南极放线菌药用资源的调查及次级代谢产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放线菌是一类最重要的药源微生物,探索放线菌新资源,研究其药用价值对于创新药物及其先导化合物的发现具有重要意义。南极是重要的微生物种源地,但对其中的放线菌资源尚未有系统深入的研究。本论文以南极环境放线菌这一药用资源为研究对象,通过分离南极放线菌资源,研究南极环境放线菌资源的多样性、新颖性;采用生物活性筛选和化学筛选相结合的筛选模式筛选其代谢产物的抗肿瘤活性;通过放线菌次级代谢产物生物合成酶的基因筛选,考察其次级代谢产物的合成能力;选择2株放线菌分离其代谢产物,研究其代谢产物的新颖性、多样性。
     从18个南极土壤样品中分离得到了105株放线菌,采用BOX-PCR法对分离的105株放线菌进行了聚类分析及排重,获得67株不同种属的南极放线菌。通过BOX-PCR的聚类分析,发现23株菌的BOX-PCR聚类分析相似度较低。对这23株放线菌的16S rRNA基因序列进行了扩增和blast比对,比对结果显示这些菌株分属于Streptomyces,Arthrobacter,Nocardiopsis,Saccharopolyspora等属的不同种,显示了南极放线菌物种丰富多样;比对结果还表明,有5株南极放线菌与已知标准菌株的16S rRNA同源性低于98%。通过构建系统进化树分析,这5株放线菌可能为放线菌的新种。
     采用海虾生物致死法和P388细胞为模型的筛选模型,以细胞周期抑制、细胞凋亡诱导以及坏死性细胞毒为活性指标,结合化学筛选,获得具有活性且次级代谢产物丰富的活性菌株12株。
     对南极放线菌次级代谢产物合成中的聚酮合成酶(PKSⅠ)、非核糖体肽合成酶(NRPS)和卤化酶(helogenase)基因进行了基因筛选,获得了具有产肽类化合物能力的菌株46株、产聚酮类化合物能力的菌株39株和产含卤素成分化合物能力的菌株11株。
     采用正相和反相硅胶柱色谱、Sephadex LH-20凝胶柱色谱、半制备反相高压液相色谱等分离方法,从Sreptomyces sp.ZS22-3中分离得到6个化合物(1-6),从Sreptomyces sp.GW25-5中分离得到11个化合物(7– 17)。
     采用现代波谱技术(UV、IR、NMR、MS),并结合其理化性质,阐明了17个化合物的化学结构(化合物结构参见Fig. 1);其中新化合物3个,为放线菌素类化合物(3-5)。
     研究结果表明,南极地区放线菌资源新颖丰富,是新化合物及活性先导结构的重要来源。通过研究,对南极放线菌药用资源及其应用价值有了深入的了解,为开拓药用微生物资源的新领域,同时也为极地微生物资源的合理有效利用提供必要的依据。
Actinomycetes are the most economically and biotechnologically valuable prokaryotes. They are responsible for the production of about half of the discovered bioactive secondary metabolites. Because of the excellent track record of actinomycetes in this regard, it is significant that new groups of actinomycetes from unexplored or underexploited habitats be pursued as sources of novel bioactive secondary metabolites. As an important microorganism resource, Antarctica actinomycetes,howerver, have not been researched systematically till now. In this paper, the diversity and novelty of Antarctic actinomycetes have been studied. Antitumor bioactivity was been screening combined with chemical screening. The NRPS, PKS and helogenase genes of actinomycetes have been screening by PCR. The study of secondary metabolites produced by two Antactic actinomycetes strains was carried out to investigate the potential anti-tumor compounds.
     105 strains were isolated from 18 Antarctic soil samples. After dereplicated by BOX-PCR, there are 67 different strains remained. According to BOX-PCR genomic fingerprinting cluster analysis, 23 strains were selected to be amplified the 16S rDNA sequences. The sequences blast results showed that the 23 strains belong to family Streptomyces,Arthrobacter,Nocardiopsis and Saccharopolyspora respectively. There are 5 strains that the similarities between their 16S rDNA sequences and those of standard strains in the NCBI database are less than 98%. According to phylogenetic analysis, these 5 strains are likely to be novel actinomycetes.
