三株海洋微生物中胞外多糖的分离、结构和抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋微生物由于其特殊的生存环境,具有产生结构新颖、功能独特的新型活性胞外多糖的潜力,是开发多糖类海洋新药的重要资源。近年来,海洋微生物胞外多糖作为活性物质的新来源,在生物医学领域正日益受到人们的关注。本论文以12种海洋微生物发酵液提取的胞外多糖为研究对象,并对其产率、理化性质、单糖组成和抗氧化活性进行研究,从中筛选出深海真菌Penicillium sp.、海绵共附真菌Epicoccum nigrum和海洋放线菌THW-7A胞外多糖,并进一步分离纯化,深入研究其理化性质、结构和抗氧化活性。
     以LEPS、JEPS和WEPS为研究对象,采用离子交换色谱和凝胶排阻色谱相结合对其进行分离纯化分别得到八种胞外多糖LEPS1-1、LEPS1-2、LEPS-2、JEPS-1、JEPS-2、WEPS-1、WEPS-2和WEPS-3。经Shodex OH pak SB-804柱高效液相色谱分析,证明八种多糖都具有较高的纯度。通过采用高碘酸氧化-Smith降解、甲基化等化学方法及现代仪器分析手段,包括IR、GC、HPGPC、HPLC、GC-MS、NMR等,分别对其结构进行了深入研究,确定了它们的基本化学结构特点。
     结果表明:LEPS1-1主链是以1→2, 1→6连接Man,其摩尔比近似为2:1,支链中主要为1→3连接的Glc,同时存在微量的1→2,4连接的Gal;LEPS1-2主链是1→2 Man和1→4 Man摩尔比近似1:1比例连接,支链是1→2,4 Gal为主,还含有较多的末端甘露糖和少量的1→6 Man、1→2 Gal;LEPS-2结构中主链是1→2 Man, 1→6 Glc,而其支链是以1→2,4 Gal和1→4 Man为主。JEPS-1主链主要为1→2 Man, 1→3 Man和1→2,3 Gal,支链为1→6Glc、1→4 Glc和1→3,6连接的Glc,同时存在大量1→Man。JEPS-2主链是1→4 Gal、1→6 Glc和1→3,6 Glc,支链是1→2 Glc,还含有较多的末端甘露糖和少量的1→3 Man、1→2,3 Gal。WEPS-1的主链主要为1→2Man、1→3Man和1→2,3Man,并且摩尔比近似等于5:5:3,同时含有大量的末端Man和少量的1→6甘露糖。而WEPS-2主链主要是1→2Man、1→6Glc、1→3Glc、1→2,3Man和1→3,6Man,支链主要是1→Man和1→Glc键型。WEPS-1和WEPS-2的结构相对简单,均是分支度很少的近似直链的结构。
     采用温和的0.01 mol L-1 HCl在60℃降解3小时作为降解条件制备WEPS-3系列寡糖,利用HPGPC-RID经Bio-Gel-P4凝胶柱对降解产物进行分离制备获得寡糖,在线示差检测到8个寡糖组分(F2~F9),并对全排阻部分在相同条件下降解和纯化得到7个寡糖组分(f2~f8)。将胞外多糖WEPS-3和获得的寡糖组分进行红外光谱分析,结果表明分离得到的寡糖与原料多糖的谱图十分相似,各种糖的特征吸收峰均未发生明显改变,并通过ESI-MS分析确定了各组分的分子量大小,测定结果为F2~F7的分子量分别为268 Da、518 Da、768 Da、1018 Da、1268 Da和1518 Da,f2~f4的分子量分别为268 Da、518 Da和768Da,结果证实F2~F7分别为聚合度1到6的糖单元,f2~f4分别为聚合度为1~3的糖单元。同时结合1H-NMR、13C-NMR、DEPT、1H 1H-COSY、HMQC、HMBC和ESI-CID-MS/MS等仪器分析手段对F2和F3片段进行结构和序列解析,结果表明胞外多糖WEPS-3为α-2→8连接的聚合度为25的脱氨基神经氨酸Kdn。这是首次报道从海洋放线菌THW-7A中获得多聚Kdn唾液酸,此研究对海洋微生物胞外多糖的研究具有重要的参考价值。Kdn是唾液酸中神经氨酸(Neuraminic acid)的衍生物。现代医学根据某些身体的化学水平来临床诊断和治疗疾病,Kdn被证明和多种疾病有关,例如肿瘤、癌症、糖尿病、心血管疾病等;有人甚至认为它们和进化有关,能增强生物体对环境的适应性。近期食品安全方面更进一步强调了唾液酸的作用。据研究,母乳中唾液酸化的成分能帮助婴儿抵抗肠道感染以及促进记忆和智力的发育。但是作为母乳替代品的牛乳里面的唾液酸含量要大大低于母乳。
     通过利用Fenton反应检测对羟基自由基、DPPH自由基、超氧阴离子自由基的清除能力以及抗脂质过氧化和还原能力等实验对八种胞外多糖的体外抗氧化活性进行了研究,并与阳性对照BHT和Vc进行比较。结果表明,JEPS-1和JEPS-2均表现出很强的抗氧化活性; LEPS1-1, LEPS1-2和LEPS-2对清除超氧阴离子和抗脂质过氧化的能力异常显著;WEPS-1、WEPS-2和WEPS-3抗脂质过氧化能力也非常强,其EC50值分别为0.59、0.43和0.34,并可与阳性对照Vc相比拟。酸性多聚糖的抗氧化活性均高于中性多聚糖,推断这可能与酸性多糖含有较多的带负电荷的糖醛酸有关,另外糖单元的类型和糖苷键的构型,多糖的取代基,多糖的空间结构,多糖的分子量大小等也是影响多糖抗氧化活性的主要因素。
Marine-derived microorganisms can often yield various biologically active exopolysaccharides with novel functions and structures, and showed the enormous development prospects for the marine microorganisms. Therefore marine microorganisms exopolysaccharides as the new sources of bioactive substances, have caused an emerging interest in the biomedical area in recent years. In this paper, three crude exopolysaccharides LEPS, JEPS and WEPS extracted from the broth of a deep sea fungus Penicillium sp F23 (E148°44.8′, N19°24.1′, 5080m), marine-sponge fungus Epicoccum nigrum and marine sediment collected in Zhanjiang, and the total yield are 0.97g/L, 0.52 g/L and 0.72g/L, respectively. In addition, the isolation, structure characteristics and antioxidant activities of purified exopolysaccharides were also investigated.
