用户名: 密码: 验证码:
白垩纪大洋红层的时空演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过近几年来对白垩纪沉积记录转变的研究发现,从贝雷姆早期一直到赛诺曼-土仑界线,以同时广泛出现黑色页岩和大洋红层为特征。基于此,本人通过对贝雷姆阶到马斯特里赫特阶全球大洋红层的研究,对大洋红层的时空演化进行了探讨,并讨论了其古海洋、古气候意义。
     本文首先研究了白垩纪藏南红层的特征。之后,在分析全球CORB分布的基础上,我们认为大洋红层的分布地区主要集中在:特提斯地区、北大西洋、南大西洋、太平洋、印度洋及大洋洲六大区域。相应地,对每个区域的大洋红层特征进行了详细研究和对比,同时利用GRAPHYCOR软件进行辅助对比。通过对比,认为:1)这些全球分布的大洋红层主要出现在晚白垩世,2)一般分布在深水环境、低纬地区,3)在岩性上,主要由红色页岩、红色灰岩、红色泥灰岩、红色泥岩、红色硅质页岩几种岩性组成,4)有机碳含量普遍较低。
     其次,根据对红层的分布地区、分布时间的归纳,绘制了从贝雷姆阶-马斯特里赫特阶大洋红层的古地理分布图,并结合古板块运动对其进行成因分析。根据古地理恢复图推测出,南大西洋、北大西洋、特提斯洋的连通,使得富氧的下沉水团能够被洋流带到深海并且具有较好的流动性,从而该区域能够出现红层。
     最后,在了解了古地理与红层分布关系的基础上,模拟了晚白垩世南、北大西洋,特提斯洋区域的古环流模型,同时也提出正是由于该环流形式的存在,导致当时全球深海普遍富氧,全球气候变冷。
With analyzing the transition of the Cretaceous sedimentary, we found out that, from early Barremian to Cenomanian-Turonian boundary, the stratigraphy is mainly characterized by the widespread of back shales and CORBs. Some units are mainly consisted of black shales, while others are composed of CORBs. It is possible that the alternation of black shale and CORBs occurs in certain units. By correlating the globally distributed CORBs from Barremian to Maastrichitian, this paper discussed the temporal and spatial evolution of CORBs and its implications for paleoceanography and paleoclimatology.
    Firstly, this paper analyzed the features of the CORBs in Southern Tibet. And then on the basis of distribution of the CORBs in the world, we found out that they are located in five regions, which are Tethys region, North Altantic Ocean, South Atlantic Ocean, Indian Ocean and Oceania. We study and correlate the characteristics of the CORBs located respectively in different area. The software GRAPHYCOR was used for the correlation as well. The results show that: 1) the globally distributed CORBs were mainly present in late Cretaceous; 2)the paleoenvironment of the CORBs is deep water of low latitude area in general; 3)the lithologies are mainly consisted of red shale, red limestone, red marlstone, red mudstone and red siliciclastic shale; 4) the content of organic carbon is quite low.
    Secondly, according to the the temporal and spatial distribution of CORBs, we signed the expose of CORBs on the paleogeography map from Baremian to maastrichtian. In combination with the plate tectonics, we explored what causes the formation of CORBs. We inferred that the formation of CORBs is related to the open of south Atlantic and the connection between north Atlantic and Tethyan ocean. Because of the connection of south Atlantic, north Atlantic and Tetheyan ocean, the Oxygen-rich down-welling water can be brought to deep sea and have the capacity of fluidness, which lead to the formation of CORBs in these areas.
    Finally, the late Cretaceous circulation between South Atlantic, North Atlantic and Tethys Ocean was simulated, based on the relationship between the paleogeography and distribution of the CORBs. We suggest that the circulation leads to oxic bottom water and even the cooling of world.
引文
[1] Achim D. Herrmanna, Mark E. Patzkowskya, Steven M. Hollandb. BIOMODULE-A Java program to help model and interpret the stratigraphic record . Computers & Geosciences 29 (2003), 99-105.
    [2] Agterberg F P, Gradstein F M, Nel L D, et al. Program RASC (Ranking and Scaling) version 12 [A]. Committee Quantitative Stratigraphy [M]. Bedford Institute Oceanography, Dartmouth, N.S., Canada, 1989. 1-419.
    [3] Agterberg F P. Automated stratigraphic correlation [M]. Elsevier Publ. Co., Amsterdam, 1990.1-424.
