马铃薯(Solanum tuberosum L.)愈伤组织培养和耐盐突变体的离体筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以费乌瑞它、东农303、下波帝、鄂1号四个马铃薯品种的茎段、叶片为外植体,以MS+蔗糖3%+琼脂0.8%为基本培养基,进行了愈伤组织培养再生与耐盐突变体筛选的研究。建立了马铃薯叶片、茎段的高效再生体系,研究了高盐直接胁迫与系列盐胁迫两种筛选方法、外植体类型、继代次数、盐的胁迫浓度等因素与耐盐突变体诱导关系的规律,获得了部分耐盐植株;并对耐盐植株进行了耐盐性鉴定。试验结果表明:
     马铃薯茎段的愈伤组织发生频率高于叶片的愈伤组织发生频率。从诱导效果和生长状态来看,由叶片诱导愈伤组织的最佳培养基:东农303、鄂1号两品种为MS+6-BA 2.5mg·L~(-1)+NAA 0.2mg·L~(-1);费乌瑞它为MS+6-BA 2.0mg·L~(-1)+NAA 0.1mg·L~(-1);夏波帝为MS+6-BA 2.0mg·L~(-1)+NAA 0.2mg·L~(-1)。由茎段诱导愈伤组织的最佳培养基:东农303、夏波帝、鄂1号为MS+6-BA 3.0mg·L~(-1)+NAA 0.01mg·L~(-1);费乌瑞它为MS+6-BA 3.0mg·L~(-1)+NAA 0.1mg·L~(-1)。
     马铃薯不定芽分化对培养基的要求较为严格,不同品种的不同外植体对分化培养基要求不同。从叶片愈伤诱导的出芽天数、诱导率和生长状态来看:费乌瑞它的最佳分化培养基为MS+6-BA 2.5mg·L~(-1)+GA_3 5.0mg·L~(-1);东农303为MS+6-BA 1.0mg·L~(-1)+IAA 0.1mg·L~(-1)+GA_3 2.5mg·L~(-1);夏波帝为MS+6-BA 2.5mg·L~(-1)+IAA 0.5mg·L~(-1)+GA_3 2.5mg·L~(-1);鄂1号为MS+6-BA 2.5mg·L~(-1)+IAA 0.1mg·L~(-1)+GA_3 1.0mg·L~(-1)。由茎段愈伤组织诱导不定芽的最佳分化培养基:费乌瑞它、鄂1号为MS+6-BA 2.0mg·L~(-1)+NAA 0.2mg·L~(-1);东农303为MS+6-BA 2.0mg·L~(-1)+NAA 0.1mg·L~(-1);夏波帝为MS+6-BA 2.0mg·L~(-1)+NAA 0.3mg·L~(-1)。
     分别以叶片和茎段为外植体,以叶片和茎段诱导的愈伤组织为原始材料,进行耐盐突变体筛选,实验结果表明:不同品种的愈伤组织的耐盐性是有差异的:东农303、鄂1号两品种在细胞水平对NaCl的最大耐受浓度为2.0%;费乌瑞它为1.5%;夏波帝为1.0%。通过系列盐胁迫诱导产生的耐盐愈伤组织,易产生生理适应性,获得的耐盐愈伤组织在无盐的培养基上培养过程中,其耐盐性会减弱或消失。而通过高浓度盐胁迫下产生的耐盐愈伤组织没有此现象,其耐盐性一般不会减弱或消失。
     叶片的耐盐愈伤组织,只有继代次数低于10次的在无盐胁迫诱导分化培养基
    
    上有进一步诱导再生植株发生的能力,而在盐胁迫诱导分化培养基中,愈伤组织则
    继代次数超过8次即很难继续分化再生;茎段的耐盐愈伤组织,在有盐胁迫与无盐
    胁迫的诱导分化培养基上能继续分化的愈伤组织,最高继代次数分别是8代与12
    代。因此,减少继代次数,而采用高盐直接胁迫筛选的方法,较为恰当。
     经盐水灌溉试验鉴定,再生植株的耐盐性与愈伤组织的耐盐性有一定的差异,
    东农303、鄂1号两品种的再生植株的耐盐性与愈伤组织的耐盐性水平相当,而费
    乌瑞它和夏波帝两品种的再生植株没有达到愈伤组织的耐盐水平。
In this research, the callus culture, regeneration and salt-tolerant mutants screening were studied by use of four potato varieties, Favorite, Dongnong 303, Sharpdi and E No.1, with stem and leaf as the explants and MS+sucrose 3%+arg 0.8% as the basic medium. The high efficient regeneration system was established, and the effect of different treatments, different explant type, the subculture times and the salt concentration on screen of salt-tolerant mutant were investigated. Some salt-tolerant mutants were abtained and the salt-tolerant characters were identified. The results showed:
    The optimal medium for callus induction from leaf discs was found to be MS+6-BA 2.5 mg/L+NAA 0.2 mg/L for "Dongnong 303" and "E No.l", MS+6-BA 2.0 mg/L+NAA 0.1 mg/L for "Favorite" and MS+6-BA 2.0 mg/L+NAA 0.2 mg/L for "Sharpdi", and for callus induction from stem explants was found to be MS+6-BA 3.0 mg/L+NAA 0.01 mg/L for "Dongnong 303", "Sharpdi" and "E No.1", MS+6-BA 3.0 mg/L+NAA 0.1 mg/L for "Favorite".
