广西海岸带孢粉组合特征及近百年来沉积环境演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对广西海岸带14个表层沉积环境剖面和8个柱状岩芯进行粒度、孢粉分析和210Pb测试。利用由表层沉积剖面获得的孢粉组合特征与沉积环境之间的关系,对柱状沉积物的孢粉组合进行沉积环境解译,在210Pb年代框架中获得广西海岸带近百年来沉积环境演变特征及影响机制。
     对广西北仑河口区,珍珠湾,钦州湾和英罗湾地区的不同海岸带14个剖面的79个样品进行孢粉分析和粒度分析。结果表明孢粉分布特征与海岸带沉积环境密切相关。红树林区和堤坝内陆缘的孢粉浓度较高,而裸滩特别是水动力作用强的砂质滩,孢粉浓度极低反映出水动力对孢粉分布的控制作用。孢粉组合中总体上蕨类孢子在海岸带浓度较低,向海方向具有增加的趋势,主要原因是孢子易于浮于水面,经水动力的分选运移,使其在远岸区得到富集;Pinus花粉主要来源于海岸带附近的山区,其分布往往表现出水力与风力共同作用的特征,陆上风力或河流的远距离携带及水体中悬浮运移的特点,使其明显比其它内陆花粉含量高;热带雨林和季雨林主要建群种的花粉类型含量极低;Poaceae花粉的分布与距其主要区内堤的距离有关,近堤处含量较高;人工种植防护林的主要类型Casuarinaceae花粉的百分含量呈由岸向海逐渐减少的趋势。红树林海岸带的孢粉分布总体呈现原位沉积特征,内陆植物孢粉主要通过水流携带作用沉积下来,而局地孢粉主要受控于红树林主要建群类型,以优势植物花粉为主,另外还受植物自身特点(如花粉传媒方式)和沉积物类型、高程和潮汐动力作用等外部条件影响。非红树林区的红树林花粉含量均在小于10%。
     通过对表层孢粉组合与沉积环境的分析结果,初步选用与海岸带不同沉积单元密切相关的6个指标:孢粉浓度、双气囊类花粉、蕨类孢子、木麻黄花粉、红树植物花粉和沉积物平均粒径作为沉积环境的替代指标,确定不同海岸带及沉积单元的指标阈值,获得柱状样沉积环境记录的解译依据。
     对取自广西珍珠港、钦州湾、北海和英罗湾海岸带的8个柱状沉积物进行210Pb比活度测定,以确定年代框架。F11孔因强烈扰动作用,未计算其沉积速率,钻孔F14,LM01,Q24,Q32,Q37,C11和018平均沉积速率分别为0.67 cm/a,0.61 cm/a,0.25 cm/a,1.68 cm/a,0.63 cm/a,0.70 cm/a和0.44 cm/a,计算获得底部年代分别约为公元1888年,1846年,1727年,1956年,1864年,1916年和1816年。
     对8个柱状沉积物进行孢粉和粒度分析,在210Pb年代框架控制下,利用表层沉积剖面研究建立起来的沉积环境指标阈值及孢粉分布控制机理,解释孢粉及环境替代指标记录的沉积环境信息。总体上,近百年以来,广西海岸带具有明显的陆向迁移特征,十年-年级尺度上具有地域差异性。在210Pb年代框架下,珍珠港20世纪以来,表现出岸线略向陆地迁移的形势。钦州湾地区总体表现出西向扩张,东向缩减的趋势。20世纪初期西海岸沉积物中红树林花粉Rhizophora和Aegiceras锐减,反映出红树林滩衰退的特征;20世纪60和70年代,钦州湾西海岸线明显向内陆迁移,高潮滩环境向低潮滩演化,高潮滩向内陆迁移演化的空间被人类限制(修筑堤坝等),使滩涂面积具减少。而20世纪80年代始,东海岸线由于钦江流域来沙的迅速堆积,沉积速率较高,岸线向海推移明显,沉积物中木本植物花粉和禾本科均有所增加,内陆记录增强,而围垦修堤的人类活动也加速了低潮滩向高潮滩演化。北海20世纪中叶以来,高潮滩环境向低潮滩环境演变,岸线向陆迁移明显。英罗湾20世纪70年代以后,红树林滩衰退明显,沉积环境向低潮滩演化。
     同时,二十世纪以来,Poaceae>40μm花粉的普遍增多反映出人类种植活动加剧,反映了人类对海岸带的开发活动增强。
In this paper, grain size analysis, palynological analysis and 210Pb measurement are carried out on surface sediments from 14 sections and core sediments from 8 cores in the Guangxi coastal zone. According to the results from surface sections, we discuss the relationship between palynological records and sedimentary environment, and further to the mechanism on palynological distribution. Then, the extracted proxies are used to interpret the palynological record, grain size and Pb from core sediments, reconstruct the evolution of sedimentary environment in the coastal zone of Guangxi within the last hundred years on the 210Pb chronological frame, and indicate the potential factors on the evolution.
