CA砂浆用复合乳化沥青的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥乳化沥青(CA)砂浆是由水泥、乳化沥青、水等材料形成的一种新型有机无机复合灌浆材料。CA砂浆是高速铁路板式无碴轨道结构的弹性调整层的关键组成部分,是板式轨道技术的核心技术之一。乳化沥青是CA砂浆的关键组成材料,直接影响到CA砂浆的使用性能。
     正交设计实验结果表明,1831和乳化剂Y是影响乳化沥青不同性能指标的主要因素,而乳化剂X对乳化沥青的性能指标影响较小。配方为3:1:1的乳化沥青与水泥之间的相容性最好,而配方为2:2:1的乳化沥青的稳定性最好。本实验中乳化沥青的蒸发残留物含量均符合标准要求,说明试验中所选的三种乳化剂乳化效果较好。乳化剂的总含量越高并不代表乳化沥青的稳定性就越好,而1831的含量对乳化沥青的稳定性有重要影响,1831的含量越高稳定性越好。实验中5天的稳定性值一般都符合要求,1天的稳定性实验值不是很理想。
     本试验中乳化沥青与水泥的相容性较好,不同配方的乳化沥青与水泥拌合时都符合标准要求,说明这三种乳化剂复配的乳化沥青与水泥相容性好,可以用来作为高速铁路无喳轨道用CA砂浆的原料。与稳定性实验不同,随着1831含量的增大,乳化沥青与水泥拌合时的相容性降低。因此,选择这三种乳化剂配制CA砂浆用乳化沥青的时候,需要很好的选择控制乳化剂1831的使用量。
     温度越高,乳化沥青的流变曲线的线性关系越明显,倾向于宾汉塑形流体。乳化沥青的表观粘度对剪切速率和温度的变化都很敏感,随着剪切速率或温度的升高而降低。乳化剂的含量与比例对乳化沥青的粘温性能影响很大。
     不同配方乳化沥青的粒度分布均呈现出正态分布的规律,说明乳化沥青的微粒大小比较均匀,粒径分布也比较集中。但总的来说,乳化沥青的平均粒径比较大,说明用剪切机配制的乳化沥青颗粒粒径较大。
Cement Asphalt (CA) emulsion mortar is a new kind of inorganic and organic composite material for grouting which is composed of cement, asphalt emulsion, water, and other things. CA mortar is the key component of elastic adjustment layer used in the plate-type track without sub ballast for high-speed railway, and one core technology of plate-type track. Asphalt emulsion is the key material of CA mortar, and affects its character of service.
     The results of orthogonal test indicate that emulsifier 1831 and Y are the major factors which affect performance indexes of asphalt emulsion, and emulsifier X is the secondary cause which effects less relatively. The consistence is best between asphalt emulsion and cement with proportion 3:1:1, and the storage stability of asphalt emulsion with proportion 2:2:1 shows best. The contents of residues of asphalt emulsion accord with standard request, and this shows emulsifying effectiveness of the three emulsifying agents is good. Higher total content of emulsifiers does not mean better stability, but higher content of 1831 presumes better storage stability of emulsified asphalt, for the content of 1831 has a great influence on the storage stability of asphalt emulsion. The information of storage stability for five days accords with standard, but for one day.
     The consistence between cement and different asphalt emulsion conforms to standard. This shows the asphalt emulsion prepared with the three emulsifiers has a good consistence with cement, and can be used to prepare CA mortar used in the plate-type track without sub ballast for high-speed railway. Be contrary to the storage stability, the compatibility with cement is reduced when the content of emulsifier 1831 is raised. So, the content of 1831 should be controlled well when the three emulsifying agents are selected to prepare asphalt emulsion for CA mortar.
     Linear relationship of fluid curve of asphalt emulsion is better, and asphalt emulsion tends to be Bingham plastic fluid, when experiment temperature is comparatively higher. Apparent viscosity of emulsified asphalt is sensitive to both the change of rate of shear and experiment temperature and it drops when rate of shear gets larger or temperature rises. The content and proportion of emulsifiers affects viscosity- temperature curve highly.
     Distribution of particle size of asphalt emulsion is Gaussian distribution, and this shows particle size is comparatively equality, and particle size distribution is relatively concentrated. But in general, average particle size is large, which illustrates particle size of asphalt emulsion is large prepared by homogenizer.
