B30铜镍合金在海水中的腐蚀电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对B30铜镍合金在海水环境中的腐蚀行为及相关电化学性能进行研究,探讨海水流速、异种金属接触、全浸时间、温度、pH值、盐度各因素对该材料的腐蚀性能和电化学性能的影响,综合评价B30材料的环境适应性能。
     通过海水全浸腐蚀试验,结合扫描电镜(SEM)及能谱分析(EDS)等微观分析手段研究了B30铜镍合金的腐蚀速率、腐蚀类型以及微观腐蚀形貌。并采用原子力显微镜(AFM)、EDS等方法考察其表面膜的形成及生长规律,探讨表面膜的存在对材料耐蚀性的影响。
     借助旋转圆筒冲刷腐蚀实验机、流动海水试验台架等装置,研究不同流速条件下B30铜镍合金的冲刷腐蚀速率以及微观腐蚀形貌。结果表明:B30材料在流速低于5m/s海水中具有较高的耐冲刷腐蚀性能。
     通过静态海水和流动海水中的电偶腐蚀试验,研究异种金属类型、海水流速、阴/阳极面积比等因素变化对B30铜镍合金电偶腐蚀性能的影响。结果表明:B30材料与316L不锈钢和TA2钛合金偶接时腐蚀加剧,而与紫铜、黄铜、B10铜镍合金等材料偶接时可得到有效保护。
     采用电化学阻抗谱、循环阳极极化曲线等测试方法,研究浸泡时间、Cl-浓度、pH值、温度等环境因素对B30铜镍合金腐蚀行为和电化学行为的影响。结果表明:B30材料的平均腐蚀速率随着浸泡时间延长而降低,点蚀现象随着Cl-浓度增大而加重,耐蚀性能随着温度升高和pH值降低而有所下降。
The corrosion behavior of 70/30Cu-Ni alloy in seawater was introduced. The corrosion behavior of 70/30Cu-Ni alloy and the corrosion mechanism were studied by immersion test, galvanic corrosion test, erosion-corrosion test and corrosion electrochemical tests.
     The immersion corrosion behavior was studied by scanning electron microscope(SEM), atomic force microscopy(AFM)and X-ray energy diffraction spectrometers(EDS). The corrosion velocity of the material was studied by weight-loss method. The results show that 70/30Cu-Ni alloy is a kind of material with high anticorrosion performance, which depends on the formation of an intact and compact oxide film on the surface of the alloy. The corrosion velocity is reduced by the formation of the oxide film.
     Galvanic corrosion characteristics of 70/30Cu-Ni alloy connected with other materials such as titanium-alloy, stainless steel and copper alloy, were studied by testing the corrosion current, voltage and velocity. The galvanic corrosion behavior of 70/30Cu-Ni alloy and TUP copper in different area was also studied. The results show that 70/30Cu-Ni alloy performs as the anode of the galvanic corrosion while connected with titanium-alloy and stainless steel, otherwise performing as the cathode while connected with copper alloy. The galvanic corrosion will turn severely with the increase area ration of anode and cathode.
     The emersion-corrosion behavior of 70/30Cu-Ni alloy in different speed flowing seawater was studied by circumrotate canister emersion-corrosion test and flowing water tube test. The results show that the ultimate speed is 5m/s. The galvanic corrosion will turn severity with the increase of the speed.
     The corrosion behavior of 70/30Cu-Ni influenced by immersion time, pH and temperature were studied by electrochemical impedance spectroscopy(EIS), potectiondynamic, liner polarization and cyclic polarization. The results show that the anticorrosion performance of 70/30Cu-Ni alloy will enhanced with the increase of immersion time and pH. The alloy is eroded easily with the increase of consistence of Cl- and temperature.
引文
[1]张关根,钱卫忠,肖志坚,等.舰船海水管系防腐现状和对策[J].舰船, 1997, 12(3):37~44.
    [2]藤原和雄.海水管道的材料选择[M].配管技术, 1980, 22(10):111~140.