     Analysis of Grain size and palynology is carried out on 79 surface sediments from 14 sections in the coastal zone of Beilun estuary, Zhenzhu bay, Qinzhou bay and Yingluo bay. The results show that the palynological distribution is highly correlated with the sedimentary condition in coastal zone. High palynological concentration occurs in the mangrove forest and inner dyke, while low palynological concentration is in the bare tidal flat which is in a much stronger hydrodynamic system. This reflected palynological distribution is controlled by hydrodynamic force, especially the hydrodynamic sorted action similar to sediment materials. In General, fern spore content is low in the coastal zone, and tend to increase seaward, which is associated with its enrichment by floating transport and hydrodynamic sorting action. From mountainous area near the coastal zone, Pinus pollen obviously prevails over other terrestrial pollen, ascribing to the relative enrichment by wind and fluvial transports in a long distance and a floating way in sea. Pollen of species dominated in tropical rainforest and seasonal rain forest occur in very low contents. Poaceae pollen seems to be associated with the distance from dyke, indicated by its higher contents near dykes. Pollen content of Casuarinaceae dominant in planted shelterbelt trends to decrease seaward with an increase in distance from the dyke. Mangrove pollen are clearly characterized by in-situ deposition in mangrove tidal zone, where terrestrial palynological grains are mainly transported by water and deposit in very low content, whereas mangrove pollen of dominant species in communities prevail over others in very high content. Besides compositions of communities, palynological distribution in mangroves is also affected by characteristics of plant itself (e.g. pollination way), hydrodynamic conditions and elevation, etc. Content of mangrove pollen in non-mangrove tidal areas is generally less than 10%, which could be a boundary value indicating an allochthonous record.
     According to the relationship between palynological records and sediment units obtained from surface sections,6 proxies including palynological concentration, disaccate pollen, Casuarinaceae pollen, mangrove pollen, fern spore, and mean grain size of sediment, are selected as indicators on the sedimentary environment. Threshold values of indicators are established for the coastal various sediment zones in order to reconstruct the paleo-sedimentary environment recorded in cores.
     210Pb specific activities are measured on samples from 8 sediment cores to determine the chronological information. Core F11 is not calculated sedimentation rate due to strong disturbance on samples. The average sedimentation rates in cores F14, LM01, Q24, Q32, Q37, C11 and 018 are 0.67 cm/a,0.61 cm/a,0.25 cm/a,1.68 cm/a,0.63 cm/a,0.70 cm/a and 0.44 cm/a, respectively, and the ages at the bottom of each cores are about 1888 AD,1846 AD, 1727 AD,1956 AD,1864 AD,1916 AD and 1816 AD, accordingly.
     Results from palynological analysis and grain size analysis on 8 sediment cores reflect the evolution sedimentary environment within last several hundred years, under the 210Pb chronological framework, on the basis of threshold values of indicators and the mechanism on palynological distribution obtained from surface sections.
     In general, the coastal line tends to landward migrate within the last hundred years However, regional differences on coastline migration can be recognized on decade to annual time scales. Coastline of Zhenzhu bay had slightly migrated landward since 20th century. Qinzhou bay shows the trend of westward expansion and eastward reduction. In the western coast area, a sharp decline of Rhizophora and Aegiceras pollen content in western coastal area reflects a degradation of mangrove in the early 20th century. The western coastline obviously migrates landwards, and high tidal zone evolutes into low tidal zone. The area of tidal flat reduces due to the restricted space by human activities such as building dykes in 1960s and 1970s. The east coastline has obviously migrated seaward, corresponding to the rapid deposition with more materials from Qinjiang River since 1980s. Terrestrial influence is intensified, shown by an increase in arboreal pollen and Poaceae pollen. This perhaps is associated with human activities, such as reclamation and diking, which accelerate the evolution from low tide zone to high tidal zone. The coastline of Baihai area has migrated landward since the middle of 20th century, resulting in an evolution from low tidal zone to the high tidal zone. Yingluo bay is characterized by an evolution to low tidal zone with a declination of mangrove beach after 1970's.