引文
[1]董志浩.高技术铁路与钢轨[M].北京:冶金工业出版社, 2003.
    [2]王午生,许玉德,郑其昌.铁道与城市轨道交通工程[M].上海:同济大学出版社, 2003.
    [3]许晓峰,么培基.高速铁路经济分析[M].北京:中国铁道出版社, 1996.
    [4]季令,叶玉玲.高速铁路与摆式列车[M].北京:中国铁道出版社, 2001:1-5.
    [5]陈应先.高速铁路线路与车站设计[M].北京:中国铁道出版社, 2001.
    [6]郑建.中国铁路已进入高速时代[J].城市轨道交通研究, 2010, (1):104.
    [7]王发洲,王涛,胡曙光等. CA砂浆的流变特性[J].武汉大学学报(工学版), 2008, 41(4):69-72.
    [8]刘保钢.客运专线板式无碴轨道结构动力特性与养护维修研究[D].中南大学, 2007.
    [9]王涛.高速铁路板式无喳轨道CA砂浆的研究与应用[D].武汉理工大学, 2008.
    [10]郭高杰.高速列车—弹性支承块式无碴轨道系统竖向振动分析[D].中南大学, 2008.
    [11]李新献.双块式无喳轨道施工技术研究[D].天津大学, 2007.
    [12]李怒放.高速铁路轨道结构的发展趋势[J].铁道建筑技术, 1998, (1):35-39.
    [13]何华武.无碴轨道技术[M].北京:中国铁道出版社, 2005.
    [14]佐佐,博明.日本新干线轨道及其维修[J].中国铁路, 1999, (12):42-46.
    [15]辛学忠.德国铁路无碴轨道技术分析及建议[J].铁道标准设计, 2005, (2):l-6.
    [16]左景奇,姜其斌,蔡彬芬.板式轨道CA砂浆专用沥青乳液的试验研究[J].铁道建筑技术, 2005, (2):68-70.
    [17]胡曙光,王涛,王发洲,丁庆军,叶家军,高涛,邹进忠.一种高早强自膨胀CA砂浆材料[P].专利号: ZL200610018439.2[P]. 2006-08-23.
    [18]傅代正,郑新国.桥上板式无碴轨道CA砂浆施工技术[J].铁道建筑技术, 2002,(6):28-31.
    [19]左景奇,姜其斌,傅代正.板式轨道弹性垫层CA砂浆的研究[J].铁道建筑, 2005,(9): 96-98.
    [20]万赟,洪锦祥,王文峰,徐静.Ⅰ型板式无砟轨道CA砂浆抗冻性初步研究[J].铁道建筑, 2009, 19:95-98.
    [21]王发洲,胡曙光,王涛,丁庆军,叶家军,高涛,邹进忠.一种可有效防止CA砂浆分层离析的复合添加剂[P].专利号: ZL200610018440.5[P]. 2006:08-23.
    [22]胡曙光,王涛,王发洲,刘志超,高涛,陈亮. CA砂浆抗冻性能的影响因素研究[J].武汉理工大学学报, 2008, 30(8):30-33.
    [23]金守华,陈秀方,杨军.板式无碴轨道用CA砂浆的关键技术[J].中国铁道科学, 2006, 27(2):20-25.
    [24]丁庆军,王发洲,王涛,胡曙光,叶家军,周宇飞,高涛,彭斌.一种膨胀可控的CA砂浆材料[P].专利号: ZL200610018437.3[P]. 2006-08-23.
    [25]王涛,胡曙光,王发洲,刘志超,高涛,陈亮. CA砂浆强度主要影响因素的研究[J].铁道建筑, 2008, (2):109-110.
    [26]赵东田.高速铁路CA砂桨的性能研究[J].实验室研究与探索, 2007, 26(11):291-294.
    [27]何彦甫,胡红林,宋文斌,李辛耘,陈太权,李国全.一种沥青水泥砂浆:中国, 200710050932.7[P]. 2008-5-28.
    [28]李海燕,祝和权,杜存山,沈魏,魏曌,贾恒琼,闫景山.板式无喳轨道用乳化沥青水泥砂浆及其制造方法和应用:中国,200710062681.4[P]. 2007-9-12.
    [29]赵智,王智勇,林晓波,彭洪,赵勇,尚宗康,叶昌林,邱长军,倪俊,李红,苏伟.轨道用乳化沥青水泥砂浆及其制造方法和用途:中国, 200710049619.1[P]. 2008-1-9.