    The optimal medium for adventitious bud differentiation from leaf callus was found to be MS+6-BA 2.5 mg/l+GA3 5.0 mg/L for "Favorite", MS+6-BA 1.0 mg/L+IAA 0.1 mg/L+GA3 2.5 mg/L for "Dongnong 303", MS+6-BA 2.5 mg/L+IAA 0.5 mg/L+GA3 2.5 mg/L for "Sharodi" and MS+6-BA 2.5mg/L+IAA 0.1 mg/L+GA3 1.0 mg/L for "E No.1", and for adventitious bud differentiation from stem callus was found to be MS+6-BA 2.0 mg/L+NAA 0.2 mg/L for "Favorite" and "E No.l", MS+6-BA 2.0mg/L+NAA 0.1 mg/L for "Dongnong 303" and MS+6-BA 2.0 mg/L+NAA 0.3 mg/L for "Sharpdi".
    Two methods were tried to select salt tolerant callus. One was screen of salt tolerant callus by directly inducing from explants of leaf discs and stem segments on medium with salt (NaCl). The second was by culture of callus firstly from explants on medium with no salt (NaCl), and then inducing salt tolerant callus from normal callus on medium with different level of salt step by step (progressively). There were differences in
    
    
    salt-tolerant charaters among callus of different vareities. "Dongnong 303" and "E No.1" were tolerant to 2.0 % NaCl, "Favorite" were tolerant to 1.5% NaCl but "Sharpdi" was inferior in salt tolerane and only tolerant to 1.0% NaCl. The salt tolerance of mutants derived by progressive method was found to be unstable. Only the plantlets regenerated from high level NaCl directly induced salt-tolerant calli showed high tolerance under NaCl stress.
    Adventitious buds could not be induced from salt-tolerant leaf discs callus on differentiation medium without salt if the calli were subcultured more than 10 times on medium with salt, or on differentiation medium with salt if the calli were subcultured more than 8 times. However, the adventitious buds could be induced from stem segment calli even the calli were subcultured more than 8 or 12 times on medium with or without salt. Therefore, the optimal mehord to got salt-tolerant mutants were to reduce subculture times and enhance directly salt stress.
    There were differences in salt-tolerant characters between the regenerated plantlets and the salt tolerant callus. The salt-tolerant ability of regenerated plantlets was on the same level as the salt tolerant callus only in varieties of "Dongnong 303" and "E No. 1". The salt-tolerant ability of regenerated plantlet was found lower than that of the salt tolerant callus.
引文
[1] 赵可夫.植物抗盐生理.北京:中国科学技术出版社,1993,1~320.
    [2] 潘瑞炽,董愚得.植物生理学.北京:高等教育出版社,1995,332~333,180~224.
    [3] 刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.余叔文,汤章城.植物生理与分子生物学(第一版).北京:科学技术出版社,1998,752~769.
    [4] 中国统计年鉴.北京:中国统计出版社,2000,8.