     In addition, an increase in Poaceae pollen (>40μm) content reflects the intensified human cultivated activity for the exploit in the coastal zone after about 20th century.
引文
Allen, G.P.1971. Relationship between size parameter distribution and current patterns in the Gironde Estuary (France). Journal of Sedimentary Petrology,41:74-88.
    Alfaro, S.C., Gaudichet, A., Gomes, L., et al.1998. Mineral aerosol production by wind erosion:Aerosol particle sizes and binding energies. Geophysical Research Letters,25 (7):991-994.
    Ashley, G.M.1978. Interpretation of polymodal sediments. Journal of Geology,86:411-421.
    Andersen, T.J., Mikkelsen, O.A., Moller, A.L., et al.2000. Deposition and mixing depth on some European intertidal mudflat based on 210Pb and 137Cs activites. Continental Shelf Research,20:1569-1591.
    Appleby, P.G., Oldfield, F.1992. Application of lead-210 to sedimentation studies. In:Ivanovich, M., Harmon, R.S. (Eds.), Uranium-series Disequilibrium:Application to Earth, Marine, and Environmental Sciences. Clarendon Press, Oxford, pp 731-778.
    Balsam, W.L., Heusser, L.E.1976. Direct correlation of sea surface palaeotemperatures, deep circulation, and terrestrial palaeoclimates:foraminiferal and palynological evidence from two cores of Chesapeake Bay. Marine Geology,21; 121-147.
    Bartlein, P.J., Prentice, I.C., Webb, T.1986. Climatic response surface from pollen data for some eastern North American taxa. Journal of Biogeography,13:35-57.
    Biswas, B.1973. Quaternary Changes in Sea Level in the South China with Special Refereace to Sundaland, Southeast Asia,229-256.
    Bloesch, J., Evans, R.D.1982. Lead-210 dating of sediments compared with accumulation rates estimated by natural markers and measured with sediment traps. Hydrobiologic,92:579-586.
    Bonnefille, R., Chalie F., Goiot J., et al.1992. Quantitative estimates of full glacial temperatures in equetorial Africa from palynological data. Climate Dynamics,6:251-257.
    Brown, A.G.1985. The potential use of pollen in the identification of suspended sediment sources. Earth Surf. Process. Landf,10,27-32.
    Brush, G.S., Brush, L.M.1972. Transport of pollen in a sedimentladen channel:a laboratory study. Am. J. Sci.272,359-331.
    Bunt, J.S., Williams, W.T., Clay, H.J.1991. Mangrove sequencing:Analysis of zonation in a complete river system. Marine Ecology Progress Series,72:289-294.
    Bush, M.B.2000. Deriving response matrices from Central American modern pollen rain. Quaternary Research,54(1):132-143.
    Catto, N.R.1985. Hydrodynamic distribution of palynomorphs in a fluvial succession, Yukon. Can. J. Earth Science,22:1552-1556.
    Chapman, V.J.1944. The Cambridge University expedition to Jamaica. Part 1. A study of the botanical processes concerned in the development of the Jamaican shore line. Botanical Journal of the Linnean Society,52:407-447.
    Christensen, E.R.1982. A model for radionuclides in sediments influenced by mixing and compaction. Journal. Geography. Research,87:566-572.
    Crowley, G.M., Grindrod, J., Kershaw, A.P.1994. Modern pollen deposition in the tropical lowlands of northeast Australia. Review of Palaeobotany and Palynology.83,299-327.
    Davis, M.2000. Palynology after Y2K——understanding the source area of pollen in sediments. Aunu Rev Earth Planet Science,28:1-28.
    DeMaster, D.J., Mckee, B.A., Nittrouer, C.A., et al.1985. Rates of sediment accumulation and particle reworking based on radio chemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research,4:143-158.
    Dolan, R., Davis, R. E. An intensity scale for Atlantic coast Northeast storms. Joumal of Coastal Research, 1992,8:978-983.
    Dolthnik, J., Mangini, Muller, G.1981. Determination of recent deposition rates in Lake Constance with radioisotopic methods. Sedimentology,28:653-677.
