用户名: 密码: 验证码:
自升式钻井平台方案设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是经济的血液,拥有充足的油气资源,保证油气资源的稳定供给,是经济平稳发展的必要条件。进入21世纪后,世界已经逐渐步入能源稀缺时代,许多国家把目光转向海洋,投入了大量的人力和物力进行海洋能源开发。自升式钻井平台是目前世界上广泛采用的海洋钻井装备之一,主要是在滩涂和浅海区域作业,近年来,自升式钻井平台的建造量逐年增加,我国在海洋钻井平台的设计、建造、检验和科研方面都迫切需要发展,特别是在海洋钻井平台的基本(技术)设计上,我国在独立设计方面尚有一定的差距,大多依靠外国设计技术。因此,开展上述相关方面的研究工作,是提高我国海洋结构物设计制造能力的需要,也是提高海洋平台设计国际竞争力的需要,这对于我国海洋资源的开发和我国海洋工程事业的发展都具有重要意义。
     方案设计在很大程度上决定了最终产品的性能、创造性、价格、市场响应速度和效率等,因此,对自升式钻井平台方案设计的相关技术进行研究,实现可行方案的快速生成、技术参数指标综合评价、最优系统决策,具有重要的理论意义和实用价值。本论文主要做了以下研究内容:
     针对自升式钻井平台方案设计的具体情况,将系统工程的理论和方法用于其方案设计整个过程中,提出了针对自升式钻井平台方案设计的系统分析步骤,并根据霍尔三维结构模型,结合平台方案设计系统的任务特点,提出了平台方案设计系统三维结构模型,用于指导自升式钻井平台方案设计的实现。
     多功能自升式钻井平台是目前自升式钻井平台的一个发展趋势,本文将综合安全评估技术用于新型多功能自升式钻井平台方案设计前期的可行性论证,可以从安全分析的角度论证新增功能实现的可能性,提出合理且有效地控制风险的措施,指出在设计、使用过程中应注意的问题,在增加新功能的同时,可以有效地提高海上安全的程度,是新型自升式钻井平台方案设计的前提。作为实例,在分析总结应用自升式钻井平台安装简易平台的作业特点、探讨其工作原理和工作流程的基础上,将综合安全评估技术应用到安装海上简易平台的新型多功能自升式钻井平台方案可行性研究中,论证了该方法的可行性和有效性。
     在自升式钻井平台的方案设计过程中,目前没有用于可行方案生成的平台主尺度数学模型,本文利用收集到的船型资料,应用系统建模的理论和方法,分别建立了自升式钻井平台主尺度的单变量预测模型和多变量预测模型。该模型的建立有利于分析和掌握自升式钻井平台主尺度要素变化规律,同时在自升式钻井平台设计时,可根据已知信息量的多少,选择合适的模型进行主尺度的预测,开展平台设计初期的经济论证和方案设计。
     对于如何从若干个自升式钻井平台可行方案中选出最优方案,是方案评价过程中所要解决的主要问题,目前没有相应的评价指标体系。结合近年来对自升式钻井平台方案设计所作的研究工作和相关方面专家的建议,本文建立了一套针对自升式钻井平台的方案评价指标体系,并对其评价方法进行了研究。在建立评价指标体系的基础上,采用AHP法和改进的灰关联分析法进行平台方案的优选,初步分析和计算实例表明,该评价指标体系和评价方法是适用和可靠的;通过对灰关联分析方法进行改进,建立了适用于自升式钻井平台方案选优的灰关联多目标综合评价模型,该模型既在一定程度上考虑了设计方案各指标间的关联性,体现了事物的客观本质,又能反映船东的主观偏好和设计者的设计需要。同时,针对已按设计建成并投入使用的自升式钻井平台,尝试建立一套合理、完整、科学和实用的性能水平等级评价方法,对其先进性水平进行评定,利用获取的评价结果,可对设计平台的先进性水平进行定位,评估设计是否达到预期效果及其改进方向,对今后自升式钻井平台的方案设计起到借鉴作用。
     智能方案设计已经成为当前方案设计领域的一个研究热点,在前面工作的基础上,本文就自升式钻井平台的方案设计智能决策支持系统的理论框架和实现方法进行了初步研究。提出了自升式钻井平台方案设计的智能决策支持系统的体系结构和具体实现方法。该系统既可以根据需要生成自升式钻井平台的设计方案,形成可行方案集,又可以根据技术经济性、船东偏好等对可行方案进行评定,选出最优方案,提高了产品设计质量,缩短了产品的设计周期,使评价更为可靠,为设计、决策提供了有力的支持工具。
With the development of worldwide exploitation for ocean resources, offshore platforms are playing a dominant role in the oil and gas industry for exploration and production of natural resources, which have been designed to operate at various locations with different sea-bed conditions, great water depths and under various sea conditions. Self-elevating drilling unit which was invented in 1950 and used for exploration and extraction of hydrocarbons from the ocean beds is a main structural type of mobile platforms, and it accounts for about 65% of the mobile platform market. Now the world has entered the era of scarce energy gradually, many countries have turned their attention to the ocean, and put a mass of manpower and resources into exploiting marine energy. Self-elevating drilling unit owns the low cost, less steels and conducting drilling operations steadily under different sea conditions so that it becomes the main force in the shallow drilling operations. In recent years, more and more self-elevating drilling unit is designing and building. it needs to develop urgently in the design, construction, inspection and research of the self-elevating drilling unit in our country, especially in the basic design of the marine drilling unit. In our country, there's a big gap in independent designing, the most of the technologies are dependent on foreign country. So developing this field research is needs to increase the capabilities in the marine construction design and the international competition in the marine drilling unit design. It has great significance not only in exploiting the marine resource but also in developing the marine engineer career.