     Eight exopolysaccharides LEPS1-1, LEPS1-2, LEPS-2, JEPS-1, JEPS-2 WEPS-1, WEPS-2 and WEPS-3 were successfully isolated from LEPS, JEPS and WEPS through ion-exchange chromatography and low-pressure gel permeation chromatography. They were analyzed by Shodex Ohpak SB-804 HQ collumn HPLC, and the result showed that they have good purity. Their chemical characteristics and structure features were investigated by a combination of chemical and instrumental analysis including acid hydrolysis, periodate oxidation-Smith degradation, methylation analysis, GC, GC–MS, HPGPC, FT-IR and NMR.
     The results indicated that LEPS1-1 was mainly composed of (1→2)-linked -β-D-mannopyranosyl and (1→6)-linked-β-D- mannopyranosyl in approximate molar ratio of 2:1. In addition, LEPS1-2 mainly possessed a backbone of (1→2)-linked -β-D-mannopyranosyl and (1→4)-linked-β-D-mannopyranosyl, and LEPS-2 comprised of (1→2)-linked-β-D-mannopyranosyl and (1→6)-linked-β-D- glucopyranosyl with the molar ratio of 1:1 and 2:1, respectively.
     The backbone of JEPS-1 was composed of (1→2)-linked-α-D-mannopyranosyl, (1→3)-linked-α-D-mannopyranosyl and (1→2,3)-linked-β-D-galactopyranosyl residues in the ratio of 2.96:2.86:1.00, and the side chains were (1→6)-linked-β-D-glucopyranosyl, (1→4)-β-D-glucopyranosyl and (1→3,6)-linked-β-D-glucopyranosyl. The backbone of JEPS-2 contained (1→4)-β-D-galactopyranosyl, (1→6)-β-D-glucopyranosyl and (1→3,6)-β-D-glucopyranosyl in the ratio of 1.97:2.09:2.02, branched (1→2)-β-D-glucopyranosy, (1→3)-α-D-mannopyranosyl and (1→2,3)-β-D-galactopyranosyl. WEPS-1 had a backbone of (1→2)-linked -α-D-mannopyranosyl, (1→3)-linked-α-D-mannopyranosyl and (1→2,3)-linked-α-D- mannopyranosyl residues in the about ratio of 5:5:3, and (1→)-linked -α-D-mannopyranosyl was distributed in branches. while WEPS-2 had a backbone consisting (1→2)-linked-α-D-mannopyranosyl, (1→6)-β-D-glucopyranosyl, (1→3)-β-D-glucopyranosyl, (1→2,3)-linked-α-D-mannopyranosyl, and (1→3,6)-α-D- mannopyranosyl in the ratio of 6.07:5.22:5.92:6.13:5.08. In addition, the backbones and branches of all polysaccharides terminated with terminal Man, Gal or Glc. Eight oligosaccharides fractions (F2-F9) with symmetrical sharp peaks from WEPS were obtained by depolymerization reactions using mild acid partial hydrolysis at 60°C for 3 h, and purified by on Bio-Gel P-4 column with on-line by a refractive index detector. In addition, the full exclusion fraction F was also repeated the same hydrolysis and purification assays, and obtained seven fractions (f2-f8). The symmetric IR spectroscopy indicated that the parent polysaccharide WEPS and these oligosaccharides fragments were structurally similar. Molecular weights of the purified sections were determined by ESI-MS, and the results showed the molecular weights of F2~F7 were 268 Da, 518 Da, 768 Da, 1018 Da, 1268 Da and 1518 Da, and f2~f4 were 268 Da, 518 Da and 768 Da, respectively. The result showed the polymerization degree of F2~F7 was one to six, respectively. Structure features of fractions F2 and F3 were investigated by instrumental analysis including ESI-CID-MS/MS and 600-MHz NMR spectroscopy (1HNMR, 13CNMR, 2D-COSY, HMBC, HMQC and DEPT), and confirmed the structure of the polysaccharide as the repeating unit ofα-2→8 linked 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN, which is synonymous with 3-deoxy-D-glycero-D-galacto-nonulosonic acid and deaminated neuraminic acid ). This is the first report of the presence ofα-2→8 polyKdn from the marine actinomycete THW-7. This can also have the important referenced value for the research of the marine microbial exopolysaccharide. Kdn is a group name for Neuraminic acid derivatives of sialic acid. Substantial evidence now shows that Kdn is a possible risk factor for tumor, cancer, diabetes, cardiovascular diseases, and their thrombotic complications. Moreover, it is believed that their evolvement may have stimulated evolution and rendered organisms less vulnerable to environmental attacks. However, disturbance of their metabolism may cause diseases. According to the research, sialylated compounds in breast milk could help infants keeping away from intestine infection and improve their digestion and intelligence. However, bovine milk, the substitute of breast milk, has much less sialic acid than breast milk actually.