    [30]钱振地,江成,肖俊恒,刘振民,王智勇,吴海涛,张雷,白昆华,吴利清,杨先凤,王江,张志红,龚新昆.一种水泥沥青砂浆及其配制方法:中国, 200610020613.7[P]. 2006-11-8.
    [31]左景奇,蔡彬芬,曾凡辉,李强军.铁路或城市轻轨无喳轨道用水泥沥青砂浆及其制造方法和施工方法:中国, 200410023087.0[P]. 2005-1-12.
    [32]邹振华,傅代正,黄金田,何长安,杨进华.水泥乳化沥青砂浆及制造方法和在铁路或城市轻轨无喳轨道中的应用:中国, 02139237.4[P]. 2003-10-1.
    [33]佚名.郑州筑邦建材有限公司水泥乳化沥青(CA)砂浆产品研发[J].河南建材, 2009, (4):12-13.
    [34]胡曙光,许祥俊,丁庆军.干燥环境下乳化沥青改性水泥砂浆的试验研究[J].武汉理工大学学报, 2003, 25(5):1-3.
    [35] Wang Fazhou, Liu Zhichao, Wang Tao, Hu Shuguang. A no-vel method to evaluate the setting process of cementand asphalt emulsion in CA mortar[J]. Mater. Struct., 2008, 41(4):643-647.
    [36] Kazuyosi O, Yosio I. Compressive strength of the CA mortar and itstemperature-susceptibility[J]. Memoirs of the Faculty of Technology, 1976, 10(2):1-13.
    [37]铁道科学研究院. CA试验研究报告[R].北京:铁道科学研究院, 2001.
    [38]赵东田.板式无砟轨道CA砂浆与施工技术研究[D].西南交通大学, 2003.
    [39]刘国祥,孙景伟,林元奎,符玉,张小英.乳化沥青蒸发残留物的针入度与黏度[J].新型建筑材料, 2006, (12):19-20.
    [40]虎增福.乳化沥青及稀浆封层技术[M].北京:人民交通出版社, 2001:12-35.
    [41]王长安,吴育良,郭敏怡,陈鸣才.乳化沥青及其乳化剂的发展与应用[J].广州化学, 2006, 31(1):54-60.
    [42] Hun Song, Jeongyun Do, Yangseob Soh. Feasibility study of asphalt-modified mortars using asphalt emulsion[J]. Construction and Building Materials, 2006, 20:332–337.
    [43] Moran K, Yeung A, Czarnecki J, Masliyah J. Micron-scale tensiometry for studying density-matched and highly viscous fluids-with application to bitumen-in-water emulsions[J]. Colloids and Surfaces A: Physicochem and Eng Aspects, 2000, 174:147–157.
    [44] Yicheng Long, Tadeusz Dabros, Hassan Hamza. Stability and settling characteristics of solvent-diluted bitumen emulsions[J]. Fuel, 2002, 81:1945–1952.
    [45] Susan Furlong, Alan James, Edward Kalinowski, Martin Thompson. Water enclosed within the droplets of bitumen emulsions and its relation to viscosity changes during storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 152:147–153.
    [46] Salou M, Siffert B, Jada A. Study of the stability of bitumen emulsions by application of DLVO theory[J]. Colloids and Surfaces A: Physicochem and Eng Aspects, 1998, 142:9–16.
    [47] Jean-Philippe Gingras, Philippe A. Tanguy, Sophie Mariotti, ea al. Effect of process parameters on bitumen emulsions[J]. Chem Eng and Proces, 2005, 44:979–986.
    [48] Zhou Linyan, Janet A. W. Elliott, Jacob H. Masliyah. Roles of Various Bitumen Components in the Stability of Water-in-Diluted-Bitumen Emulsions[J]. J Colloid and Interface Sci, 1999, 220:329–337.
    [49] Jada A, Florentin C, Mariotti S. Study of the electrical properties of cationic bitumen emulsions by Microelectrophoresis[J]. Advances in Colloid and Interface Sci, 2004, 108–109:127–132.
    [50] Eric Sefton, David Sinton. Evaluation of selected viscosity prediction models for water in bitumen emulsions[J]. J Petro Sci and Eng, 2010.