     To a great extent, the scheme design decides the performance of the final product, creativity, price, the market response speed and efficiency. So it has great theory significance and practical value in researching the key technology of the scheme design about the self-elevating drilling unit, realizing the feasible scheme speedily, technical parameters indicators comprehensive evaluation and the optimal decision-making system. This paper has mainly done the following work:
     According to the specific circumstances of the scheme design about the self-elevating drilling unit, systems engineering theories and methods are applied to the whole process of the scheme design, advancing the steps in the system analysis of scheme design about the self-elevating drilling unit. According to the Hall' three dimensional structural model and the traits of the scheme design in drilling unit, advancing the three-dimensional structural model system in drilling unit, guiding and realizing scheme design of the self-elevating drilling unit.
     New type self-elevating drilling unit with multifunction is a trend on the drilling unit design. The methods of formal safety assessment (FSA) is applied to the feasible research of new type self-elevating drilling unit with multifunction, it can prove the possibility of the new function from the aspect of the safety analysis, advance the effective measures to control the risk and point out the problems which should pay more attentions to the process from the design to the operation. It is the precondition of the new type self-elevating drilling unit design with multifunction, it can increasing the new function; moreover, it can improve the safety level effectively. As an example, integrating the methods of formal safety assessment (FSA) is applied to the feasible research of installing the facility platform with self-elevating drilling unit, proving the feasibility and validity of this method, all this is based on applying analysis and summary about operation trait of the self-elevating drilling unit, discussing the working principle and the workflow.
     In the process of the scheme design about the self-elevating drilling unit, there aren't any mathematical models of the main dimensions, that is applied to the feasible scheme at present. This paper according to the model data have been collected, apply the theories and methods of the system models, separately build the forecast models with the single variable and multivariable on the main dimensions of the self-elevating drilling unit. All this is helpful to analyze and grasp the change rules of the main dimensions factors about the self-elevating drilling unit. According to the known information, design the self-elevating drilling unit; moreover, select the right models to forecast the main dimensions, develop economic demonstration and scheme designs of the drilling unit designs.