     Furthermore, their antioxidant activity was investigated by various antioxidant assay in vitro systems, including DPPH radical scavenging, superoxide anion radical scavenging, hydrogen radical scavenging, inhibition against liposome peroxidation and reducing power. The results indicated that antioxidant activities of purification polysaccharides increased with increased amount of samples. Among these assays, JEPS-1 and JEPS-2 showed strong antioxidant, and LEPS1-1, LEPS1-2 and LEPS-2 showed the best effect on the scavenging of superoxide radicals; WEPS-1、WEPS-2 and WEPS-3 showed significant ability on lipid peroxidation with EC50 values 0.59, 0.43 and 0.34. LEPS-2, JEPS-2 and WEPS-3 exhibited equivalent or even higher antioxidant activities than Vc. One of the important factors is that LEPS-2, JEPS-2 and WEPS-3 exhibited the higher antioxidant activities providing with acid monosaccharide appeared to increase the antioxidant activity compared to which appear the free-radical-scavenging activity was partially related to monosaccharide constituents. Apart from this, the apparent discrepancies between the characteristic of and linkages can influence the outcome of their antioxidant activities. The antioxidant activities of the tested samples were not a function of a single factor but a combination of several factors.
引文
[1] Ireland C M, et al. Marinebiotechnology. New York and London: Pleunm Press, 1993, 1:1.
    [2] Scheur P J, et al. Chemical Basis and Biomedical Potential. Science, 1990, 248: 1173.
    [3]王书锦,胡江春,薛德林,等.中国黄、渤海、辽宁近海地区海洋微生物资源的研究[J ].锦州师范学院学报(自然科学版) ,2001 ,22 (1) :1 - 5.
    [4]苏文金,黄益丽,黄耀坚,等.产免疫调节活性多糖海洋放线菌的筛选[J].海洋学报,2001,23(6):114-119.
    [5] Colliec-Jouault S, Zanchetta P, Helley D. et al. Pathol Bio,2004,52:127-130.
    [6] Roger O, Kervarec N, Ratiskol J,et al. Carbohydr Res, 2004, 339:2371-2380.
    [7] Rougeaux, H., Talaga, P., Carlson, R.W. Guezennee, J.(1998). Structural studies of an exopolysaccharide produced by Alteromonas macleodii subsp .fijiensis originating from a deep-sea hydrothermal vent. Carbohydr. Res.312,53一59.
    [8]魏培莲.微生物胞外多糖研究进展.浙江科技学院学报.2002.14(2)8-12.
    [9]浜天信威.微生物生产的多糖[J].应用微生物.1982,1:19-24.
    [10]陈光,张真妮.淀粉发酵生产微生物多糖的研究现状[J].吉林农业大学学报,2001, (1): 42 -46.
    [11] Sutherland IW. Bacterial exopolysaccharioles. Adv Microbiol Physiol, 1972, (8):143-212.
    [12]顾瑞霞,骆承庠,张文.乳酸菌胞外多糖的研究进展.中国乳品工业,1999, 27(2):43-46.
    [13]马静,裴家伟,吴荣荣等.影响乳酸菌胞外多糖产量的因素研究.中国乳业,2003,31(5):12-16.
    [14]赵玉臣,王迎俊,王忠凤.乳酸菌胞外多糖[J].中国乳业, 2003,(4):32-35.
    [15] Yasui H, et al. Immunomodulatory function of lactic bacteria.Antonie van Leeuwenhoek, 1999, 76:383-389.
    [16]顾笑梅等.一株乳酸菌所产胞外多糖对荷瘤小鼠机体免疫功能影响的研究[J].微生物学报, 2003, 43(2):251-255.
    [17] Luc DV, Bart D. Hetetopolysaccharidees from lactic acidbacteria. FEMS Microbiology Reviews, 1999, 23:153-177.