    [3] Khaled M. Ismail, Ahlam M. Fathi, Waheed A. Badawy. Electrochemical Behavior of Copper-nickel Alloys in Acidic Chloride Solutions[J]. Corrosion Science, 2006, 48:1912~1925.
    [4]周永峰,王洪仁.船舶海水管系的环境腐蚀研究进展[J].材料开发与应用, 2008, 48(6):16~20.
    [5]张启林.船用B30铜镍合金管材腐蚀原因分析[J].材料开发与应用, 1986, 24(1):22~32.
    [6]沈宏,高峰,张关根,等.舰船海水管系选材及防腐对策[J].船舶工程, 2002, 32(4):43~47.
    [7]洪理平,胡强生.船舶海水管系的腐蚀与防护[J].浙江海洋学院学报, 2002, 21(1):66~68.
    [8] Yuan S J, Pehkonen S O. Surface Characterization and Corrosion Behavior of 70/30 Cu-Ni Alloy in Pristine and Sulfide-containing Simulated Seawater[J]. Corrosion Science, 2007, 49:1279~1304.
    [9]林乐耘,徐杰,赵月红.国产B10铜镍合金腐蚀行为研究[J].中国腐蚀与防护学报, 2000, 20(6):361~367.
    [10]徐群杰,丁茂荣,陈子超,等.模拟水中B30铜镍合金耐蚀性的电化学研究[J].上海电力学院学报, 2006, 22(3):229~232.
    [11]王建国,曹福辛. BFe10-1-1白铜和双相不锈钢在海水管路中应用的综合性能分析[J].材料开发与应用, 2001, 16(3):1~5.
    [12]徐群杰.模拟水中白铜B30耐蚀性影响因素的光电化学研究[J].化学学报, 2007, 65(18):1981~1986.
    [13]赵月红,林乐耘,崔大为.铜镍合金在我国实海海域的局部腐蚀[J].中国有色金属学报, 2005, 15(11):1786~1794.
    [14]李杰,牛焱,宋诗哲. Cu-Ni合金在NaCl溶液中的孔蚀特性[J].电化学, 2003, 9(4):422~427.
    [15]李进,许兆义.循环冷却水系统中铜镍合金点腐蚀影响因素分析[J].北京交通大学学报, 2005, 29(4):13~18.
    [16]朱建军.低镍白铜在海洋环境中的应用[J].江苏冶金, 2003, 31(6):21~22.
    [17]黄桂桥,王相润,林乐耘,等.青岛海域铜合金脱成分腐蚀特征研究[J].腐蚀科学与防护技术, 1995, 7(3):237~240.
    [18]朱小龙,林乐耘,徐杰.铜合金在海水环境中的腐蚀规律及主要影响因素[J].中国有色金属学报, 1998, 8(1):210~217.
    [19]林乐耘,严宇民,朱小龙,等.铜合金实海暴露腐蚀与抗污行为的研究[J].腐蚀科学与防护技术, 1995, 7(3):241~243.
    [20]金威贤,谢荫寒,朱洪兴.铜及铜合金在泥沙海水中的腐蚀研究[J].材料开发与应用, 2001, 16(2):13~17.
    [21]赵月红,林乐耘,崔大为.铜及铜合金在我国实海海域暴露16年局部腐蚀规律[J].腐蚀科学与防护技术, 2003, 15(5):266~271.
    [22]林乐耘,刘少峰,刘增才,等.铜镍合金海水腐蚀的表面与界面特征研究[J].腐蚀科学与防护技术, 1999, 11(1):37~43.
    [23]刘少峰,林乐耘. Cu-Ni合金表面膜在海水中的转化行为[J].材料研究学报, 1998, 12(1):20~24.
    [24]朱小龙,李中建,徐杰. Cu-Ni合金海水腐蚀产物膜的形成与破裂机制研究进展[J].稀有金属, 1997, 21(6):463~468.
    [25]朱小龙,林乐耘,雷廷权. Cu-Ni合金海水腐蚀行为研究进展[J].腐蚀科学与防护技术, 1997, 9(1):48~55.