    [5] 肖宏儒,曹曙明,万振邦,等.沿海滩涂地区农业资源综合开发利用模式的探索.农业环境与发展,1998,15 (1):6~11,22.
    [6] 刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994,222~285.
    [7] 巴逢辰,赵羿.中国海涂土壤资源.土壤学报,1997,28(2):49~51.
    [8] 福建统计年鉴.北京:中国统计出版社,2000,155~164.
    [9] 中国农村统计年鉴.北京:中国统计出版社,1998,76~77.
    [10] 王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物耐盐性的对策..植物学通报,1997,14(增刊):25.
    [11] 赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1993,48~62
    [12] 张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报.1999,40(1):56.
    [13] 赵可夫,李军.盐浓度对种单子叶盐生植物渗透调节及其在渗透调节中的影响.植物学报,1999,41(12):1287.
    [14] 任东涛,张承烈.河西走廊不同生态型芦苇可溶性蛋白质、总氨基酸和游离氨基酸分析.植物学报,1992,34(9):698.
    [15] 於丙军,章文华.NaCL 对大麦幼苗根系蛋白质和游离氨基酸含量的影响.西北植物学报.1997,17(4):439.
    [16] 赵福庚,刘良友.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报.1999,16(5):540.
    [17] 吕芝香,乙引.NaCL对小麦苗叶片脯氨酸氧化酶活性和游离脯氨酸累积的影响.植物生理学报.1992,18(4):376.
    [18] 王颖,杜荣謇.高粱在盐胁迫下特定蛋白的表达及与耐盐性关系的研究.作物学报,1999,29(1):75
    [19] 郭岩,陈少麟,张耕耘,等.应用细胞工程获得受主效基因控制的水稻耐盐突变系.遗传学报.1997,24(2):122~126.
    [20] 周荣仁,杨荣,余叔文,等.利用组织培养选择烟草耐盐愈伤组织变异体分化出再生植株.实验生物学报.1986,19(3):279~286.
    [21] 李洪建.水稻耐盐突变体筛选的研究.沈阳农业大学学报.1990,21(1):53~59.
    [22] 冯桂荃,等.水稻成熟胚愈伤组织耐盐突变体的筛选.天津农业科学.1996,(2):6~8.
    [23] 罗士韦.细胞生物学杂志,1982,4(2):1~9
    [24] 胡含.中国科学,1980,5:485~491
    [25] 胡含.遗传学报,1978,5(1):23~29
    [26] 王关林.植物学报,1989,31(7):495~504
    [27] 褚圻.遗传学报,上海:上海教育出版社,1980,6~10
    [28] 许智宏.遗传,1985.7(6):37~40
    [29] 朱至清,植物学通报(增刊),1991,8:1—8
    [30] 商效民.细胞生物学杂志.1984,(1):5~12.
    
    
    [31] 黄娇香.遗传.1981,(3):31~32.
    [32] 李浚明.遗传学报,1985,12(6):434~439.
    [33] 孙敬三.植物学报,1986,28(1):33~37.
    [34] 张永祥,华静月,何礼远,等.马铃薯叶盘愈伤组织再生抗青枯病的筛选.马铃薯杂志,1993,7(1):22~26.
    [35] 陈启锋.生物工程应用于水稻育种的研究现状与展望.大自然探索,1992,11(2):4~8.
    [36] 除德鑫,潘重光,彭仲明等.特种稻的遗传与育种.见:赵则胜,赖来展,郑金贵主编,中国特种稻,上海:上海科学技术出版社,1995,191~198.
    [37] 胡含,王恒立主编.植物细胞工程与育种.北京:北京工业大学出版社,1990,292~331.
    [38] 赵成章,闵绍楷.生物技术在水稻育种中的应用.中国稻米,1998,(4):33~34
    [39] 陈英主编.植物体系胞无性系变异与育种.江苏科技出版社,1991,126~133;156~160.
    [40] 翟风林,曹凤鸣.植物的耐盐性及其改良[M].北京:农业出版社,1986.
    [41] 田文忠等.中国科学院遗传研究所研究工作年报.1982,75
    [42] 陈少麟等.国际作物遗传操作学术讨论会论文摘要集.1984,38
    [43] 张成合等.植物学报,1986,28:137
    [44] 郑企成等.核农学报.1987,1:87
    [45] 胡一东,林伯年,沈德绪.柚汁胞愈伤组织的诱导及耐盐性的研究.浙江农业大学学报.1993,19(3):327~330.