    [18]李全阳,夏文水.酸乳中乳酸菌所产胞外多糖特性的初步研究[J].食品科学, 2004, 25(2): 80-83.
    [19]顾笑梅等.乳酸菌Z222产胞外多糖(EPSI)对免疫细胞功能的影响[J].中华微生物学和免疫学杂志,2003,23(6): 442-445.
    [20] Boyle C D, Reade A E. Appl Enviro Microbiol. 1983,46(2):392-399.
    [21] Umezawa H, Okami Y, Kurazawa S, et al. Marinactan, antitumor polysaccharide produced by marine bacteria[J]. TheJournal of Antibiotics ,1983(5): 471-477.
    [22] Lee H K, Chun J, Moon E Y, et al. Int J Syst Evol Microbiol. 2001, 51: 661-666.
    [23] Okutaani K,Tandavanitj S.Nippon Suisan Gakkasishi-Bull-etin of the Japanese Sociiety Fisheries,1991,57:1949.
    [24]RaguenesG,Pigner P. Appl Environ Microbiol, 1996, 62:67.
    [25]Rogeaux H, Pichon R, et al. Carbohyd. Polym.1996,31:237
    [26]Wang F J, et al. Fisheries science, 1999, 65(5):742~749.
    [27] Maugeri T L, Cugliandolo C, Caccamo D, et al. Biotechnol Lett. 2002, 24 (7): 515-519.
    [28] Nicolaus B, Moriello V S, Lama L, et al. Origins Life Evol B. 2004, 34:159-169.
    [29] Kobayashi J, Ishibashi M, Walch M R, et al. Amphidinolide C. The first 25 - membered macrocyclic lactone with Potent antineoplastic activity from the Cultured dinoflagellate Amphidinium SP. J Am chem Soc, 1988, 110: 490-495.
    [30] Jayarama M, Seetharaman J.Process Biochem.2003, 38:841-847.
    [31] Z.M. Rashid, et al., Isolation of a sulphated polysaccharide from a recently discovered sponge species (Celtodoryx girardae) and determination of its anti-herpetic activity. Int. J. Biol. Macromol. (2009), doi:10.1016/j.ijbiomac. 2009.01.002.
    [32] Arena A, Maugen T L, Pavone B, et al. Int Immunopharmacol, 2006, 6 (1): 8-13.
    [33] Lin Y C, WU X Y, Feng S, et al. Five unique compounds xyloketals from mangrove fungus Xylarian sp. (# 2508) from the South China Sea coast J. J Origanic Chemistry, 2001, 66 (19 ):6252-6256.
    [34] Lin Y C, WU X Y, Feng S, et al. Anovel N-Cinnamoylcyclopeptide cotaining an allenic ether from the fungus Xylaria sp. (# 2508) from the South China Sea J. Tetrahedron Letters, 2001,42:449-451.
    [35]陈真;郭青龙;钱之玉;高向东;袁胜涛.海洋真菌多糖YCP对荷瘤小鼠的抗肿瘤作用.食品与生物技术学报J. 2005, 24(5):1673-1685.
    [36]陈真;钱之玉;郭青龙;袁胜涛;高向东.海洋真菌多糖YCP对荷瘤小鼠肿瘤生长及免疫功能的影响.中草药J.2006, 37(2):241-245.
    [37] Yang, X. B.; Gao, X. D.; Han, F.; Tan, R. X. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. Biochimica et Biophysica Acta, General Subjects (2005), 1725(1), 120-127.
    [38] Yang, X. B.; Gao, X. D.; Han, F.; Xu, B. S.; Song, Y. C.; Tan, R. X. Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108. Biochimie (2005), 87(8), 747-754.
    [39]胡谷平,佘志刚,吴耀文,林永成,吴雄宇。南海海洋红树林内生真菌(1356号)胞外多糖的研究J.中山大学学报(自然科学版),2002, 41( 1):121-122.
    [40]佘志刚,胡谷平,等,南海红树林真菌(1356号)真菌多糖的分离提取及甲醇解研究J.中山大学学报(自然科学版), 2001,40(6) :123-124.
    [41]南海海洋红树林真菌2560号多糖A2的研究。陈东淼,佘志刚,郭志勇,林永成,刘晓红,尹文清,陆慧宁
    [42]郭志勇,佘志刚,陈东淼,林永成,陆慧宁,吴雄宇.南海海洋红树林种子内生真菌2508号多糖G-22a的研究。
    [43] Sun C, Wang J W, Fang L, et al. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS4108. Life Sci, 2004, 75:1063~1073.
    [44] Sun, C.; Shan, C. Y.; Gao, X. D.; Tan, R. X. Protection of PC12 cells from hydrogen peroxide - induced injury by EPS2, an exopolysaccharide from a marine filamentous fungus Keissleriella sp. YS4108. Journal of Biotechnology (2005), 115(2), 137-144.
    [45]苏文金,黄益丽,黄耀坚,等.海洋放线菌免疫活性多糖的筛选[J].海洋学报,2001(6): 114-119.