    Douglas, B.C., Keamey, M.S., Leatherman, S.P.2001. Sea Level Rise. San Diego:Acadamic Press,228.
    Edgington, D.N., Robbins, J.A.1976. Patterns of deposition of natural and fallout radionuclides in sediments of Michigan and their relation to lunnological processes In:Nriagu J O ed. Environmental Biogeochemistry,2 Michigan:Ann Arbor Science Publishers,705-729.
    Ellison, J.C.1993. Mangrove retreat with rising sea-level, Bermuda Estuarine Coastal and Shelf. Science, 37:75-87.
    Ellison, J.C.1989. Pollen analysis of mangrove sediments as a sea-level indicator:Assessment from Tongatapu, Tonga. Palaeogeogr Paleoclimatal palaeoecol,74:327-341.
    Fall, P.L.1987. Pollen taphonomy in a canyon stream. Quaternary Research,28:393-406.
    Folk, R.L.1966. A review of grain-size parameters. Sedimentology,6(2):73-93.
    Friedman, G.M.1962. Comparism of moment measures for sieving and thin-section data in sedimentary petrological studies, Journal of Sedimentary Petrology,32, pp.15-25.
    Gingele, F.X., Leipe, T.1998. Distributions and enrichment of redox-sensitive metals in Baltic Sea sediments. Oceanographic Literature Review.1998,45:15-28.
    Grimm, E.C.1987. CONISS:A FORTRAN 77 programe for stratigraphically constrained cluster analysis by method of incremental sum of squares. Computers & Geosciences,13:13-35.
    Grochowski, N.T.L., Collins, M.B., Boxall, S.R., et al.1993. Sediment transport predictions for the England Channel, using numerical models. Journal of the Geollgial Society (London),150:683-695.
    Groot, J.J.1966. Some observations on pollen grains in suspension in the estuary of the Deleware River. Marine Geology,4(6):409-416.
    Groot, J.J., Groot, C.R.1966. Marine palynology possibilities limitation problems. Marine Geology,4(6): 387-395.
    Goldberg, E.D.1963. Geochronology with 210Pb. In:Radioactivity Dating. IAEA, Vienna, pp.121-131.
    Hayes, J.M.1993. Factors controlling 13C contents of sedimentary organic compound:Principles and evidence. Marine Geology,113:111-125.
    Heusser, L.E.1978. Spores and pollen in the marine realm. In:Haq,B., Boersma, A. (Eds.), Introduction to Marine Micropalaeontology. Elsevier, New York, pp.327-340.
    Heusser, L.E.1988. Pollen in marine sediments on the continental margin off northern California. Marine Geolology,80,131-147.
    Heusser, L.E., Balsam, W.L.,1977. Pollen distribution in the northeast Pacific Ocean. Quaternary Research, 7,45-62.
    Hjulstrom, F.1958. Transportation of detritus by moving water. Recent Marine Sediments,4:5-31.
    Hooghiemstra, H., Lezine, A.M., Leroy, S.A.G., et al.2006. Late Quaternary palynology in marine sediments:A synthesis of the understanding of pollen distribution patterns in the NW African setting. Quaternary International,148,29-44.
    Hooghiemstra, H.1988. Changes in major wind belts and vegetation zones in NW Africa 20,000-5000 YR B.P., as deduced from a marine pollen record near Cap Blanc. Review of Palaeobotany and Palynology, 55,101-140.
    Hooghiemstra, H., Agwu, C.O.C., Beug, H. J.1986. Pollen and spore distribution in recent marine sediments:a record of NW African seasonal wind patterns and vegetation belts. Meteor Forschungsergeb. C 40,89-135.
    Hooghiemstra, H., Agwu, C.O.C.1988. Changes in the vegetation and trade winds in equatorial northwest Africa 140,000-70,000 YR B.P., as deduced from two marine pollen records. Paleogeography, Paleoclimatology, Paleoecology,66:172-213.
    Huntley, B.1990. Studying global change:the contribution of quatemary palynology. Paleogeography, Paleoclimatology, Paleoecology (Global Planetary Change Section),82:53-61.
    Kershaw, A.P., Hyland, B.P.M.1975. Pollen transport and Periodity in a marginal rainforest situation. Review of Palaeobotany and Palynology,19:129-138.