     By combinatory use of brine shrimp bioassay testing, flow cytometry bioassay against P388 cell line, and chemical analysis, 12 bioactive strains have been screened from 67 strains.
     The modular Polyketide synthase (PKS), nonribosomal Peptide synthetase (NRPS) and helogenase have been found to be involved in natural Products synthesis in many microorganisms. In this study, the PKS gene, NRPS gene and helogenase gene have been screening. There are 46 strains containing NRPS gene, 39 strains containing PKS gene and 11 strains containing helogenase gene.
     Monitoring by bioassay-guided isolation, the active fraction is chromato- graphed on silica gel, Sephadex LH-20 and prepared TLC, and preparative reversed phase HPLC, respectively, 17 compounds were isolated from the two active strains. Six compounds (1-6) were isolated from Sreptomyces sp. ZS22-3, eleven compounds (7-17) from Sreptomyces sp. GW25-5.
     By means of modern spectral analysis (UV, IR, NMR, MS) and physico-chemical properties, the structures (see Fig.1) of seventeen pure compounds were respectively determined. Among them there are three new compounds, which are actinomycin-type compounds(3-5). In addition, the chemical structure types of compounds are mainly involved in cyclic dipeptides (11-17),nucleoside (9,10), Benzene derivates (6,8), etc.
     The results revealed the novelty and diversity of Anarctic actinomycetes and their secondary metabolites. Antarctic actinomycetes are important resources for bioactive secondary metabolites and they have great value for further study and development.
引文
1. Julian D. Streptomycetes and beyond. Microbiology Australia. 2004, 25(2):8- 19.
    2. Bérdy J. Bioactive Microbial Metabolites. J Antibiot. 2005, 58(4):1-26.
    3. Jensen PR, Mincer TJ, Williams PG, et al. Marine actinomycete diversity and natrual product discovery. Antonie van Leeuwenhoek, 2004, 87(1): 43?48.
    4. Vincent PG, James M, Kin SL, et al. Drug discovery from natural products. J Ind Microbiol Biotechnol, 2006, 33 (7): 523~531.
    5. Simmons TL, Eric A, Kerry M, et al. Marine natural product as anticancer drugs. Mol Cancer Ther, 2005,4(2): 333~342.
    6.肖昌松,刘大力,周培瑾.南极菲尔德斯半岛微生物总量的调查.南极研究, 6 (4): 67-72.
    1. Moncheva1 P, Tishkov S, Dimitrova N, et al. Antonova-Nikolova1and Nevena Bogatzevska,Characteristics of Soil Actinomycetes from Antarctica. J Culture Collections. 2002, 3:3-14.
    2.肖昌松,刘大力,周培瑾,等.南极长城站地区土壤微生物生态作用的初步探讨.生物多样性,1995,3(3):134-138
    3.彭云霞,姜怡,段淑蓉,等.稀有放线菌的选择性分离方法.云南大学学报(自然科学版), 2007, 29(1):86~89
    4.杨宇容,徐丽华,李启任,等.放线菌分离方法的研究.微生物学通报,1995,22:88-91
    5. Takahashi Y., Omura S. Isolation of new actinomycete strains for the screening of new bioactive compounds. J Gen Appl Microbiol. 2003, 49:141–154.
    1. Versalovic J, Koeuth T , Lupski J R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res, 1991, 19: 6823 - 6831.
    2. Versalovic J, Schneider M, de Bruijin F J, et al . Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep -PCR). Methods Mol Cell Biol, 1994, 5: 25 - 40.
    3. Dimri G P , Rudd K, Morgan M K, et al. Physical mapping of repetitive extragenic palindromic sequences in Escherichia coli and phylogenetic distribution among E. coli strains and other enteric bacteria. J Bacteriol, 1992, 174: 4583 - 4593.
    4. Johnson J R, Clabots C. Improved repetitive-element PCR fingerprinting of Salmonella enterica with the use of extremely elevated annealing temperatures. Clin Diagn Lab Immunol, 2000, 7: 258 - 264.