    [51] Gu G, Xu Z, Nandakumar K, Masliyah J.H. Influence of water-soluble and water-insoluble natural surface active components on the stability of water-in-toluene-diluted bitumen emulsion [J]. Fuel, 2002, 81:1859–1869.
    [52] Khristov Khr,Taylor S D, Czarnecki J, Masliyah J. Thin liquid film technique—application to water–oil–water bitumen emulsion films [J]. Colloids and Surfaces A: Physicochem and Eng Aspects, 2000, 174:183–196.
    [53] Christina Tsamantakis, Jacob Masliyah, Anthony Yeung, Thomas Gentzis. Investigation of the interfacial properties of water-in-diluted-bitumen emulsions using micropipette techniques [J]. Journal of Colloid and Interface Sci, 2005, 284:176–183.
    [54] Yang Xiaoli, Czarnecki Jan. The effect of naphtha to bitumen ratio on properties of water in diluted bitumen emulsions [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2002, 211:213-222.
    [55] Gu Guoxing, Zhou Zhiang, Xu Zhenghe, Masliyah Jacob H. Role of fine kaolinite clay in toluene-diluted bitumen/water Emulsion [J]. Colloids and Surfaces A: Physicochem. Eng.Aspects, 2003, 215:141-153.
    [56] Zhao Yingxian, Wei Feng. Simultaneous removal of asphaltenes and water from water-in-bitumen emulsion I. Fundamental development[J]. Fuel proces tech, 2008, 89: 933– 940.
    [57] Socrates Acevedo, Xiomara Gutierrez, Hercilio Rivas. Bitumen-in-Water Emulsions Stabilized with Natural Surfactants [J]. J Colloid and Interface Sci, 2001, 242: 230–238.
    [58]李荣,张洪武.用于高速铁路或轻轨板式无喳轨道CA砂浆中的乳化沥青:中国, 200710078508.3[P]. 2007-10-17.
    [59]王洪国,石洪波,廖克俭,丛玉风,闫峰,魏毅.复合型乳化沥青的研制[J].化工时刊, 2005, 19(5):34-35.
    [60]万忠义.新型阳离子沥青乳化剂的合成与性能表征[D].山东大学, 2008.
    [61]郭留红.橡胶胶乳改性乳化沥青稀浆封层在公路工程中的应用研究[D].大连理工大学,2000.
    [62]赵振国.应用胶体与界面化学[M].北京:化学工业出版社, 2008.
    [63]顾志明.超细重质碳酸钙的分散性研究与粒子双电层相互作用的探讨[D].南京理工大学, 2002.
    [64] Mollet H, Grubenmann A. Formulation Technology[M]. Weinheim:Wiley-VCH, 2001.
    [65] Wu J, Xu D, Soloway R D. Gastroentordogy[J], 1990, 98(5):249.
    [66]梁治齐,李金华.功能性乳化剂与乳状液[M].北京:中国轻工业出版社, 2000.
    [67]马育. SBS改性乳化沥青的性能及贮存稳定性研究[J].重庆交通大学学报(自然科学版),2007, 26(5):77-79.
    [68]余静.乳化沥青存储稳定性的影响因素[J].建材世界, 2009, 30(5):48-50.
    [69]冯雷雷,樊君,刘洪海.丁苯胶乳改性乳化沥青的制备与其性能[J].石油炼制与化工,2009,40(3):56-60.
    [70]肖晶晶,郑南翔,宋哲玉.乳化剂对改性乳化沥青性能影响及机理研究[J].郑州大学学报(工学版),2008, 29(3):5-9.
    [71]乔军,刘鹏.乳化沥青在道路养护中的应用[J].新疆有色金属, 2009, (3):93-94.
    [72]惠会清.乳化沥青存储及使用性能影响因素分析研究[J].山西交通科技, 2005, (4):22-24.
    [73] Yoshihito Kawamura, Toshihiro Nakamura, Hidemi Kato, Hideo Mano, Akihisa Inoue. Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses[J]. Materials Sci and Eng A, 2001, 304-306:674-678.
    [74]金谷.表面活性剂化学[M].合肥:中国科学技术大学出版社, 2008.
    [75]弥海晨.沥青乳化剂及其应用技术研究[D].长安大学, 2001.
    [76] Al-Sabagh Ahmed M. The relevance HLB of surfactants on the stability of asphalt emulsion[J].Colloids and Surfaces A: Physicochem and Eng Aspects, 2002, 204:73–83.