    Kershaw, A.P., Bulman, D.1994. The relationship between modern pollen samples and environment in the humid tropics region of northeastern Australia. Review of Palaeobotany and Palynology,83:83-96.
    King, C.A.M.1972. Beacha and Coasts,2nd. London:Edward Arnold,570.
    Koide, M., Soutar, A., Goldberg, E.D., et al.1972. Marine Geochronology with210Pb. Earth Planetary Science Letters,14:442-446.
    Krishnaswami, S., Lal, D., Martin, J.M., et al.1971. Geochronology of lake sediments. Earth and Planetary Science Letters,11:407-414.
    Lario, J., Spancer, C., Plater, A.J., et al.2002. Particle size characterization of Holocenc back-barrier sequences from North Atlantic coasts (SW Spain and SE England). Geomorphology,42:25-42.
    Li, Z., Zhang, Z., Li, J., et al.2008. Pollen distribution in surface sediments of a mangrove system, Yingluo Bay, Guangxi, China. Review of Palaeobotany and Palynology,152:21-31.
    Lu, X., Matsumoto, E.2005. How to cut a sediment core for 210Pb geochronology. Environment. Geology, 47:804-810.
    Macnae, W.1968. A general account of fauna and flora of mangrove swamps and forests in the Indo-West-Pacific region. Advances in Marine Biology,6:73-270.
    Mason, C.C., Folk, R.L.1958. Differentiation of beach, dune and aeolian flat environment by size analysis. Journal of Sedimentary Petrology,28:211-216.
    Matsumoto, S.1975.210Pb geochronology of sediments from Lake Shiniji. Geochimica Journal,9: 167-172.
    Matsumoto, E.1987.210Pb geochronology of sediments, studies of the San'in Region. Nat. Environ,3: 187-194.
    McCall, P.L., Robbins, J.A., Matisoff, G.1984.137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates. Chemical Geology,44:33-65.
    Milan, C.S., Swenson, E.M., Turner, R.E., et al.1995. Assessment of the 137Cs method for estimating sediments accumulation rate:Louisiana Salt Marshes. Journal of Coastal Research,11(2):296-307.
    Moss, P.T., Kershaw, A.P., Grindrod, J.2005. Pollen transport and deposition in riverine and marine environments within the humid tropics of northeastern Australia. Review of Palaeobotany and Palynology,134:55-69.
    Muller, J.1959. Palynology of recent Orinoco Delta and shelf sediments. Micropaleontology,5:1-32.
    Muller, J.A.1969. Palynological study of the genua Sonneratianera(Sonneratiacene). pollen et Spores,6(2): 223-298.
    Muller, J., Caratini, C.1973. Pollen of Rhizophora(Rhizophoraceae) as guide fossil. Pollen et Spores, (3): 361-389.
    Muller, A., Ulrile, M.1999. The paleoenvironment of coastal lagoons in the southern Baltic Sea,l,The application of sedimentary Corg/N ratios as source indications of organic matter. Palaegeography, Palaeoclimatology, Palaeoecology,145:1-16.
    Nie, Y., Suayah, I.B., Benninger, L.K.2001. Modeling detailed sedimentary 210Pbexand fallout 239, 240Pu Profiles to allow episodic event:An application in Chesapeak Bay. Limnol Oceanogr.,46(6): 1425-1437.
    Nittreouer, C.A., Sternberg, R.W., Carpenter, R., et al.1979. The use of 210Pb geochronology as a sedimentological tool:application to the Washinton continental shelf. Marine Geology,31:296-316.
    Oldfield, F., Appleby, P.G.1984. Empirical testing of 210Pb-dating models for lake sediments. In: Hayworth, E.Y., Lund, J.W.G. (Eds.), Lake Sediments and Environmental History. Leicester University Press, Leicester, pp.93-124.
    Pennington, W., Tutin, T.G.1973. Observation on Lake Sediments using Fallout 137Sc as a Tracer. Nature, 242:324-326.
    Pethick, J. Estuarine and tidal wetland restoration in the United Kingdom:policy versus practice. Restoration Ecology.2002,10:431-437.
    Peyron, O., jony, D., Bonnefine, R., et al.2000. Climate of East Africa 6000 14C Yr B.P. as inferred from pollen data. Quaternary Research,54:90-101.
    Quarrel, S., Kroon, A., Ruessink, B. G.2008. Seasonal accretion and erosion patterns of a microtidal sandy beach, Marine Geology,250:19-33.