    5. Rademaker J L W, Hoste B, Louws F J, et al. Comparision of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol, 2000, 50: 665 - 677.
    6. Sadowsky MJ, Kinkel L L, Bowers J H, et al. Use of repetitive intergenic DNA sequences to classify pathogenic and disease-suppressive Streptomyces strains. Appl Environ Microbiol, 1996, 62: 3489 - 3493.
    7. Lanoot B, Vancanneyt M, Dawyndt P, et al. BOX-PCR fingerprinting as a powerful tool toreveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Systematic and Applied Microbiology, 2004, 27(1): 84 - 92.
    8. Davelos AL, Xiao K, Samac DA, et al. Spatial variation in Streptomyces genetic composition and diversity in a prairie soil. Microbial Ecology, 2004, 48(4): 602 - 612.
    9.张建丽,刘志恒.链霉菌的rep-PCR基因指纹分析.微生物学报, 2004, 44(3): 281 ? 285.
    10. Devereux R, He S H, Doyle C L. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 1990. 172(7): 3609 - 3619.
    11. Fry N K, Warwick S, Saunders N A. The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae. J. Gen. Microbiol. 1991.137(5): 1215 - 1222.
    12.陈义光,李文均,崔晓龙,等.具抗肿瘤活性放线菌菌株YIM 90022的分离和系统发育分析.微生物学报,2006,46(5):696 - 701
    13.陈义光,姜怡,崔晓龙,等.具抗肿瘤活性中度嗜盐菌YIM 80186的分离和系统发育分析.云南大学学报(自然科学版),2006,28(5):444 - 449
    14. Stackebrandt E,Pukall R.Response to Ahbof,et a1.Deriving taxonomic decisions from 16S rDNA:a case study.Mar Biol,1999,133:159 - 161
    15. Li WJ, Zhang,L P, Xu P, et a1. Streptomyces beijiangensis sp. nov., a psychrotolerant actinomycete isolated from soil in China. Int. J. Syst. Evol. Microbiol. 2002. 52 (5): 1695 - 1699.
    1. Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 2003. 7(2): 285– 295.
    2. Haydock S F, Dowson J A, Dhillon N, et al. Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferases. Mol Gen Genet. 1991, 230(1-2): 120– 128.
    3. Stcahelhaus T, Mootz H D, Marahiel M A. The specificity-conferring code of adenylation domain in nonribosomal peptide synthetases. Chem Biol. 1999. 6(8): 493 - 505.
    4. von D?hren H, Dieckmann R and Pavela-Vrancic M. The nonribosomal code. Chem Biol. 1999, 6(10): R273-9.
    5. Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD. 1993. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta. Med. 59 (3): 250~252.
    6. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. 1982. Brine Shrimp: A convenient general bioassay for active plant constituents. P1anta. Med. 45: 31~34.
    7.张永杰,王建锋,黄耀坚,等. 4种裸子植物内生真菌抗肿瘤菌株的筛选.厦门大学学报,2002, 41 (6): 804~809
    8.杰利·L·麦克劳林,顾哲明.两种简易的抗肿瘤活性初筛方法.中国中药杂志, 1997, 22 (10): 617~619
    9.朱天骄,崔承彬,顾谦群,等.海洋微生物的分离培养及抗肿瘤活性初筛.青岛海洋大学学报,2002, 32 (123): 123~126
    10.于垂亮,崔承彬,朱天骄,顾谦群,刘红兵,方玉春,韩冰,蔡兵,等.海洋真菌的分离、
    抗肿瘤活性筛选与发酵条件研究.中国海洋药物杂志, 2004, 23 (5): 1~6
    11.韩小贤,崔承彬,刘红兵,朱天骄,顾谦群,李冬,温江妮,等.海洋微生物抗肿瘤活性菌株的分级组合筛选.中国海洋大学学报, 2005, 25 (1): 38~42
    12. Cui CB, Yan SY, Cai B, Yao XS. 2002. Carbazole alkaloids as new cell cycle inhibitors and apoptosis inducers from Clausena Dunniana Levl. J. Asian Nat. Prod. Res., 4 (4): 233~241.