    [77] Domenico Gabriele, Massimo Migliori, Rosa Di Sanzo, Cesare Oliviero Rossi, Silvestro A. Ruffolo, Bruno de Cindio. Characterisation of dairy emulsions by NMR and rheological techniques [J]. Food Hydrocolloids, 2009, 23:619–628.
    [78] Rodríguez-Valverde M A, Ramón-Torregrosa P, Páez-Due?as A, Cabrerizo-Vílchez M A, Hidalgo-álvarez R. Imaging techniques applied to characterize bitumen and bituminous emulsions [J]. Advances in Colloid and Interface Sci, 2008, 136:93–108.
    [79] Cha′vez-Valencia L E, Alonso E, Manzano A, Pe′rez J, Contreras M E, Signoret C. Improving the compressive strengths of cold-mix asphalt using asphalt emulsion modified by polyvinyl acetate [J]. Construction and Building Materials, 2007, 21:583–589.
    [80] Marketa Cervinkova, Milan Vondruska, Vratislav Bednarik, Antonin Pazdera. Stabilization/solidification of munition destruction waste by asphalt emulsion[J]. J Hazardous Materials, 2007, 142:222–226.
    [81] Vratislav Bednarik, Milan Vondruska, Marek Koutny. Stabilization/solidification of galvanic sludges by asphalt emulsions [J]. Journal of Hazardous Materials, 2005, B122:139–145.
    [82] Talat Sukru Ozsahin, Seref Oruc. Neural network model for resilient modulus of emulsified asphalt mixtures[J]. Construction and Building Materials, 2008, 22:1436–1445.
    [83] Taylor Shawn D, Czarnecki Jan, Masliyah Jacob. Disjoining Pressure Isotherms of Water-in-Bitumen Emulsion Films[J]. J Colloid and Interface Sci, 2002, 252:149–160.
    [84] Niazi Y, Jalil M. Effect of Portland cement and lime additives on properties of cold in-place recycled mixtures with asphalt emulsion[J]. Construction and Building Materials, 2009, 23:1338–1343.
    [85]樊志超.改性沥青技术的应用研究[D].长安大学, 2004.
    [86]王红,王翠红,王子军.乳化剂体系对乳化沥青存储稳定性影响研究[J].石油沥青, 2008, 22(4):10-13.
    [87]徐向阳.乳化沥青的技术与应用[J].石油沥青,2003, 17(3):47-50.
    [88] Bonakdar L, Philip J, Bardusco P, Petkov J, Potti J J, Me′le′ard P, Leal-Calderon F. Rupturing of bitumen-in-water emulsions: experimental evidence for viscous sintering phenomena[J]. Colloids and Surfaces A: Physicochem and Eng Aspects, 2001, 176 185–194.
    [89] Li G, Zhao Y, Pang S S, Huang W. Experimental Study of Cement-Asphalt Emulsion Composite[J]. Cement and Concrete Research, 1998, 28(5):635–641.
    [90] Jose′L. Burguera, Rita M. Avila-Go′mez, Marcela Burguera, Raquel Ant?n de Salager, Jean-Louis Salager, Carlos L. Bracho, Margarita Burguera-Pascu, Constantin Burguera-Pascu, Rosario Brunetto, Máximo Gallignani, Yaneita Petit de Peňa. Optimum phase-behaviorformulation of surfactant/oil/water systems for the determination of chromium in heavy crude oil and in bitumen-in-water emulsion[J]. Talanta, 2003, 61:353-361.
    [91] Wu X, van de Ven T G M, Czarnecki J. Colloidal forces between emulsified water droplets in toluene-diluted bitumen[J]. Colloids and Surfaces A: Physicochem and Eng Aspects, 1999, 149: 577–583.
    [92] Kamiura Toshikazu, Funasaka Kunihiro, Tajima Yuko, Kawaraya Toshio, Kuroda Koichi. Pretreatment by yeast for determination of nickel and vanadium in bitumen-in-water emulsion by inductively coupled plasma atomic emission spectrometry[J]. Anal Chim Acta, 1996, 327:61-64.
    [93] Murase Kuniaki, Nishikawa Ken-ichi, Ozaki Tetsuya, Machida Ken-ichi, Adachi Gin-ya, Suda Taiichiro. Recovery of vanadium, nickel and magnesium from a fly ash of bitumenin-water emulsion by chlorination and chemical transport[J]. J Alloys and Compd, 1998, 264:151–156.
