全球海洋潮汐同化模拟及东中国海潮流对环流作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步提高我国全球海洋潮汐的数值模拟和数值预报精度,发展较高分辨率的全球海洋环流和潮汐数值模型,本文基于FVCOM (Finite Volume Coastal Ocean Model)有限体积数值模式,建立了全球海洋无结构网格环流潮汐模型(Global Ocean Circulation and Tide Model based on the Unstructured Mesh, GOCTM-UM).该模型充分利用无结构三角形网格在不同区域具有不同空间分辨率的特点,根据不同区域环流和潮汐的运动尺度进行全球海洋网格设计。该模型巧妙地避免了开边界条件的引入,平衡了模型网格高分辨率需求和大计算量要求之间的矛盾,并且在垂向上采用通用混合坐标,有效地提高了海表和海底混合层的垂向分辨率。
     在考虑海水自吸引和负荷潮作用(Sea Water Self-Attraction and Earth-Loading Effects, SAL)的情况下,利用TOPEX/POSEIDON系列卫星高度计模型数据对全球海洋潮汐模型进行了最优插值(Optimal Interpolation)数值同化实验。在一定程度上,提高了我国全球海洋潮汐模拟的精度,具有较为广阔的应用前景。通过将本文数值模拟结果与大洋潮汐站数据、近岸潮汐站数据、卫星高度计数据,以及与其它潮汐模型、环流模型等结果进行对比验证,认为本文模型结果基本可信,数值模拟方案可行。
     本文充分利用GOCTM-UM模型采用无结构三角型网格在渤、黄、东海和南海等中国近海网格加密的优点,对全球海洋环流和潮流进行了多种方案的数值模拟实验,以分析东中国海及毗邻海域环流和潮流运动的能量结构为主线,探讨了东中国海及毗邻海域潮流对环流的作用及其机制问题。分析结果发现:
     (1)海洋潮流对于海洋环流主要具有三方面的作用和贡献,即潮汐余流、非线性平流相互作用和湍混合耗散相互作用。整体来说,三者相比,非线性平流相互作用和湍混合耗散相互作用对东中国陆架海海洋环流的影响相对较强;相比冬季东中国海环流,潮汐余流的大小较为微弱,仅在海峡和近岸浅水等部分海区潮汐余流对海洋环流具有较为重要的影响。
     (2)在冬季东中国陆架海区,由于潮流的加入,对于海洋环流模型来说,模拟环流动能的改变约占环流动能的9.8%,其中表层影响约占6.3%,而底层影响约占15.7%。通过理论分析和数值实验分析,认为海洋潮流和海洋环流非线性平流相互作用和混合耗散相互作用在海洋中占有较为重要的作用,忽略海洋潮流与海洋环流之间的非线性相互作用,将带来非线性平流机械能输送项和能量湍耗散项各约10%以上的误差,理论分析和数值分析的结果基本一致。
     (3)潮汐对于东中国海底层海域湍混合具有主导作用,其重要性强于潮流在海表的湍混合作用。在地形梯度较大的区域和浅水区域,底层混合强度最强,潮流的加入对于环流模型底层湍涡动粘性系数具有较大的改变,改变量可以达到10-3m2/s的量级。正压潮汐模型所得到的湍涡动粘性系数与海洋环流模型得到的湍涡动粘性系数直接相加所得到的结果,与含潮海洋环流模型得到的湍涡动粘性系数相比,较大,具有一定的差异,尤其在底层海洋,这是考虑潮流作用而改进海洋环流湍封闭方案所需要考虑的。
In order to further improve our global ocean tide prediction accuracy and develop high-resolution global ocean circulation and tide numerical model, the Global Ocean Circulation and Tide Model based on Unstructured Mesh (GOCTM-UM) is configured and established, based on Finite Volume Coastal Ocean Model (FVCOM), in this dissertation. This model takes advantage of the unstructured triangular grids, which have the different spatial resolutions in the different regions, to design the global ocean mesh according to the different scales of the circulation and tides in different regions. Thus, the model avoides introducting the open boundary conditions cleverly, and balances the contradiction between the high resolution requirement and the large computation. Furthermore, the model uses the general layers in the vertical coordinate, which can improve the vertical resolution of mixing layers effectively in both the sea surface and the sea bottom.