    [46] Micheal E.Quigley, Geoffrey J.Hudson, Hans N.Englyst. Determination of resistant short-chain carbohydrates(non-digestible oligosaccharides using gas chromatography. [J]Food Chemistry, 65(1999):381-390
    [47]黄芳,蒙义文.活性多糖的研究进展.天然产物研究与开发[J]. 1999, 11(5): 90-98.
    [48]张惟杰.糖复合物生化研究技术.第二版.杭州:浙江大学出版社,1999, 128.
    [49] Peters T, Meyer B, Stuike-Prill R,Somorjai R,Brisson J R. A Monte Carlo method for conformational analysis of saccharides. Carbohydrate Research, 1993, 238: 49-73.
    [50] Cioci G, Rivet A, Koca J, Perez S. Conformational analysis of complex oligosaccharides: the CICADA approach to the uromodulin O-glycans. Carbohydrate Research, 2004, 339(5): 949-959.
    [51]张翼伸.多糖的结构与功能生物学通报,1992(1):3-4.
    [52]方积年.多糖的结构分析.国外医学-药学分册,1981,8(4):222-228.
    [53]周鹏,谢明勇,傅博强.多糖的结构研究.南昌大学学报(理科版),2001,25(2):197-204.
    [54]马立田,王式箴。高效液相色谱法测定低热量食品中的葡萄糖、果糖、蔗糖、麦芽糖醇和山梨糖醇的研究。食品与发酵工业,1998,24(4):12-17
    [55]孙群,牟世芬。单糖和寡糖的离子色谱法分析研究。化学通报,1991, 8:39-41
    [56] Hakomori S. A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochemistry, 1964, 55: 205-208.
    [57]董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物研究与开发,1995,7(2):60-65.
    [58]姜晓满,田卫,张海霞,刘满仓.糖类物质的色谱分析.药物分析杂志,2006,26(8): 1181-1186.
    [59]田媛,张尊建.糖类结构的核磁共振波谱及质谱分析.药学进展,2003, 27(2): 78-80.
    [60]张剑波,田庚元.寡糖分离和结构分析进展.生物化学与生物物理进展,1998,25(2):114-119.
    [61]诸葛健,赵振锋,方慧英.功能性多糖的构效关系.无锡轻工大学学报,2002,21(2):209-212.
    [62]王淼,丁萧霖.葡聚糖生物活性与结构的关系.无锡轻工大学学报,1997,16(2):90-94.
    [63] Kojima E. Molecular weight dependence of antitumor activity of Schizophyllan. Agricultural and Biological Chemistry, 1986, 5(1): 231-232.
    [64] Adachi Y, Ohno N, Ohsawa M,Oikawa S,Yadomate T. Change of biological activities of (1→3)-beta-D-glucan from Grifola frondosa upon molecular weight reduction by heat treatment. Chemical & pharmaceutical bulletin, 1990, 38(2): 447-481.
    [65] Ohno N, Miura T, Miura N. Structure and biological activities of hypochlorite oxidized zymosan. Carbohydrate Polymers, 2001, 44(4): 339-349.
    [66] Masaki H, Kaluta M. Studies on interrelation of structure and antitumor effects of polysaccharide. Carbohydrate Research, 1981, 92(1): 115-129.
    [67] Nanba H, Kuroda H. The chemical structure of an antitumor polysaccharide in mycelia of Cochliobolus miyabeanus. Chemical & pharmaceutical bulletin, 1987, 35(3): 1285-1288.
    [68] Hamuro J, Maeda Y Y, Arai Y, Fukuoka F, Chihara G. The significance of the higher structure of the polysaccharides lentinan and pachymaran with regard to their antitumor activity. Chemico-biological interactions, 1971, 3(1): 69-71. [69 ] Makoto Hasegawa ,Akira Isogai ,Fumihiko Onabe. Preparation of low -molecular - weight chitosan using phosphoric acid. Carbohydrate Polymers, 1993, 20:279 - 283.
    [70] Defaye D. Chitin and Chitosan. London :Elsevier Applied Science ,1989. 415.
    [71] Barker S A, Foster A B, Stacey . Isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin. Chem. Soc, 1958 :2218-2222.
    [72] Emmanuel Belamie, Alain Domard. Marie - madeleine Giraud - guille.Study of the solid - state hydrolysis of chitosan in presence of HCl. Polym Sci Part A :Polym Chem,1997,35 :3181 - 3191.
    [73]罗平,何波兵,蔺显俊,钟安永,周宗华,陈德本.水溶性低分子壳聚糖的制备.化学研究与应用,2000,12(6) :677 - 679.
    [74] Chen R H , Chang J R , Shyur J S. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydisperity of treated chitosan. Carbohydrate Research, 1997, 299(4):287 - 294.
    [75]蒋可,陈宇东,钟晋贤.高效液相色谱法分离寡糖的对氨基苯甲酸乙酯衍生物. [J]生物化学杂志,1993,9:342
    [76] Paulus A, Klockow A. Detection of carbohydrates in capillary electrophoresis. [J] Chromatogr A 1996 Jan 12;720(1-2):353-76
    [77] Okatch H, Torto N, Armateifio J. [J] Chromatogr A, 2003 Apr 11;992(1-2):67-74
    [78] Stefansson M, Novotny M.Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format. [J]Anal Chem 1994 Apr1;66(7):1134-40
    [79]刘虎威.气相色谱方法及应用[M].北京:化学工业出版社, 2000,10.