    [46] 高峰,陈善春,吴安仁.华盛顿脐橙胚珠愈伤组织的诱导及耐盐性研究.植物生理学通讯.1998(1):32~34.
    [47] 刘功弼.柑桔茎尖组织培养及其人工诱变初报.园艺学报.1983,10(4):277~280.
    [48] 周荣仁,杨燮荣,余叔文,等.利用组织培养研究植物耐盐机理与筛选耐盐突变体的进展.植物生理学通讯.1989(5):11~19.
    [49] 张建华,陈火英,庄天明.番茄耐盐体细胞变异体的离体筛选.西北植物学报.2002,22(2):257~262.
    [50] 陈章,陈启锋.水稻离体培养及其无性系变异的研究.福建农学院学报.1992,21(1):10~15.
    [51] 王长泉,李雅志,崔德才.果树诱变研究进展.山东农业大学学报.1996,27(4):509~513.
    [52] 王琳清.我国植物诱变育种进展剖析.核农学通报.1992,13(6):282~295.
    [53] 王存喜,程炳崇,李雅志,等.中华猕猴桃耐盐变异筛选].核农学通报,1990,4(4):206~212.
    [54] 张德民,王洪庆.~(60)Co—γ射线对山楂试管苗辐射效应.北方园艺.1991(2):12~14.
    [55] 杨增海.园艺植物组织培养[M].北京:农业出版社,1987.
    [56] 张望东.群众杨悬浮细胞系的建立和体细胞耐盐变异体的初步筛选.中国林业科学研究院硕士论文,1991.
    [57] 仪慧兰,王强.NaCL对大麦幼苗生长及姊妹染色体交换的影响.植物研究.1997,17(2):174~179.
    [58] 韩善华等.马铃薯幼茎愈伤组织的诱导和植株再生.实验生物学报.1982,15:111~115.
    [59] 系元龄,颜昌敬.植物细胞培养手册.北京:农业出版社,1992,248~252.
    [60] 杜立群,李银心,李洪杰,等.在1/3海水培养基上筛选豆瓣菜耐盐变异体.植物学报1999,41(6):663~639.
    [61] 王仑山,王鸣刚,王亚馥.利用组织和细胞培养筛选作物耐盐突变体的研究.植物学通报.1996,13(2):7~12.
    [62] Abou EI-Khashab A M,EI-Sammak A F, Elaidy A A,et al..paclobutrazol reduces some negative effects of salt stress in peach.J Amer Soc Hott Sci, 1997,122 (1):43~46.
    [63] Aro E M,Virgin I,Anderson B. Photoinhibition and D1 protein degradation in peas acclimated to
    
    different growth imadiance[J].Plant Physiol, 1993,103:835
    [64] Ahloowalin B S.plant Cell Culture.Canada;Calgary, 1978:162
    [65] Buras N.Efficient irrigation environmental effects and its long term sustainability.ICID 3rd pan American Regional Conf,1992.
    [66] Banks M S, et al.Plant Sci Lett, 1976,7:417~427
    [67] Brettel R S, et al.T A G,1980,58:55~58
    [68] Bayliss M W.Nature, 1973,246:529-530.
    [69] Bayllis M W.Int Rev Cytol.1980,11 A:113-114.
    [70] Barbier M, et al.Plant.1980,30:321-334.
    [71] Behnke,M.Theor.APPl.Genet.,1976,55:69.
    [72] Behnke,M.Theor.APPl.Genet.,1980,56:151.
    [73] Bhaskara,S.et al.J.Plant Physiol.1986,122:205.
    [74] Ben-Hayyim G.Kochba J.Aspects of salt tolerance in a NaCL-selected stable cell line of citrus sinesis.Plant Physiol, 1983,72:685-690.
    [75] Ben-Hayyim G,Kochba J.Growth characteristics and stability of tolerance of citrus callus cells subjected to NaCLstress[J].Plant Science Letters.1982,27:87-94.