    13. Cui CB, Zhao QC, Cai B, Yao XS, Osadsa H. 2002. Two new and four known polyphenolics obtained as new cell-cycle inhibitors from Rubus aleaefolius poir. J. Asian Nat. Prod. Res, 4 (4): 243~252.
    14. González I, Ayuso-Sacido A, et al. Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol. 2005. 54(3): 401-415.
    15. Hornung, A, Bertazzo, M, Dziarnowski, et al. A genomic screening approach to the structure-guided identification of drug candidates from natural sources, Chembiochem. 2007, 8(7): 757-766.
    1. Bitzer J, Gesheva V, Zeeck A. Actinomycins with altered threonine units in theα-Peptidolactone. J. Nat. Prod., 2006. 69: 1153 - 1157.
    2. Victor T A, Hruska F E, Bell C L, Danyluk S S. A nuclear magnetic resonance study of the structure and interaction of actinomycin D: analysis and conformational properties. Tetrahed. Lett. 1969. 53: 4721 - 4724.
    3. Hanada M, Sugawara K, Nishiyama Y, Kamei H, Hatori M, Konishi M. Protactin, a new antibiotic metabolite and a possible precursor of the actinomycins. J. Antibiot. 1992. 45(1): 20- 8.
    6. Komagata D, Sawa R, Kinoshita N, Imada C. Isolation of Glutathione-s-Transferase inhibitors. J. Antibiot. 1992. 45 (10): 1681 - 1683.
    7. Kakinuma K. and Kenneth L.R. Tryptophan-Dehydrobutyrine Diketopiperazine, A Metabolite of Streptomyces Spectabilis. 1974. J. Antibiot. 27(10): 733– 737.
    1. Robert W. Schumacher, Beth L. et al. Kahakamides A and B, new neosidomycin metabolites from a marine-derived actinomycete,Tetrahedron Letters. 2001. 42(31): 5133–5135.
    2.胡海峰,朱宝泉,龚炳勇,微生物来源的胆固醇生物合成醇抑制剂研究:抗生素SIPI-8926-111的研究,中国医药工业杂志,1995, 26 (11), 484-486.
    3.于德泉,杨峻山等.分析化学手册(第二版).北京:化学工业出版社,1999.
    4.秦文娟,王瑞,温月笙.掌叶半夏化学成分的研究Ⅴ.中草药.1995.26(1):3-6
    5. Vincent M, Paul E.Y and Elkan R. Blout Cyclic peptides. 14. Conformational energy and circular dichroism of proline-containing cyclic dipeptides. J.A.C.S. 1976. 98(17): 5358-5364.
    6.汪有初,周俊,谭宁华.五味子的环二肽及其合成.药学学报.1999,34(1):19-22.
    7.熊江,周俊,戴好富.多蕊商陆的化学成分.云南植物研究.2002.24 (3):401-405.
    8. Madeline A, Andrea R. R, and Phillip C. New and Known Diketopiperazines from the Caribbean Sponge, J. Nat. Prod., 1995, 58 (2): 201-208.
    1. Burger A E. Terrestrial Food Webs in the Sub-Antarctic: Island Effects. In: Antarctic Nutrient Cycles and Food Webs. Ed. By Siegfried WR,Condy PR and Laws RM,Springer-Verlag Berlin Heidelberg,1985.
    2. Ekelof E. Bakteriologische Studien wdhrend der Schwedischen Sfid-polar Expedition.. Wiss.Ergebn. schwed. Südpolarexped., 1908. 7(7): 120
    3. Vincent W F. Microbial ecosystem of Antarctica. Cambridge University Press. 1988.
    4. Hiromi K, Cornelius W S, Hiroaki S. Heat-labile alkaline phosphatase from Antarctic bacteria: Rapid 5′end-labeling of nucleic acids. Proc Natl Acad Sci USA, 1984. 81:6691~6695.
    5. Bidle K D, Lee S, Marchant D R. Fossil genes and microbes in the oldest ice on earth. Proc Natl Acad Sci USA, 2007.104(33): 13455~13460.