    [80]王静,王晴.色谱法在糖类化合物分析中的应用. [J]分析化学,2001(2):222-227.
    [81]田福利,其木格.糖醇乙酯衍生物制备方法的改进. [J]内蒙古大学学报,1996(3):181-184
    [82] Lee BY, Yanamandra K, Thurmon TF. Quantitative estimation of organic analytes with acapillary column. [J]Am Clin Lab 2002 May, 21(4):30-41
    [83] Micheal E.Quigley, Geoffrey J.Hudson, Hans N.Englyst. Determination of resistant short-chain carbohydrates(non-digestible oligosaccharides using gas chromatography. [J]Food Chemistry, 65(1999):381-390
    [84] Yeshia Mechref, Gary K. Ostrander, Ziad EI Rassi. Capillary eletrophoresis of carboxylated carbohydratesⅣ. [J] Journal of Chromatography A, 792{1997}:75-82
    [85] Honda S, Suzuki S. Separation of oligosaccharides by capillary electrophoresis using buffer modifiers. [J]Method Mol Bio, 2003, 213:93-104
    [86] Taga A, Honda S. Affinity capillary electrophoresis of oligosaccharides. [J]Method Mol Bio, 2003; 213:121-130
    [87]高鸿.《分析化学前沿》北京:科学出版社,1991:147
    [88]竺安.《毛细管电泳进展》第二卷广州:华南理工大学出版社,1995:l
    [89] Honda S,Iwase S,Makino A.Fujiwara S.Anal.[J] Biochem.,1989,176:72—77
    [90]聂燕芳.毛细管电永原理及应用. [J]中山大学研究生学刊自然科学与医学版. 2002,23(2):38-43
    [91] Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling, sequence, linkage, and branching date: ES-MS and CID. Analytical Chemistry, 1995, 67(11): 1772-1784.
    [92] Mock K K, Davey M, Cottrell J S. The analysis of underivatized oligosaccharides by matrix-assisted laser desorption mass spectrometry. Biochemical and Biophysical Research Communications, 1991, 177(2): 644-651.
    [93]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用.生命的化学, 2002, 22(2): 194-196.
    [94]郭忠武,王来曦.糖化学研究进展. [J]化学进展,1995,7(1):10.
    [95] Rain S, Desh D, Anakshi K, et al. A novel pentasaccharide from milk. [J] Biochemca et biophysica Acta,1999,1428(2~3):433.
    [96] Van de Velde F., S.H. Knusten, A.I. Usov, H.S. Rollema, A.S. Cerezo.1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. [J] Trends Food Sci. Technol., 2002, 13:73-92.
    [97]张真庆,蒋晓路,管华诗.寡糖的生物活性及海洋性寡糖的潜在应用价值.[J]中国海洋药物,2003,93(3):51-56.
    [98] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350-366.
    [99] Lorry R-F, Ramdall. Protein measurement with the Folin Phenol reaction [J]. J Biol Chemical, 1951, 193: 265-275.
    [100] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 7: 248 -254.
    [101] Bitter T, Muir H M. A modified uronic acid carbazole reaction. Analytical Biochemistry, 1962, 4: 330-334.
    [102]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用,2002,22(2):194~196.
    [103]赵峡,苗辉,范慧红等。用GPC法测定硫酸多糖911的分子量和分子量分布。青岛海洋大学学报.2000, 30 (4): 623-626.
    [104]李静,左雄军.,水溶性凝胶渗透色谱法测定芸芝多糖组分的分子量及其相对含量,分析化学.1999, 27(8): 942-944.
    [105] P. Magnelli, J. F. Cipollo, C. Abeijon. A refined method for the determination of Saccharomyces cerevisiae Cell Wall Composition andβ-1,6-glucan fine structure. Anal. Biochem., 2002, 301(1): 136-150.
    [106]戴军,朱松,汤坚,等.PMP柱前衍生高效液相色谱法分析杜氏盐藻多糖的单糖组成.分析测试学报,2007,26(2):206~210.
    [107] Naik, G. H., Priyadarsini, K. I., Satav, J. G., Banavalikar, M. M., Sohoni, P. P., Biyani, M. K., & Mohan, H. (2003). Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry, 63, 97–104.
    [108] Wang, Z. J., Luo, D. H. (2007). Antioxidant activities of different fractions of polysaccharide purified from Gynostemma pentaphyllum Makino. Carbohydrate Polymers, 68, 54–58.
    [109] Gao, X.D.,Ye,W.C.,Yu, A.C.H., Zhang,Y., Tan, R.X., Li, M., Hsiao, W.L.W., 2003. Pulsatilloside A and anemoside A (3) protect PC12 cells from apoptosis induced by sodium cyanide and glucose deprivation. Planta Med. 69, 171–174.