     How to select the optimal one from the feasible schemes is the main problem that it needs to solve during the scheme evaluation of self-elevating drilling unit, there isn't a corresponding evaluation criteria system at present. Combine research task and experts' suggestions of the scheme designs about self-elevating drilling unit, this paper builds a series of scheme evaluation criteria system and studies evaluation method of the self-elevating drilling unit. Base on these, select the optimal scheme with the analysis hierarchy process (AHP) and improved the grey relation analysis (GRA). Primary analysis and practical experience show that the evaluation criteria system and the evaluation method are applicable and reliable. By improving grey relation analysis (GRA), building the grey relation multi-objective combinatorial optimization model is applied to the best scheme of self-elevating drilling unit. To a certain extent, it thinks over the connection of the indices reflecting the objective true nature of the things, and also considers the ship owners' subjective interest and the designers' needs. At the same time, according to design of the self-elevating drilling unit that have been built and used, try to build a series of function level grade evaluation method, that will be reasonable, unabridged, scientific and easy, assess its advanced level. Make use of the known evaluation result, carry out the advanced level grade in the same type platforms, whether the evaluation design has achieved the desired results and improvement direction. It plays an important role in scheme designs of the self-elevating drilling unit for the future.
     The intelligent scheme design has become a research hotspot on the field of scheme design. On the basis of previous work, the paper studies initially the design theory framework and concrete methods of the intelligence decision support system about the self-elevating drilling unit scheme design, advances the system structure and the specific method of the intelligence decision support system about the self-elevating drilling unit scheme design. Not only does it form the feasible designs, according to the demand to form scheme designs of the self-elevating drilling unit, but also it selects the optimal scheme from the feasible designs under technical economy and ship owners' subjective interest. It will be helpful to improve the design quality of the products, shorten the design circle of the products, make the assessment more reliable. This will provide powerful support tools for designers and decision-makers.
引文
[1]方银霞,包更生,金翔龙.21世纪深海资源开发利用的展望.海洋通报,2000,19(5):73-78.
    [2]钱松.海洋石油-石油生产增长的潜力所在.中国石油和化工经济分析,2007(11):43-49.
    [3]李永芹.海域油气资源-中国未来能源的接力军.中国石油和化工经济分析,2001(1):55-60.
    [4]中华人民共和国国民经济和社会发展第十一个五年规划纲要.北京:新华网.2006.3
    [5]宋剑.海洋平台结构在偶然灾害作用下的可靠性研究:(博士学位论文).杭州:浙江大学,2005.
    [6]孙林夫.现代产品设计技术及其发展.中国制造业信息化,2003,32(1):37-40.
    [7]何川.基于TRIZ的方案设计智能决策支持系统理论与方法研究:(博士学位论文).成都:西南石油学院,2004.
    [8]李海波.土壤与地震对自升式钻井平台的作用:(硕士学位论文).大连:大连理工大学,2006.
    [9]刘洪峰,陈明.钻井平台结构三维参数化建模方法研究:(硕士学位论文).大连:大连理工大学,2005.
    [10]耿元伟.基于CATIA的自升式钻井平台参数化建模方法研究:(硕士学位论文).大连:大连理工大学,2006.
    [11]周煜.自升式海洋平台设计方案评价体系研究:(硕士学位论文).大连:大连理工大学,2005.
    [12]桑松.船型方案论证与智能决策方法研究:(博士学位论文).大连:大连理工大学,2002.
    [13]张春林,曲继方,张美麟.机械创新设计.北京:机械工业出版社,1999:1-31.
    [14]何献忠等.设计学-理论、方法、软件.北京:北京理工大学出版社,1988:1-45.
    [15]董仲元,蒋克铸.设计方法学.北京:高等教育出版社,1991:1-75.
    [16]唐林,邹慧君.机械产品方案的现代设计方法及发展趋势.机械科学与技术,2000,19(2):192-196.
