡雪峰,程天凡,巫和听.南方网纹红土内是否可能存在多个“沉积—成土”过程的旋回?[J].科学通报,2003,48(9):969-975.
    [159]熊尚发,丁仲礼,刘东生.赣北红土与北京邻区黄土及沙漠砂的粒度特征对比[J].科学通报,1999,44(11):1216-1219.
    [160]姜永见,朱丽东,叶玮,等.庐山JL剖面红土粒度体积分形特征及其环境意义[J].山地学报,2008,26(1):36-44.
    [161]乔彦松,赵志中,李增悦,等.成都平原红土堆积的风成成因证据[J].第四纪研究,2007,27(2):286-294.
    [162]夏应菲,杨浩.安徽宣城第四纪红土剖面石英颗粒扫描电镜观察[J].南京师大学报:自然科学版,1998,21(1):120-124.
    [163]朱丽东,周尚哲,叶玮,等.网纹红土稀土元素地球化学特征的初步研究[J].中国沙漠,2007,27(2):194-200.
    [164]王伟铭,虞子冶,杨浩.江西星子县第四纪红土层的植硅石和孢粉研究及意义[J].微体古生物学报,1997,14(1):45-47.
    [165]李长安,顾延生.网纹红土中的植硅石组合及其环境意义的初步研究[J].地球科学:中国地质大学学报,1997,22(2):195-198.
    [166]黄翡,熊尚发.江西九江第四纪红土中的植物硅酸体及孢粉[J].微体古生物学报,2001,18(2):203-210.
    [167]王志远,喻建华,顾延生,等.浙江长兴更新世红土中的分子化石及其古环境意义[J].海洋地质与第四纪地质,2002,22(1):97-102.
    [168]谢树成,易轶,刘育燕,等.中国南方更新世网纹红土对全球气候变化的响应:分子化石记录[J].中国科学:C辑,2003,33(5):411-416.
    [169]梁斌,谢树成,顾延生,等.安徽宣城更新世红土正构烷烃分布特征及其古植被意义[J].地球科学,2005,30(2):129-132.
    [170]尹秋珍,郭正堂.中国南方的网纹红土与东亚季风的异常强盛期[J].科学通报,2006,51(2):186-193.
    [171]李徐生,杨达源,鹿化煜.皖南风尘堆积序列氧化物地球化学特征与古气候记录[J].海洋地质与第四纪地质,1999,19(4):75-82.
    [172]朱丽东,周尚哲,李凤全,等.南方更新世红土氧化物地球化学特征[J].地球化学, 2007,36(3):295-302.
    [173]熊尚发,丁仲礼,刘东生.南方红土网纹:古森林植物根系的土壤学证据[J].科学通报,2000,45(12):1317-1321.
    [174]尹秋珍,郭正堂.中国南方的网纹红土与东亚季风的异常强盛期[J].科学通报,2006,51(2):186-193.
    [175]胡雪峰,夏应菲.安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义[J].土壤学报,1999,36(3):301-307.
    [176]Harris W, White G N. X-ray diffraction techniques for soil mineral identification. In:Ulery AL, Drees R (eds) Methods of soil analysis. Part 5. Mineralogical methods. Soil Science Society of America Book Series, Madison.[M],2008.
    [177]Churchman G J, Slade P G, Self P G, et al. Nature of interstratified kaolin-smectites in some Australian soils[J]. Australian Journal of Soil Research,1994,32 (4):805-822.
    [178]Hong H, Gu Y, Yin K, et al. Clay record of climate change since the mid-Pleistocene in Jiujiang, south China[J]. Boreas,2013,42 (1):173-183.
    [179]Hong H, Gu Y, Yin K, et al. Red soils with white net-like veins and their climate significance in south China[J]. Geoderma,2010,160 (2):197-207.
    [180]翟淑芬,地质学,李端,等.扫描电子显微镜及其在地质学中的应用[M].中国地质大学出版社,1991.
    [181]赵珊茸,边秋娟,凌其聪.结晶学及矿物学[M].高等教育出版社,2004.
    [182]Heller F, Tung Sheng L. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China[J]. Geophysical Research Letters,1986,13(11):1169-1172.
    [183]吴标云.南京下蜀黄土沉积特征研究[J].海洋地质与第四纪地质,1985,5(2):113-121.
    [184]郑祥民.东海嵊山岛风尘黄土地层的初步研究[J].华东师范大学学报:自然科学版,1998:62-66.