     Considering the Effects of the Sea Water Self-Attraction and Earth-Loading (SAL), GOCTM-UM assimilates the tidal elevation data of TOPEX/POSEIDON satellite altimeter model using the optimal interpolation. That improves the accuracy of our global ocean tide numerical simulation in some aspects so that it has some broad application prospects. By comparing the numerical simulation results with the data of tide gauges in the pelagic ocean, the data of coastal tidal gauges and the satellite altimeter data, as well as with other tidal models and the results of general circulation models, the credibility of the GOCTM-UM's results is verified, and the solution of the numerical simulation is feasible.
     By utilizing the GOCTM-UM model with fine unstructured triangular grids in the Bohai Sea, the Yellow Sea, the East China Sea and the South China Sea, a variety of numerical simulation experiments have been conducted to analyse the energy structure of ocean circulation and tidal current, and discuss the mechanism of the tidal current effects on the ocean circulation in the East China Sea and its adjacent waters. The results show that:
     (1) The roles of ocean tidal current on the ocean circulation include the tidal residual current, the non-linear advection interaction and the turbulent mixing dissipation. Overall, the non-linear advection and the turbulent mixing nonlinear interaction play important roles on the ocean circulation of the East China Shelf Seas. Compared to the winter circulation in the East China Seas, the tidal residual current is relatively weak, only in some straits and the coastal sea area of shallow water, the tidal residual current has more important influence.
     (2) The change of the kinetic energy takes 9.8% of the kinetic energy of the ocean circulation, of which about 6.3% at the surface and about 15.7% at the bottom, when the tidal current is added into the ocean circulation model in the East China Seas in winter. By the theoretical analyses and the numerical analyses, the ocean interaction of nonlinear advection and the interaction of the mixing dissipation between the ocean tidal current and the ocean circulation take important roles in the ocean dynamic numerical simulation. If ignoring the nonlinear interaction between the ocean tidal current and the ocean circulation, it will produce more than 10% errors of these two items. And the results of the theoretical analyses are consistent with the results of the numerical analyses.
     (3) Tide has great effects on the ocean bottom turbulent mixing in the East China Seas, and the effects at the bottom are much stronger than that at the sea surface. Paticularly, in the areas of large topographic gradient and in the shallow water areas, the turbulent mixing is stronger at the bottom layer. The turbulent edd viscosity can be changed significantly at the scale about 10-3 m2/s when the ocean tidal current is added into the ocean circulation model. The sum of turbulent eddy viscosity obtained from barotropic tide model and that obtained from the ocean circulation model is different from that obtained from the circulation and tide coupling model, especially, at the bottom. This is what should be considered when improving the turbulent closure scheme of the ocean circulation model.
引文
陈红霞,袁业立,华锋.东海黑潮主段G-PN断面的多核结构.科学通报,2005.3,51(6):730-737.
    丁文兰.渤海和黄海潮汐潮流分布的基本特征.海洋科学集刊,1985,25,27-40.
    方国洪.潮波方程的有限差分-最小二乘方法及其对模拟黄海M_2潮的应用[J].中国科学.1985,15(4):356-356.
    管秉贤,陈上及.全国海洋综合调查报告,第六章,中国近海的海流系统.1962,1-45.
    韩桂军,马继瑞,刘克修等.利用伴随法优化非线性潮汐模型的开边界条件Ⅰ.伴随方程的建立及“孪生”数值试验.海洋学报,2000,22(6):20-35.
    韩桂军,方国洪,马继瑞等.利用伴随法优化非线性潮汐模型的开边界条件Ⅱ.黄海、东海潮汐资料的同化试验[J].海洋学报,2001,33(2):113-120.