    [17]邹慧君,汪利,王石刚等.机械产品概念设计及其方法综述.机械设计与研究,1998,2:9-12.
    [18]孙守迁,黄琦潘,云鹤.计算机辅助概念设计研究进展.计算机辅助设计与图形学学报,2003,15(6):543-650.
    [19]SUH NP.The principle of design MJ.USA:Oxford University press.1990:3-21.
    [20]黄纯颖.工程设计方法.北京:中国科学技术出版社。1989:1-78.
    [21]周济等.机械设计专家系统概论.华中理工大学出版社,1989,3-21.
    [22]Xu Yurong,Sun Shouqian,Panyunhe.Constraint-based distributed intekkigent conceptual design environment and system model[A].In IECON' 01:the 27~(th) Annual Conference of the IEEE Industrial Electronics Society[C],Denver,Colorado,IEEE,2001:2105-2110.
    [23]谢友柏.现代设计与知识获取.中国机械工程,1996,7(6):36-41.
    [24]凌卫青,赵艾萍,谢友柏.基于实例的产品设计知识获取方法及实现.计算机辅助设计与图形学学报,2002,14(11):1014-1019.
    [25]万耀青.机电工程现代设计方法,北京:北京理工大学出版社,1994:154-202
    [26]周济,查建中,肖人彬.智能设计.北京北京理工大学出版社,2003,32(1):37-40.
    [27]徐晓臻,高国安.复杂产品方案设计智能决策支持系统的设计与实现.计算机应用研究,2000 9:23-24.
    [28]高洪深.决策支持系统.北京:清华大学出版社,2000:1-45.
    [29]孙占山,方美琪,陈禹.决策支持系统及其应用.南京:南京大学出版社,1997.
    [30]陈文伟.智能决策支持技术.北京电子工业出版社,1998:1-60.
    [31]刘位申,张莲房.人工智能及其应用.北京:北京技术文献出版社,1991.
    [32]蔡逆水,邹慧君,王石刚等.机械产品概念设计-智能CAD中的关键技术.机械设计,1997,6:1-4.
    [33]宋久鹏.汽车方案设计智能决策支持系统的开发技术研究:(硕士学位论文).成都:西南交通大学,2002.
    [34]戴宏跃,孙延明,郑时雄.面向机械产品设计的智能决策支持系统的开发技术研究现代机械工程2001,11:31-33
    [35]吴杰雨.基于可拓实例推理的智能化概念设计技术研究:(硕士学位论文).杭州:浙江工业大学,2003.
    [36]周志雄.基于设计目录的概念设计自动化研究及其在新产品开发中的应用:杭州:浙江工业大学,2003.
    [37]蔡波.虚拟企业基于知识的产品概念设计:(博士学位论文).西安:西北丁业大学,2002.
    [38]刘海.生产品概念设计可拓进化方法研究:(硕士学位论文).杭州:浙江工业大学,2003.
    [39]王立成.海洋平台结构优化设计理论与方法研究:(博士学位论文).大连:大连理工大学,2002
    [40]孙树民.海洋平台结构的发展.广东造船,2000,(4):32-37.
    [41]Jones D E,Bennett W T.Joint industry development of a recommended practice for the site specific assessment of mobile jack-up units.Field Drilling and Development Systems,1993(4):427-436
    [42]周超俊,曹沉.海上平台的船舶静力性能的精确计算.海洋工程,1996,14(2):8-2.
    [43]褚国栋,胡瑞华.桩基导管架平台在台风及海浪作用下的随机响应分析.海洋工程,1989,7(3):12-23.
    [44]房营光,郭世荣,陈尤霞.浪流冲击下圆柱-平台-土体-水流系统的动力响应分析.地震工程与工程振动,1997,17(4):57-64.
    [45]Bea R G.Selection of environmental criteria for offshore platform design.Proceeding of 5th annual offshore technology conference,OTC 1839,1973,185-196.