    Robbins, J.A.1978. Geochemical and geophysical applications of radioactive lead. In:Nriagu, J.O. (Ed.), Biogeochemistry of Lead in the Environment. Elsevier Scientific, Amsterdam, pp.285-393.
    Robins, J.A., Edginton, D.N.1975. Determination of resent sedimentation rates in Lake Michgan using 210Pb and137Cs. Geochimica et Cosmochimica Acta,39:285-304.
    Robbins, J.A., Herche, L.R.1993. Models and uncertainty in 210Pb dating of sediments. Verh. Int. Ver. Limnol.25; 217-222.
    Roe, H.M.2003. Isochron reconstruction from saltmarsh sediments:the potential of pollen analysis. A case study fromConnecticut, USA. Quaternary Research Association Research Fund Report, Quaternary Newsletter,99:63-66.
    Romagnoli, S., Cai, G.2003. Cresti M. Kinesin-like proteins and transport of pollen tube organelles. Cell Biology Internationa,27:255-256.
    Shepard, F.P.1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Geology,24(3): 151-158.
    Simon, E.E., Benjamin, P.H., David, H.R., et al.2007. Mangrove pollen of Indonesia and suitability as a sea-level indicator, Marine Geology,242:65-81.
    Stanley, E.A.1966. The problem of reworked pollen and spores in marine sediments. Marine Geology,4, 397-408.
    Sun, X., Li, X., Beug, H.J.1999. Pollen distribution in hemipelagic surface sediments of the South of China and its relation to modern vegetation distribution. Marine Geology,56:211-226.
    Tauber, H.1967. Investigation of the mode of pollen transfer in forest areas. Review of Palaeobotany and Palynology,3:277-286.
    Van, C.E., Bengo, M.D.2004. Mangrove palynology in recent marine sediments off Cameroon. Marine Geology,208:315-330.
    Van der Kaars, S.2001. Pollen distribution in marine sediments from the south-eastern Indonesian waters. Palaeogeography, Palaeoclimatology, Palaeoecology,171:341-361.
    Van Waveren, I. M.,1989. Palynofacies analysis of suiface sedimentens feom the northeastern Banda Sea (Indonesia). Netherland Journal of Sea Research 24,501-509
    Watson, J.G.1928. Mangrove forests of the Malay Peninsula. Malay Forest Records,6:1-275.
    Webb, R.S. Anderson K.H, Webb, I.T.1993. PoHen response-surface estimates of late quaternary changes in the moisture balance of the northeastern United States. Quatemary Research,1993,40:213-227.
    Woo, H.J., Oertel, G.F., Kearney, M.S.1998. Distribution of pollen in surface sediments of a barrier-lagoon system, Virginia, USA. Review of Palaeobotany and Palynology,102:289-303.
    Woodriffe, C.D., Thom, B.C., Chappell, J.1985. Development of widespread mangrove swamps in mid-Holocene time on northern Australia.Nature,317:711-713.
    Woodriffe, C.D.1981. Mangrove swamps tratigraphy and Holocene trangression, Grand Cayman Island.West Indies. Marine Geology,411:271-294.
    陈波,侍茂崇,邱绍芳,2003.广西主要港湾余流特征及其对物质输运的影响.海洋湖沼通报,(1):13-21.
    陈德林,1993.钦州特大暴雨的统计特征分析.广西气象,4:3-5.
    陈吉余,2000.中国围海工程.北京:中国水利水电出版社,34-109.
    陈金霞。张德玉,张文卿等,2006.末次冰期以来冲绳海槽北部古气候变化的孢粉记录.海洋学报,28(1):85-91.
    陈敬安,万国江,唐德贵等,2000.洱海近代气候变化的沉积物粒度与同位素记录.自然科学进展,10(3):253-259.
    陈卫跃,沈健,1990.210Pb沉积速率测定法在潜水动力环境中的应用.海洋与湖沼,21(6):429-535.
    陈远生,甘先华,吴中亨等,2001.广东省沿海红树林现状和发展.广东林业科技,17(1):20-26.
    戴志军,张小玲,闫红等,2009.台风作用下淤泥质海岸动力地貌响应.海洋工程,27(2):63-95.
    邓朝亮,刘敬合,黎广钊等,2004.钦州湾海岸地貌类型及其开发利用自然条件评价.广西科学院学报,20(3):174-178.