    黄瑞新.论大洋环流的能量平衡.大气科学.1998.7,第22卷,第4期:562-574.
    黄祖珂,黄磊.潮汐原理与计算.中国海洋大学出版社.2005.
    李常珍,李乃胜,林美华.菲律宾海的地势特征.海洋科学,2000,24(6):47-51.
    李培良.渤黄东海潮波同化数值模拟和潮能耗散的研究,[博士学位论文].青岛:中国海洋大学海洋环境学院,2003.
    吕咸青,方国洪.渤海开边界潮汐的伴随反演[J].海洋与湖沼,2002,33(2):113-120.
    马超.黑潮对东中国海主要流系的影响,[博士学位论文].青岛:中国海洋大学海洋环境学院,2009.
    (苏)A.B.佩维主编,刘昭蜀,于钰译.菲律宾海地质.北京:海洋出版社,1980,5-310.
    乔方利,Zhang S Q现代海洋/大气资料同化方法的统一性及其应用进展[J].海洋科学进展.2002,20(4):79-83.
    任华堂,刘钦政,吴辉碇.台湾海峡三维风海流的数值模拟[J].海洋预报.2002,19(4):24-32.
    侍茂崇.物理海洋学.山东教育出版社.2004.
    沈育疆.东中国海潮汐潮流数值计算[J].山东海洋学院学报.1980,10(3):28-35.
    万振文,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟[J].海洋与湖沼.1998,29(6):611-616
    万振文,袁业立,乔方利.东中国海多分潮运动数值模拟[J].水动力学研究与进展(A辑)1999,14(4B):82-91.
    王凯,方国洪,冯士榨.渤海、黄海、东海M2潮汐潮流的三维数值模拟.海洋学报,1999,21 (4):1-13.
    王永刚,方国洪,曹德明等.渤、黄、东海潮汐的一种验潮站资料同化数值模式[J].海洋科学进展.2004,22(3):253-273
    王悦.东中国海物理环境长期变化的数值模拟研究,[博士学位论文].青岛:中国海洋大学海洋环境学院,2009.
    汪亚平,高抒,贾建军.海底边界层水流结构及底移质搬运研究进展.海洋底质与第四纪地质,2000年8月第20卷第3期:101-106.
    吴宝勤,王丹,陈标等.渤海、黄海、东海冬季环流的数值模拟.海洋测绘,2007.9:27(3)74-77.
    徐玲玲.风场等外部强迫对东中国海海洋物理环境的影响,[博士学位论文].青岛:中国海洋大学海洋环境学院,2008.
    叶安乐,梅丽明.渤海东海潮波数值模拟.海洋与湖沼,1995年第26卷第1期:63-70.
    赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数据模拟.海洋学报,1994,16(5):1-10.
    张占海,吴辉碇.渤海潮汐和潮流数值计算.海洋预报,1994,11(1):48-54.
    Accad, Y., and C. L. Pekeris, Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone, Philos. Trans. R. Soc. London A,290, 235-266,1978.
    Anderson, O., Global ocean tides from ERS-1 and TOPEX/POSEIDON altimetry, J. Geophys. Res.,100,25,249-259,1995.
    Anderson, O. B., P. L. Woodworth and R. A. Flather (1995):Intercomparison of recent ocean tide models. J. Geophys. Res.,100(C12),22561-25282.
    Blumberg, A. F. and G. L. Mellor, A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal ocean Models, edited by N. Heaps,208 pp., American Geophysical Union.,1987.
    Cartwright, D.E., Ray, R.D.,1990. Oceanic tides from Geosat altimetry. Journal of Geophysical Research,95,3069-3090.
    Cartwright, D. E. and R. D. Ray (1991):Energetics of global ocean tides from Geosat altimetry. J. Geophys. Res.,96(C9),16897-16921.