    [46]Jin W L,LIH B,Song Z G.Math model for offshore platform structural vibration by sea ice.Proceeding of ISOPE,Brest,France,May,1999.
    [47]Jin W L,Zheng Z S,LIH B.Hybrid analysis approach for stochastic response of offshore jacket platforms.China Ocean Engineering,200014(2):143-152.
    [48]嵇春艳.春海洋平台动力响应分析与振动控制技术研究:(博士学位论文).青岛:中国海洋大学,2003.
    [49]王秀勇,肖熙,张世联.海洋平台地震响应分析.中国海洋平台,1997,12,(4):150-152.
    [50]常向东,环文林.海洋石油平台的地震危险性分析.海洋工程,1989,7(1):8-14.
    [51]俨岳,冯军.地震荷载作用下桩基导管架结构的响应.中国海洋平台,1992,7(3):99-101.
    [52]罗传信,穆瑞佳.波浪作用下平台动力响应的傅氏级数解.海洋工程,1988,6(4):29-35.
    [53]张立福,罗传信.海洋桩基平台地震随机响应分析.海洋工程,1992,lO(3):74-81.
    [54]李宏男,林皋.导管架海洋平台在多维地震动作用下的随机反应.海洋工程,1992,10(4)25-30.
    [55]Bea R G.Earthquake Criteria for Platform in the Gulf of Mexico.Proceeding of 8th Annual Offshore Technology Conference,OTC 2675,1976,657-679.
    [56]魏巍.导管架式海洋平台地震破坏状态分析研究:(博士学位论文).青岛:中国海洋大学,2004.
    [57]封盛.海洋平台结构优化设计理论和方法研究:(博士学位论文).大连:大连理工大学,2000.
    [58]段梦兰,陈永福,李林斌等.海洋平台结构的最新研究进展.海洋工程,1998,18(1):86-90.
    [59]李润培,王志农.海洋平台的强度分析.上海:上海交通大学出版社,1992.
    [60]Onoufirou T,Forbes V J.Developments in structural reliability assessments of fixed steel Offshore Platforms.Reliability Engineering and System Safety.2001,71(2):189-199.
    [61]Jin W L.Relativistic information entropy on uncertainty analysis.China Ocean Engineering,199610(4):410-420.
    [62]王兴国.导管架海洋平台结构优化设计研究:(博士学位论文).大连:大连理工大学,2003.
    [63]马红艳.海洋平台结构优化设计方法与软件:(博士学位论文).大连:大连理工大学,2003.
    [64]欧进萍,刘学东,陆钦年等.现役导管架式海洋平台结构整体安全度评估.海洋工程,1996,14(3):83-90.
    [65]金伟良,庄一舟,邹道勤.具有结构-桩-土相互作用的海洋平台结构体系承载力的概率分析.海洋工程,1998,16(1)1-12.
    [66]H P Hong,M.A Nessim,I.J Jordaan,Environmental load Factors for Offshore structures,Journal of Offshore Mechanics and Arctic Engineering.1999,121:261-267.
    [67]R G Bea,M M Mortazavi,K J Lock.Evaluation of storm loading on and capacities of offshore platforms,Journal of Waterway,Port,Coastal,and Ocean Engineering,1997,123(2):73-81.
    [68]T Koike,T Hiramoto,T Mori.Seismic risk analysis of Mega-floating structure and dolphin system.Journal of offshore Mechanics and Arctic Engineering,1999,121:95-101.
    [69]张圣坤.固定式海洋平台的可靠性分析.海洋工程,1985,3(2):24-33.
    [70]李继祥,高建强.海洋平台可靠性分析.西安石油学院学报,1999,14(4).
    [71]邓洪洲,孙秦,海洋平台结构系统可靠性分析.海洋工程,1996,14(2):1-7.
    [72]庄一舟,金伟良,李海波等.海洋导管架平台抗震可靠性分析方法.海洋学报,1999,21(5):129-136.