    [4] Alvarez W, Montanari A. The Scaglia limestones (late Cretaceous-Oligocene) in the north -eastern Apennines carbonate sequence: stratigraphic context and geological significance [A]. Premoli S I, Coccioni R, Montanari A. The Eocene-Oligocene boundary in the Marche-Umbria Basin (Italy), IUGS Special Publication [C]. F.IIi Aniballi Publishers, Ancona, 1988,13-30.
    [5] ARTHUR M A, FISCHER A G, et al. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy I. Lithostratigraphy and sedimentology [J]. Geological Society of American Bulletin, 1977,88: 367-371.
    [6] Arthur M A, Premoli S I. Developement of wide-spread organic carbon-rich strata in the Mediterranean Tethys [A]. Schlanger S O, Cita M B. Nature and origin of Cretaceous carbon-rich facies [C]. London: Academic Press, 1982,7-54.
    [7] Arthur M A. Sedimentologic and geochemical studies of Cretaceous and Paleogene pelagic sedimentary rocks: The Gubbio sequences [D]. Princeton, Princeton University. 1979,173.
    [8] Bak K. Biostratigraphy of deep-water agglutinated foraminifera in Scaglia Rossa-Type deposits of the Pieniny Klippen Belt, Carpathians, Poland [A]. Hart M B, Kaminski M A, Smart C W. Proceedings of the Fifth International Workshop on Agglutinated Forminifera [C]. Grzybowski Foundation Special Publication, 2000,7:15-41.
    [9] Bak K. Planktonic foraminiferal biostratigraphy, Upper Cretaceous red Pelagic deposits, Pieniny Klippen Belt, Carpathians [J]. Studia Geologica Polonica, 1998,111(13): 7-92.
    [10] Barron E J, Peterson W H. Mid-Cretaceous: the nature of the problem[J]. Earth-Sci. Rev., 1983,19:305-338)( Barron E J, Peterson W H, Thompson S, Pollard D. Past climate and the role of ocean heat transport: model simulations for the Cretaceous[J]. Paleogeography, 1993, 8:785-798.
    [11] Barron E J. A warm equable Cretaceous: the nature of the problem [J]. Earth-Sci. Rew., 1983,19:305-338.
    [12] Berner R A, Kothavala Z. Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 2001,301:182-204.
    [13] Berner R A. Atmospheric oxygen over Phanerozoic time[J].Proceeding of National American Science, 1999,96:10955-10957.
    [14] Birkenmajor K. Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland [J]. Studia Geologica Polonica, 1977,45:1—159.
    [15] Brower JC and Burroughs W A. A simple method for quantitative biostratigraphy [A]. In: Quantitative Stratigraphic Correlation [M]. Wiley-Interscience, New York, 1982. 61-84.
    [16] Bystricka H, Gasparikova V, KOhler E, et al. Excursion guide to the X VIII Europen Colloquiwm of Micropaleontology [A]. Konferencie, Symposia, Semin, Bratislava, 1983, 61-70.
    [17] Cooper R A, Crampton J S, Uruske C I. The time-calibrated composite: a powerful tool in basin exploration [A]. In: 2000 New Zealand Petroleum Conference proceedings [C]. Ministry of Economic Development, Wellington, New Zealand, 2000. 346-354.
    [18] Cooper R A, Sadler P M. Calibrating the time scale: a new method using quantitative stratigraphy [A]. In: Little T, ed.. Geological Society of New Zealand, New Zealand Geophysical Society Joint Annual Conference, 27-30 November 2000: programme & abstracts [C]. Geological Society of New Zealand miscellaneous publication 108A, 2000. 29.
    [19] DGDC, Core Data from the Deep Sea Drilling Project, leg ll,hole 105. http://www.ngdc.noaa.gov/mgg/geology/dsdp/data/ll/105/index.htm
    [20] DGDC, Core Data from the Deep Sea Drilling Project, leg 41,hole 367. http://www.ngdc.noaa.gov/mgg/geology/dsdp/data/41/367/index.htm
    [21] DGDC, Core Data from the Deep Sea Drilling Project, leg 43,hole 387. http://www.ngdc.noaa.gov/mgg/geology/dsdp/data/43/387/index.htm
    [22] DGDC, Core Data from the Deep Sea Drilling Project, leg 44,hole 390. http://www.ngdc.noaa.gov/mgg/geology/dsdp/data/44/390/index.htm
    [23] DGDC, Core Data from the Deep Sea Drilling Project, leg 71,hole 511 http://www.ngdc.noaa.gov/mgg/geology/dsdp/data/41/367/index.htm
    [24] Egger J, Kollmann H A, Sanders D, et al. Field trip C~Cretaceous of eastern Austria [A]. 6th International Cretaceous Symposium. August 27~September 4, 2000, Vienna, Austria. 56.