    [26]朱小龙,林乐耘,徐杰,等. Cu-Ni合金海水蚀产物膜研究进展[J].材料科学与工艺, 1997, 5(2):21~24.
    [27]朱小龙,林乐耘,雷廷权. 70Cu-30Ni合金海水腐蚀产物膜形成过程[J].金属学报, 1997, 33(12):1256~1261.
    [28]朱祖芳.有色金属的耐蚀性及其应用[M].北京:化学工业出版社, 1995:132~151.
    [29]张永强.国产B10合金耐海水冲刷腐蚀对比研究[J].材料开发与应用, 2007, 46(12):36~39.
    [30]王光雍,王海江,李兴廉,等.自然环境的腐蚀与防护[M].北京:化学工业出版社, 1997:145.
    [31]赵春梅.模拟苦碱水中铜腐蚀行为的研究[D].北京:北京化工大学硕士论文, 2000.
    [32]朱相荣,王相润.金属材料的海洋腐蚀与防护[M].北京:国防工业出版社, 1999:75~77.
    [33] Efird K D. Potential-PH Diagrams for 90-10 and 70-30 Cu-Ni in Sea Water[J]. Corrosion, 1975, 35: 367~381.
    [34] Chaal L, Deslouis C, Pailleret A, et al. On the Mitigation of Erosion-corrosion of Copper By a Drag-reducing Cationic Surfactant in Turbulent Flow Conditions Using a Rotating Cage[J]. Electrochimica Acta, 2007, 52:7786~7795.
    [35] Digby D Macdonald, Barry C Syrett, Sharon S Wing. The Corrosion of Cu-Ni Alloys 706 and 715 in Flowing Sea WaterⅡ-Effect of Dissolved Sulfide[J]. Corrosion, 1979, 35(8):367~378.
    [36]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社, 1988:193.
    [37]杨世伟,席慧智.舰船材料的电偶腐蚀研究[J].哈尔滨工程大学学报, 2000, 21(6):34~38.
    [38] Pierangela Cristini, Giorgio Perboni, Alessandro Debenedetti. Effect of Chlorineation on the Corrosion of Cu/Ni 70/30 Condener Tubing[J]. Electrochimica Acta, 2008, 54:100~107.
    [39]郭泽亮,李文军,王洪仁.新型镍铝青铜的电偶腐蚀行为研究[J].材料保护, 2005, 38(1):5~9.
    [40]杜娟,王洪仁,杜敏. B10铜镍合金流动海水冲刷腐蚀行为[J].腐蚀科学与防护技术, 2008, 20(1), 12~18.
    [41]杨帆,郑玉贵,姚治铭,等.铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为[J].中国腐蚀与防护学报, 1999, 19(4):207~213.
    [42]黄桂桥.铜合金在海洋飞溅区的腐蚀[J].中国腐蚀与防护学报, 2005, 25(2):65~69.
    [43]徐姚.液固两相流冲刷腐蚀数值模拟研究[M].北京:北京化工大学硕士论文, 2001.
    [44] Bianchi G, Fiori G, Mazza F.“Horse Shoe”Corrosion of Copper Alloy in Flowing Sea Water: Mechannsim and Possibility of Cathodic Protection of Condenser Tubes in Power Station Corrosion[J]. Corrosion, 1978, 34: 396~399.
    [45] Perkins J, Graham K J, Storm G A, et al. Flow Effects on Corrosion of Galvanic Couples in Sea Water[J]. Corrosion, 1979, 35: 23~29.
    [46] Barry C Syrett, Sharon S Wing. Effect of Flow on Corrosion of Copper-Nickel Alloys in Aerated Sea Water and in Sulfide-Polluted Sea Water[J]. Corrosion, 1980, 36(2):73~85.
    [47] Chen Hao, Yin Renhe, Zong Yue, et al. Electrochemical and Photoelectrochemical Study of the Self-assembled Monolayer Phytic Acid on Cupronickel B30[J]. Corrosion Science, 2008, 50:3527~3533
    [48] Folquer M E, Ribotta S B, Real S G, et al. Study of Copper Dissolution and Passivation Processes by Electrochemical Impedance Spectroscopy[J]. Corrosion, 2002, 58(3) :240~247.