    [73]R G Bea,M M Mortazavi.Reliablity-based screening of offshore platform.Journal of Mechanics and Arctic Engineering,1998,120:139-148.
    [74]L Manuel,D G Schmucker,C A Comell.A reliability-based Design Format for Jacket Platform Under Wave Loads.Marine Structures,1998(2):413-428.
    [75]R G Bea.Reliability based earthquake design guidelines for marine structures.Journal of Waterway,Port,Coastal,and Ocean Engineering,1997,125(5):219-231.
    [76]Gibson R E,Dowse,B E W.Influence of geotechnical engineering on the evolution of offshore structure in the North Sea.Canadian Geotechnical Journal,1981,18(2):171-178.
    [77]Onoufriou T.Reliability based inspection planning of offshore structures.Marine Structures,1999,12(8):521-539
    [78]张连营,余建星等.简易海洋平台疲劳可靠性优化设计的进化算法.海洋学报,1998,20(6):101-107.
    [79]张连营,胡云昌等,基于遗传算法的简易海洋平台的疲劳可靠性优化设计.海洋工程,1997,15(2):8-15.
    [80]Cusack J P,Chen Y N.Extreme dynamic response and fatigue damage assessment for Self-elevating Drilling Units in deep water.Transactions-Society of Naval Architects and Marine Engineers,1990(98):143-168.
    [81]Liaw C Y.,Zheng X Y Non-linear frequency-domain analysis of jack-up platforms.International Journal of Non-Linear Mechanics,2004(39):1519-1534.
    [82]孙玉武,聂武.自升式海洋平台后服役期的疲劳强度及寿命分析.哈尔滨工程大学学报,2001,22(2):10-14.
    [83]付敏飞,严仁军.自升式海洋平台升降装置动力分析及疲劳分析.中国水运,2007,7(6):56-58.
    [84]李文华,张银东,陈海泉.自升式海洋石油平台液压升降系统分析.2006(8):23-25.
    [85]Smith N Pharr,Lorenz David B.Study of drag coefficients for truss self-elevating mobile offshore drilling units.Society of Naval Architects and Marine Engineers,1984(91):257-273.
    [86]潘斌,刘震,卢德明.自升式平台拖航稳性研究.海洋工程,1996,14(4):16-20
    [87]滕晓青,顾永宁.沉垫型自升式平台拖航状态强度分析.上海交通大学学报,2000,34(12):1723-1727.
    [88]林焰,李玉成,李林普等.海洋平台在拖航中的随浪稳性仿真.大连理工大学学报,1994,34(6):713-718.
    [89]闵美松,宋竞正.自升式钻井平台下桩过程中横摇响应估算.哈尔滨船舶工程学院学报,1986,7(3):1-9.
    [90]李茜,杨树耕.采用ANSYS程序的自升式平台结构有限元动力分析.中国海洋平台,2003,18(4):41-46.
    [91]陆浩华.自升式海洋平台结构动力响应分析:(硕士学位论文).武汉:武汉理工大学,2005.
    [92]王言英,阎德刚,自升式海洋平台波浪荷载谱计算.1995,10(2):51-53.
    [93]季春群,孙东昌.自升式平台上外载荷的分析计算.324-328
    [94]季春群,孙东昌.自升式平台地基承载力_抗倾稳性及桩腿插深分析.上海交通大学学报,1996,30(3):79-85.
    [95]马志良,罗德涛.近海移动式平台.北京:海洋出版社,1993.
    [96]郑喜耀.自升式钻井平台插桩深度计算及几个问题的探讨.中国海上油气工程,2000,12(2):18-21
    [97]施丽娟,李东升,潘斌.自升式钻井平台结构自振特性分析.中国海上油气工程,2001,13(5):6-8
    [98]陈瑞峰,胡克峰,张继春.自升式移动平台结构安全评估.22-25
    [99]梁军,赵勇.系统工程导论.北京:化学工业出版社,2005.