    范航清,黎广钊,1997.海堤对广西沿海红树林的数量、群落特征和恢复的影响,应用生态学报,8(3):240-244.
    范航清,1995.广西海岸红树林现状及人为干扰.中国红树林研究与管理,北京:科学出版社,189-202.
    高振会,黎广钊,1995.北仑河口动力地貌特征及其演变.广西科学,2(4):19-23
    广西壮族自治区海岸带和海涂资源综合调查领导小组.广西壮族自治区海岸带和海涂资源综合调查报告(第七卷).1986.5-91.
    国家海洋局908专项办公室.2006.6.我国近海海洋综合调查与评价专项——海洋底质调查技术规程.北京:海洋出版社.
    黄鹄,陈锦辉,胡自宁,2007.近50年来广西海岸滩涂变化特征分析.海洋科学,31(1):37-42.
    黄鹄等,2005.广西海岸环境脆弱性研究.北京:海洋出版社.60-69.
    柯曼红,1994.黄土孢粉分析方法的研究.植物学报,36(2):144-147.
    蓝福生,瑞堂,陈平,1994.广西海滩红树林与土壤的关系.广西植物,11(1):54-59.
    李春干,2004.广西红树林的数量分布.北京林业大学学报,26(1):47-52.
    李春海,何翠玲,2004.黄土孢粉HF处理方法.微体古生物学报,21(3):346-348.
    李凤业,1988.用.210Pb测定南海陆架浅海沉积速率.海洋科学,12(3):64-66.
    李凤业,袁巍,1991.南海、南黄海、渤海210Pb垂直分布模式.海洋地质与第四纪地质,11(3):35-43.
    李杰,李珍,赵宝成等,2008.海洋泥质沉积物的孢粉实验室处理方法研究.海洋科学进展,26(2):184-189.
    李月从,许清海,阳小兰等,2004.内蒙古岱海表层沉积物中孢粉的分布及来源, 古地理学报,6(3):317-328.
    李小强,周杰,A..R.Ashraf等,1999.黄土孢粉分析的新途径-筛滤分析法.中国沙漠,9(4):399-402.
    李珍,王开发,王永吉等,2002.红树林孢粉-气候因子转换函数恢复古环境的可行性初探.海洋科学进展,20(3):73-78.
    梁维平,黄志平,2003.广西红树林资源现状及保护发展对策.林业调查规划,28(4):59-62.
    林鹏,1981.中国东南部海岸红树林的类群及分布.生态学报,1(3):283-290.
    林鹏,1987.红树林的种类及其分布,林业科学,23(4):481-490.
    刘兰芳,唐绍清,1989.中国红树植物花粉形态,广西植物,9(2):221-232.
    陆敏,张卫国,师育新等,2003.太湖北部沉积物金属和营养元素的垂向变化及其影响因素.湖泊科学,15(3):213-220.
    吕厚远,刘嘉琪,储国强等,2003.末次冰期以来湛江湖光岩玛珥湖的孢粉记录及古环境变化.古生物学报,42(4):284-291.
    莫竹承,梁士楚,范航清等,1995.广西红树林造林技术的初步研究.中国红树林研究与管理,北 京:科学出版社,164-171.
    莫永杰,李平日,方国祥等,1996.海平面上升对广西沿海的影响与对策.北京:科学出版社,66-78.
    彭建,王仰麟,2000.我国沿海滩涂的研究.北京大学学报(自然科学版),6:832-839.
    桑树勋,刘焕杰,施健,1992.海南岛红树林泥炭的海侵成因研究及其意义.海洋地质与第四纪地质,(4):57-64.
    乔秀云,金玉东,万传彪,1998.富集孢粉化石的一种方法.大庆石油地质与开发,17(6):49-55.
    邱绍芳,侍茂崇,陈波,2003,钦州湾潮流特征分析.海洋通报,22(3):9-14.
    宋长青,吕厚远,孙湘君,1997.中国北方花粉-气候因子转换函数建立及应用.科学通报,42(20):2182-2186.
    孙绍先,1991.海桑属花粉在南海晚第四纪地层中的分布及其意义.热带海洋,10(1):21-25.
    孙廷智,孟庆芬,1990.渤海湾西岸岐口-狼坨子滩涂表层孢粉和藻类研究.海洋通报.9(5):58-66.