    [76] Ben-Hayyim G, Spieger-Roy P, Nwemann H.et al.Relation between lon accumulation of Salt-sensitive and isolated siable salt-tolerant cell lines of citrus aurantium.Plant Physiol,1985,78:144~148.
    [77] Cullis C A,et al.The Plant Genome, Norway, Norwich, 1980, 91 ~97
    [78] Canstantin M J.Environ Exp Bot, 1981,21:359~368
    [79] Drew M C,Lauchli A.The distribution of Na ion in Plant.Plant Physiol,1985,79:171.
    [80] Everd J D,Gucci R,Kann S C, et al.Gas exchange and carbon partitioning in the leaves of celery(Aptium Graveolens L.) at various level of root zone salinity.Plant Physiol,1994,106:281
    [81] Evola S V,et al, First Int.Congr.Plant Mol.Biol.,Savannah(abstr.),1985
    [82] Evola S V,et al, 11th Ann.Aharon Katzir-Katchalsky Conf.,Jerusalem(ab.),1984
    [83] Flowers T J.Salinisation and horticultural production.Scientia Horticulturae, 1999,78:1~4
    [84] Fedoroff N, in:Mobile Genetics Elements,ed.J .Shapiro, New York, 1983,1 ~66
    [85] Ghassemi F,Jakeman A J,Nix H A.Salinisation of land and water resources.Human causes extent management and cases study.CAB International,1995. Oxford,526.
    [86] Groose R W, Plant Cell Rep., 1986,5:104-107.
    [87] Groose R W, Plant Cell Rep.,1986,5:108-110.
    [88] Gengenbach B G,et al.Crop Nat Acad Sci.1997,10:5113-5117.
    [89] Gengenbach B G,et al.Theory Appl cenet.1981,59:161-167.
    [90] Goeft A.Salt in the test tuber:The role of plant cell cultures in basic physiological reserch.Land Wirtschafts-chweiz.1989,2(3) :111-115.
    [91] George.Abel, and Arnold J.Mackenzie, scout Tolerance of Soybean Varieties (Glycogen mall. merrily)During Germination and later Growth, Crop Sciences 1998,157-161.
    [92] Harvey D M R,Stelzer R, Brandter,et al.Effect of salinity on ultrastructure and ion distribution in roots of Plantago coronopus[J].Plant Physiol, 1979,63;213
    [93] Jeschke W D.K+ and Na+ exchange at cellular membranes of cation and salt tolerance[A].Stample R C, Toemieasen G H Salinity tolerance in plants stragles for crop improvement[C].New York: John Wiley, 1984,37-66.
    [94] Jalaska S, et al.Plant tissue Cell Culture.Canada, Calgary, 1978:101
    
    
    [95] James M G, and Stadler J, Theor.Appl.Genet., 1989,77:383-393
    [96] Jacobsen E.Plant Cell Tissue and Organ Culture,1981,1:77~84.
    [97] Kasperbauer M J, et al.Crop Sci, 1979,19:77~84
    [98] Kemble R J.et al.T A G.1982,62:213-217.
    [99] Karp A,et al.T A G, 1982,63:256-272.
    [100] Levitt J.Response of plant to environmental stress.Voll II.2nd ed[M].New York:Academic Press, 1980,102-106
    [101] Larkin P J.Scowcrpft W P.Somaclonal variation-a novel source of variability from cell culture for plant improvement.Theor.Appl.Genet.1981,60:197~214
    [102] Larkin P G, Scowcroft W R.T A G,1981,60:197-214
    [103] Lee M,an Phillips R L, Ann.Rev.Plant Phsiol.Plant Mol.Biol.,1988,39:413-437
    [104] Leving C S.Cell.1983,32:659-661.
    [105] Larkin P G, Scowcroft W R.T A G,1984,67:443-455.
    [106] Lerner H R.Adaptation to salanity at the plant cell level.Plant and Soil.1985,89:3-14.
    [107] Munns R Fermaat.Whole plant response to salinity.Australian Journal of Plant Physiology,1986,13:143
    [108] Munns R.Physiological processes limitting plant growth in saline soil:Some dogmas and hypothesis[J].Plant Cell Environment, 1993,16:15
    [109] MeCord J M,Fridoeich I,Superoxide dismutase:An enzyme function for erythrocuprein(hemocuperin).Biol Chem, 1969,224:6049.