    [100]L V Bertalanffy著,秋同,袁嘉新译.一般系统论.北京:社会科学文献出版社,1987.
    [101]杨家本,系统工程概论.武汉:武汉理工大学出版社,2002.
    [102]徐一飞,周斯富.系统工程应用手册.北京:煤炭工业出版社,1991.
    [103]周德群,系统工程概论.北京:科学出版社,2005.
    [104]J.T.Reynolds.The Application of Risk-Based Inspection Methodology in Petroleum and Petrochemical Industry.Asmepvp,1996,vol.336:125-134.
    [105]M.E.Pate.Cornell.Risk Analysis and Risk Management for Offshore Platform:Lessons from the Piper Alpha Accident.Offshore Mechanics and Arctic Engineering,1993:vol.115.170-190.
    [106]J.S.Arendt.Using Quantitative Risk Assessment in the Chemical Process Industry.Reliability Engineering and System Safety,1990,29:133-149
    [107]李玉刚,林焰,纪卓尚.海洋平台安全评估的发展历史和现状.中国海洋平台,2003,18(1):4-8.
    [108]秦炳军,张圣坤.海洋工程风险评估的现状和发展.海洋工程,1998,16(1):14-22.
    [109]中国船级社.综合安全评估应用指南.北京:化学工业出版社,1999.
    [110]郭昌捷,张道坤,李建军.综合安全评估在船舶装卸载过程中应用.大连理工大学学报,2002,42(5):564-568.
    [111]樊红.船舶综合安全评估(FSA)方法研究:(博士学位论文).武汉:武汉理工大学,2004.
    [112]李玉刚.综合安全评估(FSA)方法在海洋平台上的应用:(硕士学位论文).大连:大连理工大学,2002.
    [113]陈明,林焰,纪卓尚.自升式悬臂钻井船安装简易平台方案可行性研究报告.大连:连理工大学学船舶工程学院,2006.
    [114]马红艳.海洋平台结构优化设计方法与软件:(博士学位论文).大连:大连理工大学,2003.
    [115]桑松,林焰,纪卓尚45000吨化学品运输船主尺度数学模型建立.船舶工程,2001,4:23-28.
    [116]程相君,王春宁,陈生潭.神经网络原理及其应用.北京:国防工业出版社,1995.
    [117]Lapedes A,Farber.Nonlinear signal processing using neural networks:predicting and system modeling.Technical Report LA-UR-87-2662,Los Alamos National Laboratory,Los Alamos,NM,1987.
    [118]Werbos P J.Generalization of back propagation with application to a recurrent gas market model.Neural Networks,1988,1:339-356.
    [119]Varis A,Versino C.Univariate economic time series forecasting by connectionist methods.IEEE ICNN-90,1990:342-345.
    [120]Weigend A Bet al.Predicting the future:a connectionist approach.Int,J.Neur.Sys.1990,1:193-209.
    [121]Matsuba I.Application of neural network sequential associator to long-term stock price prediction.IJCNN' 91,Singapore,1991:1196-1202.
    [122]王其文,吕景蜂,刘广灵等.人工神经网络与线性回归的比较.决策与决策支持系统,1993,3(3):205-210.
    [123]Shi shanming,Xu Li D,Liu Bao.Application of artificial neural networks to the nonlinear combination of forecasts.Expert Systems,August 1996,13(3):195-201.
    [124]李红,赵春宇,刘豹等.神经网络用于宏观经济预警信号的研究.系统工程与市场经济,1996:644-651.
    [125]刘豹.将来事件的可测性.系统工程学报,1993,8(2):111-117
    [126]高绍新,纪卓尚,林焰.船舶与海洋工程项目管理信息系统分析与初步设计.大连理工大学学报,2001,41(2):207-211.
    [127]桑松,林焰,纪卓尚.基于神经网络的船型要素数学建模研究.计算机工程,2002,28(9):238-240.