    6. Chen H. History of marine microbiological research in china from 1949 to 1991, In: Ocean Sciences, bridging the millennia A spectrum of historical accounts, China Ocean Press, Beijing.2004.399~406,
    7.肖昌松,刘大力,周培瑾.南极菲尔德斯半岛微生物总量的调查.南极研究,1994.6 (4):67~72
    8.肖昌松,刘大力,周培瑾.南极长城站地区土壤微生物生态作用的初步探讨.生物多样性,1995.3 (3):134~138
    9.陈皓文,袁峻峰,曹俊杰,等.南极菲尔德斯半岛环境微生物含量估计.黄渤海海洋,2001.419 (1):49~54
    10.陈皓文,宋庆云.南设得兰群岛区域的微生物.南极研究,1992a.4 (4) :1~6
    11.陈皓文,宋庆云,卢颖.南极长城站微生物考察.南极研究,1992b.4 (4):7~13
    12.张建中,孙修勤,张进兴,等.南极半岛西北海域微生物生态和组成特点.中国第一届南大洋考察学术讨论会论文专集,上海科学技术出版社,1989.260~268
    13. Dawid W. Psychrophilic myxobacteria from Antarctic soil. Polar forschung, 1988. 58(2/ 3) : 271~278.
    14. Hellio C, Bremer G, Pons AM,et al. Inhibition of the development of microorganimas (bacteria and fungi) by extracts of marine algae from Brittany, France. Appl Microbiol Biotechnol, 2000. 54:543~549.
    15. Christina B, Tatiana B, Wasu P, et al. Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot, 2005. 58(5):346~349.
    16. Bringmann G, Lang G, Maksimenka K, et al. Gephyromycin, the first bridged angucyclinone from Streptomyces griseus strain NTK 14. Phytochemistry,2005. 66(11):1366~1373.
    17. Mitova M,Tutino M L, Infusini G, et al. Exocellular Peptides from Antarctic Psychrophile Pseudoalteromonas Haloplanktis. Mar. Biotechnol,2005. 7(5):523~531.
    18. Jayatilake G S, Thornton M P, Leonard A C, et al. Metabolites from an Antarctic Sponge- Associated Bacterium, Pseudomonas aeruginosa. J. Nat. Prod, 1996. 59(3):293~296.
    19. Ivanova V, Oriol M, Montes M J, et al. Secondary metabolites from a Streptomyces strain isolated from Livingston Island, Antarctica. Z. Naturforsch., C: Biosci. 2001. 56(1):1~5.
    20.胡继兰,张春颖,娜仁,等.产生抗肿瘤抗生素Sandramycin的南极放线菌C3905.微生物学报,2000,40(6):646~651
    21.鲁敏,王文翔,王丽萍,等.南极土壤嗜冷真菌Chrysosporium sp. C3438活性代谢产物C3438A的分离及结构鉴别.中国抗生素杂志,2002,27(1) :9~12
    22. Zhang H L, Hua H M, Pei Y H,Yao X S. Three New Cytotoxic Cyclic Acylpeptides from Marine Bacillus sp. Chem. Pharm.Bull. 2004, 52(8):1029~1030.
    23.李根,陈瑞川,林昱.具抗肿瘤活性的海洋微生物菌株的初步筛选.台湾海峡.2002,21(1) :18~22
    24.郭少华,王伟,李元广,等.南极海洋细菌BSw10005生长特性研究.微生物学通报. 2006, 33(1): 38~41
    25.商红强,朱天骄,顾谦群,等.一株抗小鼠乳腺癌和一株有抑菌活性的北极细菌的初步研究.微生物学通报, 2005, 32 (5): 5~9
    26.朱天骄,顾谦群,朱伟明,等.南极微生物的分离及抗肿瘤活性筛选.中国海洋药物, 2006, 25(1): 25~27
    27. Ren H, Tian L, Gu Q Q. Secalonic acid D, A cytotoxic constituent from marine lichen- derived fungus Gliocladium sp. T31. Arch Pharm Res. 2006. 29(1): 59~63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700