    
    [25] F.Wiese, Cretaceous(Cenomanian-Coniacian) shallow-water pelagic Red beds from NW Germany, Geophysical Research Abstracts, Vol.7,02716,2005.
    [26] Graciansky P C,Deroo G,et al. A stagnation event of oceanwide extent in the Upper cretaceous[J]. Natrue, 1984,308:346-349.
    [27] Gradstein F M, Agterberg F P, BROWER J C, et al. Quantitative stratigraphy [M]. Dordrecht, Holland: D. Reidel Publishing Co., 1985.1-598.
    [28] Gradstein F M, Agterberg F P. Uncertainty in stratigraphic correlation [A]. In: 'Sequence Stratigraphy, Concepts and Applications [C]. Norwegian Petroleum Society, Elsevier, Amsterdam, 1998. 9-29.
    [29] Gradstein F M, Backstrom S A. Cainozoic Biostratigraphy and Palaeobathymetry, northern North Sea and Haltenbanken [M]. Norsk Geologisk Tidsskrift, 1996,76:3-32.
    [30] Gradstein F M, Kaminski M A, Agterberg F P. Biostratigraphy and Paleoceanography of the Cretaceous Seaway between Norway and Greenland [J]. Earth Science Review, 1999, 46(1-4): 27-98.
    [31] Gradstein F M, Ogg J G, Smith A G, et al. A new geologic time scale with special reference to Precambrian and Neogene [J]. Episodes, 2004,27(2): 83-100.
    [32] Haupt B J, Seidov D. Warm deep-water ocean conveyor during Cretaceous time[J]. Geology, 2001,29:295-298
    [33] Hay W W, DeConto R M, Wold C N, et al . Altenative global Cretaceous paleogeography[A], In; Barrera E, Johson C C. eds. Evolution of the Cretaceous Ocean-Climate System[C].Boulder, Colorado: GSA Special Paper 332, 1999, 1-47
    [34] Hay W W, Deconto R M, Wold C N. Climate: Is the past the key to future? [J] Geol. Rundsch, 1997,86:471-491.
    [35] Hay W W, Deconto R M. Comparison of modern and late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients[J]. Geol Soc Amer Bull, 1995,107:1164-1191.
    [36] Hay W W, DeConto R M. Comparison of modern and late Cretaceous meridional energy transport and oceanology [A]. In: Barrera E, Johnson C C(ed), Evolution of the Cretaceous Ocean- Climate System[C]. Geol. Soc. Amer. Spec. Paper 332,1999,283-300.
    [37] Hay W W, Southam J R. Quantifying biostratigraphic correlation [J]. Annual Review of Earth and Planetary Sciences, 1978.6: 353-375.
    [38] Hay W W. Paleoceanography of marine organic-carbon-rich sediments[A]. in: Huc A Y (ed.), Paleogeography , Paleoclimate and Source Rocks[C]. AAPG Studies in Geology, 1995,40: 21-59.
    [39] Hood, K. C. GraphCor: Interactive Graphic Correlation Software, Version 3.0 [M].Published by K. C. Hood, 9707 Arrowgrass Dr., Houston, TX 77064,1986.1-237.
    [40] Howarth R J, Mcarthur J M. Statistics for strontium isotope stratigraphy: A robust loess fit to marine Sr-isotope curve for 0 to 026 Ma,with look-up table for derivation of numeric age[J].J Geol, 1997,105:441-456.
    [41] Hu X M, Wang C S, SARTH M,et al. Upper Cretaceous Oceanic Red beds(CORB) in the Tethys: Occurrence, lithofacies, age and environment[J] , Cretaceous Research, 2005.26(l):3-20.
    [42] Hu X, Jansa L, Sarti M. Mid-Cretaceous oceanic red beds in the Umbria-Marche Basin, central Italy: Implication to paleoceanographic change[A].IGCP463/494 Workshop Abstract[C]. Bartin, Turkey, Augest 18-23,2003.
    [43] Hu Xiu-mian, LILIAN S, MASSIMO S. Turonian-Coniacian oceanic red beds in the Rio Fardes section, Middle Subbetic, southern Spain, Earth Science Frontiers, 2005,12(2):038-044.