    [110] Blunt J W, Copp B R, Munro M H G. Marine natural products [J]. Nat Prod Rep, 2004, 21:1249.
    [111] Bugni T S, Ireland C M. Marine2derived fungi: a chemically and biologically diverse group of microorganisms [J ] . Nat Prod Rep, 2004, 21: 1432163.
    [112] Okami Y, Hotta K. Academic Press, Inc. :New York, 1988: 33.
    [113] Yamamoto, Y., Nunome, T., Yamauchi, R., Kato, K., & Sone, C. S. (2004). Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme and Microbial Technology, 34, 673–681.
    [114] Linker, A., Evans, L.R., Impallomeni, G., 2001. The structure of a polysaccharide from infectious strains of Burkholderia cepacia. Carbohydr. Res. 335, 45–54.
    [115] Gutierrez A, Prieto A, Martinez A T. Structural characterization of extracellular polysaccharides produced by fungi from genus Pleurotus. Carbohydrate Research, 1996, 281(1): 143-154.
    [116] Chaplin, M. F., Kennedy, J. F. (Eds.). (1994). Carbohydrate analysis: A practical approach (2nd ed., pp. 76–82). New York: Oxford University Press.
    [117] Dixon, J. S., & Lipkin, D. (1954). Spectrophotometric determination of vicinal glycols. Application to the determination of ribofuranosides. Analytical Chemistry, 26, 1092–1093.
    [118] Hakomori, S. J. (1964). A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. Biochemistry (Tokyo), 55, 205–208.
    [119] Sweet, D. P., Shapiro, R. H., & Albersherm, P. (1975). Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydrate Research, 40, 217–225.
    [120] Gutierrez A, Prieto A, Martinez A T. Structural characterization of extracellular polysaccharides produced by fungi from genus Pleurotus. Carbohydrate Research, 1996, 281(1): 143-154.
    [121] Needs P W, Selvendran R R. Avoiding oxidative degradationduring sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydrate Research, 1993, 245(1): 1-10.
    [122] Mathlouthi, M., Koenig, J., 1986. Vibrational spectra of carbohydrate. Adv. Carbohyd. Chem. Biochem. 44, 7–89.
    [123] Yang, Y., Zhang, J. S., Liu, Y. F., Tang, Q. J., Zhao, Z. G., & Xia, W. S. (2007). Structural elucidation of a 3-O-methyl-D-galactose-containing neutral polysaccharide from the fruiting bodies of Phellinus igniarius. Carbohydrate Research, 342, 1063–1070.
    [124] Cuzzocrea S, Riley D, Caputi AP and Selvemini D. Anti-oxidant therapy:A new pharmacological approach in shock, in-flammation, and is chemia/reperfusion injury. Pharmacol. Revs. 2001; 53:135–159.
    [125]钟秀倩.氧自由基与疾病.韶关学院学报2006; 27(6):87-90.
    [126]王丽萍,王轶.自由基对骨关节炎的影响.中华风湿病学杂志.2006; 10(2):116-118.
    [127]姚尧,杜俊蓉,钱忠明.番茄红素抗氧化及肿瘤预防作用的研究进展.国外医学:药学分册2005; 32(5):308-311.
    [128] Grice HC.Enhanced tumor development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 1988; 26: 717-723.
    [129] Nandita S and Rajini PS.Free radical scavenging activity of an aqueous extract of potato peel.Food Chem.2004;85:611-616.
    [130]强亦忠,王崇道,邵源.几种制剂清除辐射所致自由基的ESR研究辐射防护, 1999; 19:371- 376.
    [131] Blomhoff, R., Carlsen, M. H., Andersen, L. F., & Jacobs, D. R. Jr., (2006). Health benefits of nuts: Potential role of antioxidants. British Journal of Nutrition, 96(Suppl. 2), S52–S60.
    [132] Melo MRS,Feitosa JPA,Freitas ALP and de Paula RCM.Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym. 2002;49:491-498.
    [133] Braca, A., Tommasi, Nunziatina De, Bari, Lorenzo Di, Pizza, Cosimo, Politi, Mateo, &Morelli, Ivano (2001). Antioxidant principles from Bauhinia terapotensis. Journal of Natural Products, 64, 892–895.
    [134] Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341.
    [135] Zhang EX, Yu LJ. Studies on polysaccharide from Sargassum Thunberg II for its ability to scavenge active oxygen species. Chin J Mar Drugs 1997;3:1–4.
    [136] He, Z. S., Luo, H., Cao, Z. H., & Cui, Z. W. (2004). Photometric determination of hydroxyl free radical in Fenton system by brilliant green. American Journal of Chinese Clinical Medicine, 6, 236–237, 243.
    [137] Marklund, S., & Marklund, G. (1974). Involvement of superoxide anion radicals in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–471.
    [138] Dorman HJD, Hiltunen R. Fe(III) reductive and free radical-scavenging properties of summer savory (Satureja hortensis L.) extract and subfractions. Food Chem 2004;88:193–9.