    Cartwright, D. E. and R. D. Ray (1994):On the radiational anomaly in the global ocean tide with reference to satellite altimetry. Oceanologica Acta,17,453-459.
    Chapman, D.C.,1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr.15,1060-1075.
    Chen C, LIU H, Robert Beardsley. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model:Application to Coastal Ocean and Estuaries [J]. Journal of Atmospheric and Oceanic Technology 2003 (20):159-186.
    Chen, C., G. Cowles, and R.C. Beardsley,2006. "An unstructured grid, finite volume coastal ocean model:FVCOM User Manual, Second Edition". SMAST/UMASSD Technical Report-06-0602, pp.315.
    Choi, B. H.,1984, A three-dimensional model of the East China Sea. Ocean Hydrodynamics of the Japan and East China Seas,209-224.
    Choi, B. H.,1985, Observed and computed tidal currents in the East China Sea. J. Oceanogr 20, 56-73.
    Choi, B. H.,1989, A fine-grid three-dimensional M2 tidal model of the East China Sea. Modeling Marine Systems,167-185.
    C. Villain:Bull. Inform. C.O.E.C.4,3 (1952).
    C. Wunsch and P. Heimbach,2009:The globally integrated ocean circulation (MOC),1992-2006: seasonal and decadal variability. J. Phys. Oceanogr.,39,351-368.
    Daley R. Atmospheric Data Analysis[M]. New York:Cambridge University Press, 1991.
    Davis, A.M., Hall, P.,2002. Numerical problems associated with coupling hydrodynamic models in shelf edge regions:the surge event of February 1994. Applied Mathematical Modelling 26,807-831.
    Desai, S. D. and J. Wahr (1995):Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry. J. Geophys. Res.,100(C12),25205-25228.
    Dietrich,1944 Dietrich, G.,1944. Die Gezeiten des Weltmeeres als geograph, Erseheinung Z. d. ges. Erdkunde, Berlin,69pp.
    Eanes, R. J. and S. V. Bettadpur (1994):Ocean tides from two years of TOPEX/POSEIDON altimetry (abstract). EOS Trans. AGU,75(44), Fall Meet. Suppl.,61.
    Egbert Gary D. and Erofeeva Svetlana Y., Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, vol.19,N2, February 2002
    Ernst W. S.,1980, On Charting Global Ocean Tides. Reviews of Geophysics and Space Physics 18(1),243-268.
    Fang G H.1986. Tide and tidal current charts for the marginal seas adjacent to China[J]. Chinese Journal of Oceanology and Limnology,4(1):1-16.
    Fang G H.1994. Tides and tidal currents in the East China Sea, Huanghai Sea and Bohai Sea[A]. Zhou D, et al. Oceanology of China Seas[C], Netherlands:Kluwer,101-112.
    Fang, G. H., Kwok, Y. K., et. al.,1999. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research 19,845-869.
    Fang G. H., Yonggang Wang, et al. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research,2004, 109(C4).
    Farrell, W. E.,1972. Deformation of the Earth by Surface Loads. Rev. Geophys.10(3),761-797.
    Farrell, W. E.1973. Earth tides, ocean tides and tidal loading. Phil. Trans. R. Soc. Lond. A.274, 253-259.
    Florent Lyard, Christian Le Provost.1997. Energy budget of the tidal hydrodynamic model FES94.1. Geophysical Research Letter.24(6):687-690.
    Florent Lyard, Fabien Lefevre, Thierry Letellier, Olivier Francis,2006. Modelling the global ocean tides:modern insights from FES2004. Ocean Dynamics.56:394-415.
    Foreman, M. G. G.,1978. Manual for tidal analysis and prediction. Pacific Marine Science Rep. 78-6, Institute of Ocean Sciences, Patrcia Bay, Sydney, British Columbia, Canada,70pp.
    Francis, O., P. Mazzega.1990. Global charts of ocean tide loading effects. J. Geophys. Res.95: 11411-11424.