    [44] Hu Xiumian. Sedimentary Geology of Cretaceous in Southern Tibet, and thd Upper Cretaceous Oceanic Redbeds[D]. Chengdu: Chengdu University of Technology, 2002:216(in Chinese).,
    [45] Huber B T, Hodell d a, Hamilton C P. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients[J]. Geol SocAmer Bull, 1995,107:1164-1191.
    [46] James G Ogg , Leon Bardot, Aptian through Eocene Magnetostratigraphic Correlation of the Black Nose transect( Leg 171B) , Florida continental margin., Procedding of the Ocean Drilling Program, Scientific Results Volume 171B.
    [47] James P. Owwens, Kenneth G Miller, Peter J. Sugarman, Lithostratigraphy and Paleoenvironments of the island beach borehole, New Jersey coastal plain drilling project, Proceddings of the Ocean Drilling Program, Scientific results, Vol. 150X.
    [48] Jenkyns H C, Gale A S, Corfield R M. Carbon and oxygen isotope stratigraphy of the English chalk and Italian scaglia and its paleoclimatic significance[J]. Geological Magazine, 1994,131:1-34.
    [49] Kaiho K ,Satto S. Oceanic crust production and climate during the past 100 Ma[J]. Terra Nova, 1994,6:376-384.
    [50] Kari Strand, Sedimentary facies and sediment composition changes response to tectonics of the Cote D'ivoire-chana transform margin, Proceedings of the Ocean drilling Program, Scientific Results, VOL 159.
    [51] Kemple W G, Sadler P M, STRAUSS D J. Extending graphic correlation to manydimensions: stratigraphic correlation as constrained optimization [A]. SEPM Spec. Publ. [C], 1995,53: 65-82.
    
    [52] Kennen J P, Peterson L.C. Rapid climate change: Ocean responses to earth system instablility in the late Quaternary[J]. JOIDES Journal,2002,28(10):5-9.
    [53] Kostka A. The age and microfauna of the Maruszyna Succession, Upper Cretaceous Pieniny Klippen Belt, Carpathians, Poland [J]. Studia Geologica Polonica, 1993,102: 7-134.
    [54] Krenmayr H G Die Nierental-Formation der Oberen Gosau-Gruppe (Oberkreide- Paleozan, Nordliche Kalkalpen) in Berchtesgaden: Definition, Fazies und Environment [J]. Jahrbuch der Geologischen Bundesanstalt, 1999,141:409-447.
    [55] Krenmayr H G Hemipelagic and turbiditic mudstone facies associations in the Upper Cretaceous Gosau Group of the Northern Calcareous Alps (Austria) [J]. Sedimentary Geology, 1996,101:149-172.
    [56] Kuhnt W. Agglutinated foraminifera of western Mediterranean Upper Cretaceous Pelagic limestones (Umbrian Apennines, Italy, and Betic Cordillera, Southern Spain) [J]. Micropaleontology, 1990,36(4): 297-330.
    [57] Larson R L. Lastest pulse of Earth: Evidence for a mid-Cretaceous sperplume[J].Geology , 1991.19:963-966.
    [58] Li X H, Wang C S, Hu X M. Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, Chinese[J]. Cretaceous Research, 2005,25(l):166-189.
    [59] LI Xianghui, Wang Chengshan, Hu Xiumian, et al. Cretaceous I n Gyangze and Yamdrock Tso areas of southern Tibet [A]. 6~(th) International Cretaceous Symposium, Abstracts List of Participants[C]. Geozentrum; University of Vienna, 2000:72.
    [60] M.K.Macphail, E.M.Truswell, Palynology of Neogene Slope and Rise deposits from ODP Site 1165 and 1167, East Antarctica, Proceedings of the Ocean Drilling Program, Scientific Results Volume 188.
    [61] Melinte M C,Jipa D C. Campanian-Masstrichtian marine red beds in Romania: Biostratigraphical and genetical significance[J].Cretaceous Research, 2005,26(1):49-56.
    [62] Michalik J, et al. Excursion into the westernmost central Carpathians (Slovakia) [A]. 6~(th) International Cretaceous Symposiu. August 27~September 4, 2000, Vienna, Austria. 39.
    [63] Mihaela Carmen Melinte, Dan Jipa, Campainian-Masstrichtian mareing red beds in Romania: biostratigraphic and geetic significance. Cretaceous Research 26(2005):49-56.
    [64] Miller K G, Wight J D, Fairbanks R D. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion[J]. J Geophys Res, 1991, 96:6829-6848.