    [185]郑祥民.长江三角洲及海域风尘沉积与环境[M].华东师范大学出版社,1999.
    [186]Yang S Y, Li C X, Yang D Y, et al. Chemical weathering of the loess deposits in the lower Changjiang Valley, China, and paleoclimatic implications[J]. Quaternary International,2004, 117 (1):27-34.
    [187]李徐生,杨达源,鹿化煜.镇江下蜀黄土粒度特征及其成因初探[J].海洋地质与第四纪地质,2001,21(1):25-32.
    [188]Zhang W, Yu L, Lu M, et al. Magnetic properties and geochemistry of the Xiashu Loess in the present subtropical area of China, and their implications for pedogenic intensity[J]. Earth and Planetary Science Letters,2007,260 (1):86-97.
    [189]龚子同.红色风化壳的生物地球化学.见:李庆透主编中国红壤[M].北京:北京:科学出版社,1985:24-40.
    [190]熊毅,李庆逵.中国土壤[M].北京:科学出版社,1987.
    [191]Hu X, Wei J, Xu L, et al. Magnetic susceptibility of the Quaternary Red Clay in subtropical China and its paleoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,279 (3):216-232.
    [192]席承藩.关于中国红色风化壳的几个问题.[J].中国第四纪研究,1965,4(2):42-54.
    [193]李吉均,张林源,邓养鑫,等.庐山第四纪环境演变和地貌发育问题[J].中国科学B辑,1983(8):734-745.
    [194]Hu X, Wei J, Du Y, et al. Regional distribution of the Quaternary Red Clay with aeolian dust characteristics in subtropical China and its paleoclimatic implications[J]. Geoderma, 2010,159 (3):317-334.
    [195]朱景郊.网纹红土的成因及其研究意义[J].地理研究,1988,7(4):12-20.
    [196]朱显谟.中国南方的红土与红色风化壳[J].第四纪研究,1993,1:75-84.
    [197]徐馨.长江中下游网纹层问题的讨论.第四纪冰川与第四纪地质论文集(第一集)[M].北京:地质出版社,1984:104-112.
    [198]袁国栋,龚子同.第四纪红土的土壤发生及其古地理意义[J].土壤学报,1990,27(1):54-62.
    [199]Xiong S, Ding Z, Liu D. Comparisons of grain size characteristics of red earth from southern China with that of loess and dune sand from Bering region[J]. Chinese science bulletin,1999,44 (18):1690-1693.
    [200]Hu X F, Yuan G D, Gong Z T. Origin of Quaternary red clay of southern Anhui Province[J]. Pedosphere,1998,8 (3):267-272.
    [201]Xuefeng H, Yu Z, Mingneng S. Grain-size evidence for multiple origins of the reticulate red clay in southern China[J]. Chinese Science Bulletin,2005,50 (9):910-918.
    [202]Hu X F, Gong Z T. A "yellow cap" on Quaternary red clay in Jiujiang, Jiangxi Province[J]. Pedosphere,1999,9 (4):311-318.
    [203]胡雪峰,龚子同.江西九江泰和第四纪红土成因的比较研究[J].土壤学报,2001,38(1):1-9.
    [204]朱照宇,王俊达,黄宝林,等.红土·黄土·全球变化[J].第四纪研究,1995,3:268-276.
    [205]Douglas L A. Vermiculites[J]. Minerals in soil environments,1989,2:635-674.
    [206]April R H, Hluchy M M, Newton R M. The nature of vermiculite in Adirondack soils and till[J]. Clays and Clay Minerals,1986,34 (5):549-556.
    [207]Reynolds R C J. NEWMOD, a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays[M]. Hanover, NH:RC Reynolds, Jr,8 Brook Rd,1985.
    [208]Velde B, Meunier A. The origin of clay minerals in soils and weathered rocks[M]. Springer-Verlag New York Inc,2008.
    [209]Vanderaveroet P, Bout-Roumazeilles V, Fagel N, et al. Significance of random illite-vermiculite mixed layers in Pleistocene sediments of the northwestern Atlantic Ocean[J]. Clay Minerals,2000,35 (4):679-691.
    [210]殷科,洪汉烈,高文鹏,等.末次间冰期以来临夏地区气候变化的粘土矿物学及地球化学记录[J].土壤学报,2012,49(2):32-45.