    Garrett, C.. Marginal mixing theories. Atmosphere-ocean,1991,29:313-339
    Groves, G. W., and R. W. Reynolds, An othogonalized convolution method of tide prediction, J. Geophys. Res.,80,4131-4138,1975.
    Han, G., R. Hendry and M. Ikeda (2000):Assimilating TOPEX/POSEIDON derived tides in a primitive equation model over the Newfoundland Shelf. Cont. Shelf Res.,20,83-108.
    Hansen,1952. W. Hansen, Gezeiten und Gezeitenstrome der halbtagigen Hauptmondtide M2 in der Nordsee. In:, Deutsche Hydrografische Zeitschrift, Erganzungsheft (1952), p.1.
    Harris, Manual of Tides, Part IVB,1904.
    Hendershott, M. C.,1972. The effects of solid earth deformation on global ocean tide. Geophys. J. R. Astron. Soc.29:389-402.
    Hidaka, K.,1966. Japan Sea, in the Encyclopedia of Oceanography (ed. Fairbridge, R. W.), Stroudsburg:Dowen, Hutchinson & Ross Inc.,417-424.
    Jensen, T.G.,1998. Open boundary conditions in stratified ocean models. Journal of Marine System 16,297-322.
    Julie Pietrzak, Jan B. Jakobson, Hans Burchard et. al.. A three-dimensional hydrostatic model for coastal and ocean modeling using a generalized topography following co-ordinate system. Ocean Modelling.2002(4):173-205.
    Kantha, L. H. (1995):Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides 1. Model description and results. J. Geophys. Res.,100(C12), 25283-25308.
    Koji Matsumoto, Takashi Takanezawa, Masatsugu Ooe,2000, Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model:A Global Model and a Regional Model around Japan. Journal of Oceanography,56:567-581.
    Le Provost, C.,1994. A new in situ reference data set for ocean tides. AVISO Altimetry News Letter,3.
    Lefevre, F., C. Le Provost, and F. H. Lyard (2000), How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea, J. Geophys. Res., 105(C4),8707-8725.
    Lefevre, F., Lyard F. H., Provost C. L.,2002, FES99:A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information. Journal of Atmospheric and Oceanic Technology 19,1345-1356.
    Liu Yong-gang, Yuan Yao-chu. Variability of the Kuroshio in the East China Sea in 1993 and 1994[J]. Acta Oceanologica Sinica,1999,21(3):15-29.
    Lozovatsky I D, Fernando H J S. Mixing on a shallow shelf of the Black Sea [J]. Journal of Physical Oceanography,2002,32(3):945-956.
    Ma, X. C., C. K. Shum, R. J. Eanes, and B. D. Tapley, Determination of ocean tides from the first year of TOPEX/POSEIDON altimeter measurements, J. Geophys. Res.,99,24809-24820,1994.
    Maik Thomas, Jurgen Sundermann, Ernst Maier-Reimer.2001. Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophysical Research Letters,28(12):2457-2460.
    Marchuk, G. I., B. A. Kagan.,1989. Dynamics of ocean tides, transl. by V. Divid, N. Protsenko, Y. Rajabov. Dordrecht:Kluwer Academic.
    Matsumoto, K., M. Ooe, T. Sato and J. Segawa,1995. Ocean tide model obtained from TOPEX/POSEIDON altimetry data. J. Geophys. Res.,100(C12),25319-25330.
    Molines, J. M., C. Le Provost, F. Lyard, R. D. Ray, C. K. Shum, and R. J. Eanes,1994. Tidal corrections in the TOPEX/POSEIDON geophysical data records. J. Geophys. Res.99(C 12), 24,749-24,760.
    Munk, W. H., G. J. F. MacDonald.1960. The rotation of the Earth. Cambridge:Cambridge University Press.
    Munk, W., Wunsch, C.. Abyssal recipes Ⅱ:Energetics of tidal and wind mixing. Deep-Sea Research,1998,45,1977-2010.