    [49] Kear G, Barker B D, Stokes K, et al. Electrochemical Corrosion Behaviour of 90-10 Cu-Ni in Chloride-based Electrolytes[J]. Applied Electrochemistry, 2004, 34:659~669.
    [50]徐海波,付洪田,赵广宇,等.铜阳极活性区溶解机制的电化学研究[J].中国腐蚀与防护学报, 1999, 19(1):27~33.
    [51] Dhar H P, White R E, Burnell G, et al. Corrosion of Cu and Cu-Ni Alloys in 0.5M NaCl and in Synthetic Seawater[J]. Corrosion, 1985, 41(6):317~323.
    [52] Stokes K, Kear G, Barker B D, et al. Electrochemical Corrosion Behaviour of 90-10 Cu-Ni in Chloride-based Electrolytes[J]. Applied Electrochemistry, 2004, 34:659~669.
    [53]赵永韬,李海洪,陈光章.铜合金在海水中电化学阻抗谱特征研究[J].海洋科学, 2005, 29(7):21~25.
    [54]陈海燕.铜镍合金在NaCl溶液中点蚀行为的研究[J].材料保护, 2007, 40(6):17~19.
    [55] Crousier J, Beccaria A M. Behaviours of Cu-Ni Alloys in Natural Sea Water and NaCl Solution[J]. Werkstoffe and Korrosion, 1990, 41:185~190.
    [56] Efird K D. The Synergistic Effect of Ni and Fe on the Sea Water Corrosion of Copper Alloys[J]. Corrosion, 1977, 33(10):347~350.
    [57] Cai Wei, Liu Ruiqing, Xie Shuisheng, et al. Effect of Y on Structure and Properties of Copper and Its Alloy[J]. Transactions of Nonferrous Metals Society of China, 2007, 17:1049~1054.
    [58] North R F, Pryor M J. The Influence of Corrosion Product Structrue on The Corrosion Rate of Cu-Ni Alloys[J]. Corrosion Science, 1970, 10:297~302.
    [59] Yuan S J, Amy M F, Pehkonen S O. The Influence of the Marine Aerobic Pseudomonas Strain on Strain on the Corrosion of 70/30 Cu-Ni Alloy[J]. Corrosion science 2007, 49:4352~4385.
    [60] Macdonald D D, Syrett B C, Wing S S. Methods for Measuring Corrosion Rates of Copper-Nickel Alloys in Flowing Seswater[J]. Corrosion, 1978, 25:1~20.
    [61]王玉荣,董俊慧,乌日根.稀土镍铜合金铸铁耐碱腐蚀性能的测定与分析[J].稀土, 2008, 29(7):94~97.
    [62]刘金良.铜合金表面处理技术进展[J].中国有色金属, 2008, 24(4):72~73.
    [63]凡小盼,王昌燧,金普军.热处理对铅锡青铜耐腐蚀性能的影响[J].中国腐蚀与防护学报, 2008, 28(1):112~116.
    [64] Esielstein L E, Syrett B C, Wing S S, et al. The Accelerated Corrosion of Cu-Ni Alloys in Sulfide-Polluted Sea Water:Mechanism No.2[J]. Corrosion Science, 1983, 23:223~232
    [65]李进,许兆义,杜一立.硫酸盐还原菌生物膜对HSn70-1AB铜合金电极界面的影响[J].中国腐蚀与防护学报, 2008, 28(2):265~277.
    [66]曹楚南.中国材料的自然环境腐蚀[J].北京:化学工业出版社, 2005:211~226.
    [67] Larhzil H, Cisse M, Touir R, et al. Electrochemical and SEM Investigations of the Influence of Gluconate on the Electroless Deposition of Ni-Cu-P alloys[J]. Electrochimica Acta, 2007,53:622~628.