    [211]殷科,洪汉烈,李荣彪,等.九江网状红土中粘土矿物过渡相的矿物学特征及成因[J],2012,32(10):2765-2769.
    [212]洪汉烈,殷科,高文鹏,等.土壤中14A过渡矿物的特征及其地质意义[J].地质科技情报,2012,31(5):15-22.
    [213]Jackson M L. Soil clay mineralogical analysis[J]. by CI Rich and GW Kunze. The University of North Carolina Press, Chapel Hill, USA,1964.
    [214]Jackson M L. Chemical composition of soils[J]. Chemistry of the Soil,1964:71-141.
    [215]Meunier A. Soil hydroxy-interlayered minerals:a re-interpretation of their crystallochemical properties[J]. Clays and Clay Minerals,2007,55 (4):380-388.
    [216]Black C A. Soil-plant Relationships and Ed John Wiley[M],1968.
    [217]Jackson M L. Interlayering of expansible layer silicates in soils by chemical weathering[J]. Clays and clay minerals,1963,11:29-46.
    [218]Lynn W C, Whittig L D. Alteration and formation of clay minerals during cat clay development[J]. Clays Clay Miner,1966,14:241-248.
    [219]Volk V V, Jackson M L. Inorganic pH dependent cation exchange charge of soils[J]. Clays and Clay Mineralogy,1964,12:281-285.
    [220]Kapoor B S. The formation of 2:1-2:2 intergrade clays in some Norwegian podzols[J]. Clay Minerals,1973,10 (2):79-86.
    [221]Toksoy-Koksal F, Turkmenoglu A G, Goncuoglu M C. Vermiculitization of phlogopite in metagabbro, central Turkey[J]. Clays and clay minerals,2001,49 (1):81-91.
    [222]谢萍若.小兴安岭山地暗棕色粘土矿物学特征[J].土壤学报,1987,24:18-25.
    [223]徐凤琳.中南地区土壤中的14埃过渡矿物[J].华中农业大学学报,1989(6):8-12.
    [224]Brown G. The dioctahedral analogue of vermiculite[J]. Clay Minerals Bulletin,1953,2 (10):64-70.
    [225]Dixon J B. Properties of Intergradient Chlorite-Expansible Layer Silicates of Soils[J]. Soil Science Society of America Journal,1962,26 (4):258-362.
    [226]Sawhney B L. Aluminum interlayers in layer silicates. Effect of OH/A1 ratio of A1 solution, time of reaction, and type of structure[J]. Clays and Clay Minerals,1968,16: 157-163.
    [227]师育新,戴雪荣,宋之光,等.我国不同气候带黄土中粘土矿物组合特征分析[J].沉积学报,2005,23(4):690-695.
    [228]Hu X F, Wei J, Du Y, et al. Regional distribution of the Quaternary Red Clay with aeolian dust characteristics in subtropical China and its paleoclimatic implications[J]. Geoderma, 2010,159 (3):317-334.
    [229]Yin K, Hong H, Churchman G J, et al. Hydroxy-interlayered vermiculite genesis in Jiujiang late-Pleistocene red earth sediments and significance to climate[J]. Applied Clay Science, doi.org/10.1016/j.clay.2012.09.017.
    [230]Vicente M A, Elsass F, Molina E, et al. Palaeoweathering in slates from the Iberian Hercynian Massif (Spain); investigation by TEM of clay mineral signatures[J]. Clay Minerals,1997,32 (3):435-451.
    [231]Singer A. Weathering patterns in representative soils of Guanxi Province, south-east China, as indicated by detailed clay mineralogy[J]. European Journal of Soil Science,1993, 44 (1):173-188.
    [232]Bronger A, Winter R, Sedov S. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan:towards a Quaternary paleoclimatic record in Central Asia[J]. Catena,1998,34 (1):19-34.
    [233]Foscolos A E, Rutter N W, Hughes O L, et al. The use of pedological studies in interpreting the Quaternary history of central Yukon Territory [J]. Geological Survey of Canada Bulletin,1977,271:48.
    [234]Yin Q, Guo Z. Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin,2006,51 (2) 213-220.
    [235]Dodonov A E, Sadchikova T A, Sedov S N, et al. Multidisciplinary approach for paleoenvironmental reconstruction in loess-paleosol studies of the Darai Kalon section, Southern Tajikistan[J]. Quaternary international,2006,152:48-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700