    [128]丛爽.面向MATLAB工具箱的神经网络理论与应用.中国科学技术大学出版社,2003.
    [129]楼顺天,施阳.基于MATLAB的系统分析与设计--神经网络.西安:西安电子科技大学出版社,2000.
    [130]闻新,周露,王丹力等.MATLAB神经网络应用设计.北京:科学出版社,2000.
    [131]梁军,赵勇.系统工程导论.化学工业出版社,2005:193-217.
    [132]SaattyT,1980.The analytic hierarchy process:planning,priority,setting,resource allocation,McGraw-Hill,New York,American.
    [133]桑松,林焰,纪卓尚.采用改进的AHP方法进行船型方案MCDM论证[J].大连理工大学学报,2002,42(2):204-207.
    [134]M.B.Murtaza,2003.Fuzzy-AHP application to country risk assessment,American Business Review 21.2003(2):109- 116
    [135]Amy H.I.Lee,Wen-chin Chen and Ching-Jan Chang,2007.A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan,Expert Systems with Applications 34:96-107
    [136]赵焕臣,许树柏.层次分析法[MJ].北京科技出版社,1986.
    [137]刘寅东,唐焕文.船型多方案优选决策的层次分析法[J].船舶工程1996.(1):22-25.
    [138]DENG Julong,1988.Properties of relational space for grey systems.In Essential Topics on Grey System--Theory and Applications.China ocean,1-13.
    [139]邓聚龙,1987.灰色系统基本方法,华中理工大学出版社。
    [140]邓聚龙,2002.灰理论基础,华中理工大学出版社.
    [141]Sue J.hin,I.J.Lu and Charles Lewis,2007.Grey relation performance correlations among economics,energy use and carbon dioxide emission in Taiwan Energy Policy,35(2007):1948-1955
    [142]T.C.Chang and S.J.Lin,1999.Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan,Journal of Environmental Management,56(1999):247-257
    [143]陈明,林焰,纪卓尚.辽河石油勘探局自升式钻井平台方案设计报告.大连:连理工大学学船舶工程学院,2004.
    [144]中国国家标准汇编(144).北京:中国标准出版社,1993:382-387.
    [145]孙少斌,林学华.决策支持系统生成器的设计与实现.计算机应用,1997,17(1):14-16.
    [146]王宗军,崔鑫,邵芸.面向对象的智能模糊综合评价决策支持系统实现方法.计算机工程与应用,2003,12:130-132.
    [147]蔚成香,宁伟,李艳.一智能决策支持系统(IDSS)的设计与实现.山东科技大学学报(自然科学版),2001,20(4):36-38,
    [148]刘卫红.基于神经网络与专家系统集成的智能决策系统的应用研究:(硕士学位论文).重庆:重庆大学,2002.
    [149]陈文伟.决策支持系统教程.北京:清华大学出版社,2004.
    [150]沈惠平.机械创新设计及其研究.机械科学与技术,1997,16(5):791-795.
    [151]黄茂林.基于快速设计策略的产品概念设计理论及方法研究:(博士学位论文).重庆:重庆大学,2001.
    [152]张荣梅.智能决策支持系统研究开发及应用.北京:冶金工业出版社,2003.
    [153]赵卫东,李旗号,盛昭瀚.基于案例推理的决策问题求解研究.管理科学学报2000,3(4):30-35.
    [154]郭艳红,邓仕贵.基于事例的推理(CBR)研究综述.计算机工程与应用,2004,21:1-5.
    [155]杨斌宇.基于案例的推理在智能决策支持系统中的应用:(硕士学位论文).长春:吉林大学,2003.
    [156]韩军,车文刚.CBR-一种新型的人工智能推理方法.昆明理工大学学报(理工版),2003,28(1):88-91.
    [157]陈明,林焰,纪卓尚.300英尺作业水深自升式钻井平台方案设计报告[R].大连:连理工大学学船舶工程学院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700