    [94]王世荣,李祥高,刘东志.表面活性剂化学[M].北京:化学工业出版社, 2005.
    [95]刘志刚,曾祥腾,孙维峰,吴新荣.正交试验优化土茯苓黄酮类成分提取工艺研究[J].中华中医药学刊, 2010, 28(3):466-468.
    [96]于永生.掺加水泥的乳化沥青冷再生混合料设计方法与使用性能[D].湖南大学, 2008.
    [97]才洪美.改性乳化沥青的研制及其性能表征[D].中国石油大学, 2007.
    [98]刘东杰.改性乳化沥青的制备及其应用研究[D].西北师范大学, 2006.
    [99]罗杜宇,夏琴香.基于正交试验的拉深旋压制杯工艺参数研究[J].精密成形工程, 2010, 2(2):43-47.
    [100]熊锐.农村公路乳化沥青混合料路用性能试验研究[D].重庆交通大学, 2009.
    [101]肖杰.乳化沥青冷再生混合料设计方法与使用性能研究[D].湖南大学, 2007.
    [102]李江,陈忠达,封晨辉.水泥-乳化沥青混合料配合比设计试验方法研究[J].公路交通科技, 2004, 21(9):31-33.
    [103]耿九光,陈忠达,李龙,戴经梁.水泥-乳化沥青冷再生混合料配合比设计[J].长安大学学报(自然科学版), 2009, 29(1):10-14.
    [104]王天刚,黄玉成,李飞跃.在稳定流状态下似膏体料浆流变特性研究[J].有色矿山, 2003, 32(6):8-11.
    [105]庞兴亮,高飞,李国栋,石爱民.乳化沥青制备和应用中的稳定性分析[J].河北工程技术高等专科学校学报, 2001, 3:14-17.
    [106]刘雨佳.激光粒度测量仪的应用及展望[J].航空精密制造技术, 2009, 45(5):43-45.
    [107]王振新,钱彦虎.激光粒度仪测定PTA粒径分布[J].聚酯工业, 2004, 17(3):50-52.
    [108]姜丹,蔡晓兰.用激光粒度仪测试锌粉粒度的条件试验[J].粉末冶金工业, 2009,19(1):32-34.
    [109]李军.使用激光粒度仪测定海洋沉积物碳酸盐含量和粒度分布的尝试[J].海洋通报, 2008, 27(3):82-87.
    [110]肖芬.粒雾粒度分布的试验分析和喷雾干燥设备的轨迹法设计[D].浙江大学, 2002.
    [111]吕凤娇,林华香,陈晓耕等.激光粒度仪测定阿霉素纳米颗粒的粒径及粒径分布[J].福州大学学报(自然科学版), 2006, 34(5):751-754.
    [112]皮艳灵.磷渣粉粒度及粒度分布对水泥性能的影响[D].南京工业大学, 2005.
    [113]成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社, 1978.
    [114]刘崇建,黄柏宗,徐同台,刘孝良.油气井注水泥理论与应用[M].北京:石油工业出版社, 2001.
    [115]沈仲堂,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社, 1989.
    [116]湛含辉,龙小兵,湛雪辉.流体力化学原理[M].长沙:中南大学出版社, 2007.
    [117]李克文,沈平平.原油与浆体流变学[M].北京:石油工业出版社, 1994.
    [118]李传宪.原油流变学[M].山东:中国石油大学出版社, 2007.
    [119] [EB/OL] http://baike.baidu.com/view/447540.htm, 2010,5,5.
    [120]李奎英.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社, 1998.
    [121]韩冬,王京东,佘玉成.评价改性乳化沥青稳定性的新方法[J]. 2003, 17:17-20.
    [122]赵龙生,孙恒虎,孙文标,刘建庄.似膏体料浆流变特性及其影响因素分析[J].中国矿业, 2005, 14(10):45-48.
    [123] Zhao X P, Duan X. A new organic/inorganic hybrid with high electrorheological activity[J]. Materials Let, 2002, 54:348–351.
    [124] Ding Zhiying, Yin Zhoulan, Liu Lu, Chen Qiyuan. Effect of grinding parameters on the rheology of pyrite–heptane slurry in a laboratory stirred media mill[J]. Minerals Eng, 2007, 20:701–709.