    [139] Naik, G. H., Priyadarsini, K. I., Satav, J. G., Banavalikar, M. M., Sohoni, P. P., Biyani, M. K., & Mohan, H. (2003). Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry, 63, 97–104.
    [140] Archana B,Nabasree D and Bratati D.In vitro study of antioxidant activity of Syzygium cumini fruit.Food Chem.2005;90:727-733.
    [141] Nandita S and Rajini P S.Free radical scavenging activity of an aqueous extract of potato peel.Food Chem.,2004;85:611-616.
    [142] Halliwell B.Reaction oxygen species in living systems: Source, biochemistry and role in human disease.Am.J.Med.1991; 91:14-22.
    [143] Pin-Der D,Pin-Chan D,Gow-Chin Y.Action of methanolic extract of mungbean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food Chem.Toxicol.1999;37:1055-1061.
    [144] Gordon MH.The Mechanism of Antioxidant Action in Vitro.In:Hudson BJF (ed.)Food Antioxiants.Elsevier Applied Science,London and New York.1990; 1–18.
    [145] Duh PD, Tu YY, Yen GC. Antioxidant activity of water extract of Harng Jyur (Chrysanthemummorifolium Ramat), Lebensm.-Wiss. Technol. 1999; 32:269-277.
    [146] Tsiapali, E., Whaley, S., Kalbfleisch, J., Ensley, H. E., Browder, I. W., & Williams, D. L. (2001). Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Biology and Medicine, 30, 393–402.
    [147] Tsiapali, E., Whaley, S., Kalbfleisch, J., Ensley, H. E., Browder, I. W., & Williams, D. L. (2001). Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Radical Biology and Medicine, 30, 393–402.
    [148] Moure, A., Dominguez, H., & Parajo, J. C. (2006). Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry, 41, 447–456.
    [149] Compton B J, Smidsrod O, et al. Free-radical degradation of triple-stranded scleroglucan by hydrogen peroxide and ferrous ions. Carbohydrate Ploymers,1998,37(1):41-48.
    [150] Ziegler A, Zaia J. Size-exclusion chromatography of heparin oligosaccharides at high and low pressure. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2006, 837(1-2):76-86.
    [151] Zhenqing Zhang, Guangli Yu, Haiying Liu, Xia Zhao, Huashi Guan, AM Lawson, Wengang, Chai. Sequence Analysis of Alginate-Derived Oligosaccharides by Negative-Ion Electrospray Tandem Mass Spectrometry. J Am Soc Mass Spectrom, 2006, 17, 621–630.
    [152] Socki VH, Resing KA, Zhang Q, Cheng G. Mass spectrometry of peptides and proteins. Methods. Epub 2005 Jan 20. 2005 Mar; 35 (3): 211-222.
    [153] Gage DA, Rathke E, Costello CE, Jones MZ. Determination of sequence and linkage of tissue oligosaccharides in caprine beta-mannosidosis by fast atom bombardment, collisionally activated dissociation tandem mass spectrometry, Glycoconj J. 1992 Jun;9(3):126-31
    [154] S. Inoue, A. Kanamori, K. Kitajima, Y. Inoue, KDN-glycoprotein: a novel deaminated neuraminic acid-rich glycoprotein isolated from vitelline envelope of rainbow trout eggs, Biochem. Biophys. Res. Commun. 153 (1988) 172–176.
    [155] Inoue, S., Kitajima, K. and Inoue, Y. (1996) Identification of 2-keto-3-deoxy-D- glycero-D-galactonononic acid (KDN, deaminoneuraminic acid) residues in mammalian tissues and human lung carcinoma cells. Chemical evidence of the occurrence of KDN glycoconjugates in mammals. J. Biol. Chem. 271, 24341–24344
    [156] Inoue, S., Lin, S. L., Chang, T., Wu, S. H., Yao, C. W., Chu, T. Y., Troy, II, F. A., Inoue, Y. (1998) Identification of free deaminated sialic acid (2-keto-3-deoxy-D-glycero-D-galacto- nononic acid) in human red blood cells and its elevated expression in fetal cord red blood cells and ovarian cancer cells. J. Biol. Chem. 273, 27199–27204
    [157] M.A. Campanero-Rhodes, D. Solis, E. Carrera, M.J. de la Cruz, T. Diaz- Maurino, Rat liver contains age-regulated cytosolic 3-deoxy-D-glycero-D- galacto-non-2-ulopyranosonic acid (Kdn), Glycobiology 9 (1999) 527–532.
    [158] Yu, S., Kitajima, K., Inoue, S., and Inoue, Y. (1991) J. Biol. Chem. 266, 21929–21935.
    [159] Angata, T., Nakata, D., Matsuda, T., Kitajima, K. and Troy, II, F. A. (1999) Biosynthesis of KDN (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid). Identification and characterizationof a KDN-9-phosphate synthetase activity from trout testis. J. Biol. Chem. 274, 22949–22956.
    [160] Nadano, D., Iwasaki, M., Endo, S., Kitajima, K., Inoue, S., and Inoue, Y. (1986) J. Biol. Chem. 261, 11550–11557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700