    Munk, W.. Once again:one again-tidal friction. Progress in Oceanography,1997,40:7-35.
    Nitani, H.,1972. Beginning of the Kuroshio, in Kuroshio, Physical Aspects of the Japan Current (eds. Storrimel, H., Yoshida, K.). Seattle:University of Washington Press,129-163.
    Ogura S.1933. The Tides in the Seas Adjacent to Japan[M]. Tokyo:Hydrographic Department.
    Oliger, J., Sundstrom, A.,1978. Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math.35,419-446.
    P. Heimbach and C. Wunsch,2007:Estimating the Circulation and Climate of the Ocean-The ECCO Consortia. U.S. CLIVAR Variations,5,1-5.
    Ponchaut, F., F. Lyard, and C. Le Provost,2001. An Analysis of the Tidal Signal in the WOCE Sea Level Dataset. J. Atmos. Oceanic Technol.18,77-91.
    Qiu, B., and R. Lukas (1996), Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary, J. Geophys. Res., 101(C5),12,315-12,330.
    Ray, R., Global ocean tide models on the eve of TOPEX/POSEIDON, IEEE Trans. Geosci. Remote Sens.,31(2),355-364,1993.
    Ray, R. D., R. J. Eanes and B. F. Chao (1996):Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry. Nature,381,595-597.
    Ray, R. D.,1998. Ocean self-attraction and loading in numerical tidal models. Marine Geodesy 21(3),181-192.
    Ray, R. D. (1999):A global ocean tide model from TOPEX/POSEIDON altimetry:GOT99.2. NASA Tech. Memo.,209478.
    Sanchez, B. V. and N. K. Pavlis. Estimation of main tidal constituents from TOPEX altimetry using a Proudman function expansion, J. Geophys. Res., this issue.
    S. A. Cunningham, S. G. Alderson, B. A. King, Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res.,108 (C5),2003.
    Schrama, E. J. O. and R. O. Ray, A Preliminary tidal analysis of TOPEX/POSEIDON altimetry, J. Geophys. Res.,99,24799-24808,1994.
    Schwiderski, Ernst W.,1980. On Charting Global Ocean Tides. Reviews of Geophysics and Space Physics 18(1),243-268.
    Shum, C. K., P. L. Woodworth, O. B. Andersen, G. Egbert, O. Francis, C. King, S. Klosko, C. Le Provost, X. Li, J. Molines, M. Parke, R. Ray, M. Schlax, D. Stammer, C. Tierney, P. Vincent and C. Wunsch (1997):Accuracy assessment of recent ocean tide models. J. Geophys. Res.,102(C11), 25173-25194.
    Taylor, G. I.. Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society of London,1919, A230:1-93
    T. Pohlmann. Calculating the development of the thermal vertical stratification in the North Sea with a three-dimensional baroclinic circulation model. Continental Shelf Research,16(2):163-194, 1996a.
    T. Pohlmann. Predicting the thermocline in a circulation model of the North seapart I:model description, calibration and verification. Continental Shelf Research,16(2):131-146,1996b.
    T. Pohlmann. Evaluations of hydro-and thermodynamic processes in the North Sea with a 3-dimensional numerical model. Berichte aus dem Zentrum fuer Meeres-und Klimaforschung, 23:1-116,1991.
    T. Pohlmann. A meso-scale model of the central and southern North Sea:Consequences of an improved resolution. Continental Shelf Research,26(19):2367-2385,2006.
    Wahr J. Body tides on an elliptical, rotating elastic and oceanless earth. Geophysical Journal of the Royal Astronomical society,1981,64:25-31.
    W. Whewell.1833. Essay towards a First Apiproximation to a Map of Cotidal Lines. Trinity College, Cambridge.
    Yang, J.,2007. An Oceanic Current against the Wind:How Does Taiwan Island Steer Warm Water into the East China Sea? J. Phys. Oceanogr.37,2563-2569.
    刘志宇,强潮驱陆架海中的湍流与混合,中国海洋大学博士论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700