    [110] McCoy T J.et al.Can J Genet Cytol, 1982,24:37-50
    [111] McClintock B, Proc.Natl.Acad.Sci.,1950,36:344
    [112] McClintock B,Nall.Acad.Sci.,1939,25:405
    [113] McClintock B,Cold Spring Harbor Symp.Quant.Biol.,1951,16:13-47
    [114] Mchughen, A.et al.J.Plant Physiol.1984,117:109
    [115] Mathur A K.Isolation of sodium chloride tolerant plantlets of kickxia ramosissima under in vitro condition.Plant Physiol, 1980(99) :287~313.
    [116] M.L.H.FLEMING,M.J.DE,MAINE et al.Ploidy Doubling by callus culture of potato dihaploid leaf explants and the variation in regenerated plants.Ann.Appl.Biol.1992, 121:183-188
    [117] Nabors M W, et al.Pflanzenphiol, 1980, 97:13-17
    [118] Novak F J.Cytologia, 1981,46:371-380.
    [119] Nabors.M W,Gibbs S E.NaCL tolerant tobaco plants from cultured cells.Z.Pflanzenphysiol, 1980 (97) :13-17.
    [120] Orten T J.T A G, 1980,56:101-112
    [121] Orten T J.Hered, 1980,71:780~783
    [122] Ore A E,Walbot V.T A G, 1985,70:287-293.
    [123] Peschke V M, et al, Science, 1987,38:804-807
    [124] Peterson P A,et al.Plant Breed.Rev., 1986,4:81-122
    [125] Peschke V M, and Phillips R.L,Theor.Appl.Genet.,1991,81:90-97
    [126] Petit, A.teal, 1983, Mol, Gen, Genet, 190:204-214.
    [127] Qiao Y L.An application of aerial remote-sensing to monitor salinization at Xinding Basin.Space Research, 1995,18:133-139.
    [128] Ruiz M L, et al.Protplasma.1982,111:83-86.
    [129] Reddy,P.J.et al.Theor.Appl.Genet.1986,71:757.
    
    
    [130] Stewart C R.Effect of NaCL on proline synthesis and utilization in exerised barley leaves.Plant Physiol.1983,72:664.
    [131] Story R,Wyn Jones R G.Quaternary ammonium compounds in plants in relation to salt resistance[J].Phytochemistry, 1997,16:447.
    [132] Sun C S, et al.T A G, 1979,55:193-197
    [133] Siminivitch L.Cell, 1976,7:1-11
    [134] Siegel A.Modification of the Information Content of Plant Cell, Netherlands,Amsterdam,1975,15-26
    [135] Scowcroft P E, et al.The Use of Tissue Culture and Protplasts in Plant Pathology.Sydney:Academic, 1983, 139-162
    [136] Shepard J F, et al.Sci.1980,28:17-24.
    [137] Singh B D.Can J Genet Cytol, 1975,17:109-116.
    [138] Singh B D.Caryologia, 1982,47:419-426.
    [139] Singh M R.Cytologia,1982,47:419~426.
    [140] Sepaskhah A R, Maftoun M.Relative salt tolerance of pistachio cultivars.J Hort Sci,1988,63(1) :157~162.
    [141] Splegel-roy P,Ben-Hayyim G.Selection and breeding for salinity tolerance in vitro.Plant and Soil,1985(89) :243~252.
    [142] Sandra Austin,Cassells Aian C.Variation between plants regenerated from individual calli produced from separated potato stem callus cells.Plant Science Letters.1983,31:107-114.
    [143] Umberk P E, Genebach B G.Crop Sci,1983,23:584~588.
    [144] Williams M E, et al, Theor.Appl.Genet.,1991,81:157-161.
    [145] Whitfeld R R, Bottmley W.Ann Rev Plant Physiol, 1983,34:279-310.
    [146] Xiong S Y,Xiong Z X.Wang P W.Soil salinity in the irrigated area of the Yellow river in Ningxia,China Arid soil Research and Rehabilitation,1996,10:95-101.
    [147] Yeoman M M, et al.Int Cytol Suppl, 1980,11 A:1-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700