    [68]王曰义.海水冷却系统的腐蚀及其控制[J].北京:化学工业出版社, 2006:89~93.
    [69] Melchers R E. Temperature Effect on Seawater Immersion Corrosion of 90:10 Copper-nickel Alloy[J]. Corrosion, 2001, 57(5): 440~444.
    [70] Wang J, Jiang X, Li W. Microstructure and Corrosion Behavior of 70Cu-30Ni Weld Pipe[J].Transactions of Nonferrous Metal Society of China, 1995, 5:88~92.
    [71] Kato C, Castle J E, Aeya B C, et al. Corrosion, 1983, 23:223.
    [72] Mursel Alper, Hakan Kockar, Murside Safak, et al. Comparison of Ni-Cu Alloy Films Electrodeposited at Low and High pH Levels[J]. Journal of Alloys and Compounds, 2008, 453:15~19.
    [73] Hodgkiess T, Vassiliou G. Complexities in the Erosion Corrosion of Copper-nickel Alloys in Saline Water[J]. Desalination, 2005, 183:235~247.
    [74]扈显琦,梁成浩.铜镍合金在添加不同缓蚀剂的55%LiBr溶液中的腐蚀行为[J].腐蚀与防护, 2008, 29(3):448~450.
    [75]高海丽,曾振欧,赵国鹏. HEDP镀铜液在铜电极上的电化学行为[J].电镀与涂饰, 2008, 27(8):1~4.
    [76]许立萍,张胜涛,钱英.电解法处理铬渣浸液的电极反应机理[J].中国有色金属学报, 2008, 18(6):377~340.
    [77]黄幸,徐颂波,周邦娜,等. NiAl等合金在Li2CO3-K2CO3中的电化学腐蚀[J].上海大学学报, 2008, 6(3):200~203.
    [78]孟琳,何业东.活化极化控制下合金表观与真实腐蚀极化图[J].北京科技大学学报, 2008, 30(6):615~619.
    [79]杨正宏,曲生华,史美伦.金属表面有机涂层抗渗性检测的时间电位法[J].建筑材料学报. 2008, 11(4):446~449.
    [80]付占达,芮玉兰,梁英华,等.海水中紫铜缓蚀剂的缓蚀性能及表面分析[J].腐蚀与防护, 2008, 29(8):445~448.
    [81]欧阳维真,王蕾,许淳淳.带锈铁器在海水介质中腐蚀行为的电化学阻抗研究[J].桂林工学院学报, 2008, 28(3):389~392.
    [82]郭超,左禹,翟克刚.混合金属氧化物涂层在酸碱和中性环境中的电化学行为[J].材料保护, 2008, 41(8):9~12.
    [83]杨志成,周志强,孔小东. Al-Mn-Mg合金在不同电解液中阳极氧化后的耐蚀性比较[J].材料保护, 2008, 41(6):69~71.
    [84] Bertocci U, Huet F. Noise Analysis Applied to Wlectrochemical Systems[J]. Corrosion, 1995, 51(2):131~144.
    [85]胡丽华,杜楠,王梅丰,等.电化学噪声和电化学阻抗谱监测1Cr18Ni9Ti不锈钢的初期点蚀行为[J].中国腐蚀与防护学报, 2007, 27(4):233~237.
    [86]张鉴清,张昭,王建明.电化学噪声的分析与应用[J].中国腐蚀与防护学报, 2002,22(4):241~248.
    [87] Gabrielli C, Keddam M. Review of Applications of Impedance and Noise Analysia to Uniform and Localized Corrosion[J]. Corrosion, 1992, 48(10):794~811.
    [88]科恩.时频分析理论与应用[M].西安:西安交通大学出版社, 1998, 3.
    [89]姜文军,陈振宇,郭兴蓬. N80钢点蚀行为的研究[J].材料保护, 2007, 40(8):27~29.
    [90]胡会利,李宁,和瑾宁.电化学噪声在腐蚀领域中的研究进展[J].腐蚀科学与防护技术, 2007, 27(2):114~118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700