    [125] Gao Ziwei, Zhao Xiaopeng. Enhancing electrorheological behaviors with formation of b-cyclodextrin supramolecular complex[J]. Polymer, 2003, 44:4519–4526.
    [126] Dong Peng, Wang Chunhui, Zhao Suoqi. Preparation of high performance electrorheological fluids with coke-like particles from FCC slurry conversion[J]. Fuel, 2005, 84:685-689.
    [127] Nilia Romero, Antonio Cardenas, Magaly Henriquez, Hercilio Rivas. Viscoelastic properties and stability of highly concentrated bitumen in water emulsions. Colloids and Surfaces A :Physicochem and Eng Aspects, 2002, 204:271-284.
    [128] Ahmed Jasim, Ramaswamy H.S.. Effect of high-hydrostatic pressure and concentration onrheological characteristics of xanthan gum[J]. Food Hydrocolloids, 2004, 18:367-373.
    [129] Jaroslaw Korus, Mariusz Witczak, Leslaw Juszczak, Rafa? Ziobro. Grass pea (Lathyrus sativus L.) starch as an alternative for cereal starches: Rheological properties and retrogradation susceptibility[J]. J Food Eng, 2008, 88:528-534.
    [130] Liu Jianzhong, Zhao Weidong, Zhou Junhu, Cheng Jun, Zhang Guangxue, Feng Yungang, Cen Kefa. An investigation on the rheological and sulfur-retention characteristics of desulfurizing coal water slurry with calcium-based additives [J]. Fuel Proces Tech, 2009, 90 :91-98.
    [131] Wei Mingkun, Zhang Guangjun, Wu Qide. Processing of highly concentrated polyacrylamide-coated silicon carbide suspensions[J]. Ceramics International, 2004, 30:125–131.
    [132] Wang Bao-Xiang, Zhao Xiao-Peng, Zhao Yan, Ding Chang-Lin. Titanium oxide nanoparticle modified with chromium ion and its giant electrorheological activity [J]. Composites Sci and Tech, 2007, 67:3031–3038.
    [133] Ponton A., Schott C., Quemada D.. Rheological behavior of flexible elongated micelles: temperature effect in an isotropic phase [J]. Colloids and Surfaces A: Physicochem and Eng Aspects, 1998, 145:37-45.
    [134] Lars Hamberg, Pernilla Walkenstr?m, Mats Stading, Anne-Marie Hermansson. Aggregation, viscosity measurements and direct observation of protein coated latex particles under shear [J]. Food Hydrocolloids, 2001, 15:139-151.
    [135] Antonio Vercet, Cristina Sánchez, Justino Burgos, Luis Montaňes, Pascual Lopez Buesa. The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties [J]. J Food Eng, 2002, 53:273-278.
    [136] Basim Abu-Jdayil, Hazim Mohameed, Ammar Eassa. Rheology of starch-milk-sugar systems: effect of heating temperature [J]. Carbohydrate Polymers, 2004, 55:307-314.
    [137] Mercedes Ferna′ndez, Mar?′a Eugenia Mun?oz, Anton Santamar?′a, Seppo Syrja¨la¨, Johanna Aho. Determining the pressure dependency of the viscosity using PVT data: A practical alternative for thermoplastics [J]. Polymer Testing, 2009, 28:109-113.
    [138] Martínez-Boza F., Fernández-Latorre F., Gallegos C.. High-pressure viscosity of used motor oil/vacuum residue blends [J]. Fuel, 2009, 88:1595-1601.
    [139] Hess K U., Dingwell D B., Rossler E. Parametrization of viscosity-temperature relations of aluminosilicate melts[J]. Chem Geo, 1996, 128:155-163.
    [140] Karol Monkos. Viscosity analysis of the temperature dependence of the solution conformation of ovalbumin[J]. Biophys Chem, 2000, 85:7-16.
    [141] Contreras M J F, Die′guez A R, Soriano M M J. Viscosity and temperature relationship in ethanol/water mixtures gelified with Carbopol? Ultrez? 10[J]. Il Farmaco, 2001, 56:443-445.
    [142] Wu Shaopeng, Qiu Jian, Mo Liantong, Yu Jianying, Zhang Yongmei, Li Bo. Investigation of temperature characteristics of recycled hot mix asphalt mixtures[J]. Resources, Conservation and Recycling, 2007, 51:610-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700