    孙湘君,罗运利,陈怀成,2003.中国第四纪深海孢粉研究进展,科学通报,48(15):1613-1621.
    万国江,1999.现代沉积年分辨的137Cs计年—以云南洱海和贵州红枫湖为例.第四纪研究,(1):73-80.
    王伏雄,钱南芬,张玉龙等,1997.中国植物花粉形态(第二版).北京:科学出版社,1-467.
    王开发,张玉兰,王永元,1975.我国红树植物花粉形态研究及其在海洋地质勘探中的意义.科学通报,20(1):518-523.
    王开发,王宪曾,1983.孢粉学概论.北京:北京大学出版社,59-67.
    王开发,张玉兰,孙煜华,1983.长江三角洲表层沉积孢粉、藻类组合.地理学报,37(3):261-271.
    王文卿,王瑁,2007.中国红树林.北京:科学出版社.67-81.
    魏明建,伊海生,陈淑娥,2001.青藏高原腹地红层孢粉分析的有效方法.第四纪研究,21(1):203.
    吴永华,程振波,石学法,2004.冲绳海槽北部CSH1岩芯地层与碳酸盐沉积特征.海洋科学进展,22(2):163-169.
    杨蕉文,陈学林,1985.杭州湾北岸潮滩沉积物中的孢子和花粉,海洋地质与第四纪地质,5(3):101-108.
    杨世伦,2003.海岸环境和地貌过程导论.北京:海洋出版社.97-100.
    叶汝坤,2007.广西海岸环境脆弱性的特点及成因分析.国土与自然资源研究,2:56-57
    业渝光,薛春汀,刁少波,1987.现代黄河三角洲叶瓣模式的210Pb证据.海洋地质与第四纪地质.7(增刊):75-80.
    业渝光,和杰,刁少波等,1992.现代黄河三角洲210Pb剖面标准化方法——粒度相关法.地理科学,12(4):279-286.
    徐家生,孙廷智,1988.渤海西部近海表层沉积物孢粉组合特征,海洋通报,7(4):49-54.
    曾文义,程汉良,姚建华等,1983.海洋沉积物中210Pb的测定及其在地质年代学上的应用.台湾海峡,2(2):30-36.
    邹汉阳,苏贤泽,余兴光等,1982.210Pb法测定东海大陆架现代沉积速率.台湾海峡,1(2):30-40.
    张乔民,隋淑珍,2001.中国红树林湿地资源及其保护.自然资源学报,16(1):29-36.
    张乔民,张叶春,1997.华南红树林海岸生物地貌过程研究.第四纪研究,(4):344-353.
    张乔民,施祺,余克服等,2006.华南热带海岸生物地貌过程.第四纪研究,26(3):449-455.
    张卫东,王开发,李珍,1999.华南海滩沉积的孢粉组合及其意义.海洋通报,18(1):36-42.
    张玉兰,张卫东,王开发等,2002.南海东北部表层沉积的孢粉与陆缘植被关系的研究.海洋通报,21(4):28-36.
    张玉兰,王开发,1994.红树植物花粉在我国东南部海域沉积物中的分布及古环境意义,海洋与湖沼,25(1):23-28.
    张玉兰,龙江平,2007.海南岛周边近海表层沉积物中的孢粉及其与周边植被的关系,海洋学研究,25(3):25-31.
    郑卓,1991.潮汕平原近五万年来的孢粉植物群与古气候.微体古生物学报,8(4):461-480.
    郑卓,邓韫,张华等,2004.华南沿海热带-亚热带地区全新世环境变化与人类活动的关系.第四纪研究,24(4):387-393.
    中国海岸带和海涂资源综合调查报告,1991.北京:海洋出版社,1-345.
    中国科学院植物研究所古植物室孢粉组,1982.中国热带亚热带被子植物花粉形态.北京:科学出版社,1-453.
    中国科学院北京植物研究所,1976.中国蕨类孢子形态.北京:科学出版社,1-414.
    中国海湾志编纂委员会,1993.中国海湾志第(十二分册广西海湾).北京:海洋出版社,114-176.
    周安国,周大成,姚炎明,2004,海湾围垦工程作用下的动力沉积响应.环境污染与防治,26(4):281-286.
    周昆叔,1988.香港晚更新世晚期红树植物孢粉组合的发现.科学通报,(19):1493-1497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700