    [65] Neal J E, Stein J A, Gamber J H. Graphic Correlation and sequence stratigraphy of thePaleogene of NW Europe [J]. Journal of Micropalaeontology, 1994,13: 55-80.
    [66] Neal J E, Stein J A, Gamber J H. Integration of the graphic correlation methology in a sequence stratigraphic study: examples from North Sea Paleogene sections [A]. In: Mann K O and Lane H R, eds.. Graphic correlation [C]. SEPM Special Publication, 1995, 53: 95-113.
    [67] Paytan A, Kastner M, Campbell D, et al. Seawater sulfur isotope fluctuations in the Cretaceous[J].Science, 2004,304:1663-1665.
    [68] Poul Schioler, James S. Crampton, Malcolm G Laird, Palynofacies and sea-level changes in the Middle Coniacian-Late Campanian(Late Cretaceous) of the East Coast Basin, New Zealand, Palaeogeograph, Palaeoclimatology, Palaeoecology, 188(2002): 101-125.
    [69] Premoli S I, Silter W V. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottacione section, Gubbio, Italy [J]. Paleont. Italica, 1994, 82: 1-89.
    [70] Premoli S I. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy II. Biostratigraphy [J]. Geological Society of American Bulletin, 1977, 88: 371—374.
    [71] Richard D.Norris, Dick Kroon, Brian T.Huber, Jochen Erbacher, Cretaceous-Palaeogene ocean and climate change in the subtropical North Altantic. Procedding of the Ocean Drilling Program, Scientific Results Volume 171B.
    [72] Sadler-Peter-M, Interval-free diversity curves and longevity histories; stratigraphic sequencing algorithms applied to the graptolite clade, Geological Society of America 33; 6, Pages 31.2001.
    [73] Salaj J, GASPARIKOVA V. Turonian and Coniacian microbiostratigraphy of the Tethys region on the basis of foraminifera and nannofossils [J]. Zitteliana, 1983,10: 595—607.
    [74] Sarti M, HU Xiumian. Cretaceous — Tertiary Scaglia Rossa in Italy [A]. Inaugural workshop of IGCP 463, Ancona, Italy, Programme and Abstracts [C]. 2002, 29.
    [75] Schlanger et al., 1987; ArtHur,Sageman, 1994, Wolfgang Kuhnt et al., 1997.
    [76] Scott R W, Franks P C, STEIN J A, et al. Graphic correlation tests the synchronous Mid-Cretaceous depositional cycles: Western Interior and Gulf Coast [A]. In: Rocky Mountain Association of Geologists, Unconformity related Hydrocarbons in Sedimentary Sequences [C]. Denver, Colorado, 1994. 89-98.
    
    [77] Shaw A B M. Time in stratigraphy [M]. McGraw-Hill, New York, 1964.1-365.
    [78] Shipboard Scientific Party, Explanatory notes, Procedding of the Ocean Drilling Program, Initial Results Volume 173.
    [79] Shipboard Scientific Party, Leg 181 Summary:Southwest Pacific Paleoceanography.http://www-odp.tamu.edu/publications/181_IR/chap_01/chap_01.htm
    [80] Shipboard scientific party, Lithology, Procedding of the Ocean Drilling Program, Sceintific Results Volume 210.
    [81] Shipboard Scientific Party, Lithology, Procedding of the Ocean Drilling Program, Sceintific Results Volume 208. http://www-odp.tamu.edu/publications/208_IR/chap_02/c2_4.htm
    [82] Shipboard Scientific Party, Lithology, Procedding of the Ocean Drilling Program, Sceintific Results Volume 208.http://www-odp.tamu.edu/publications/208_IR/chap_08/c8_.htm
    [83] Shipboard Scientific Party, Lithostratigraphy and petrology.
    [84] Shipboard Scientific Party, Site 1124: Rekohu Drift—from the K/T Boundary to the Deep Western Boundary Current. http://www-odp.tamu.edu/publications/181_IR/chap_08/chap_08.htm
    [85] Shipboard Scientific Party, Site 1138, Procedding of the Ocean Drilling Program, Sceintific Results Volume 183. http://www-odp.tamu.edu/publications/183_IR/chap_06/c6_.htm
    [86] Shipboard Scientific Party, Site 1183, Procedding of the Ocean Drilling Program, Sceintific Results Volume 192. http://www-odp.tamu.edu/publications/192_IR/chap_03/chap_03.htm
    [87] Shipboard Scientific Party, Site 1186, Procedding of the Ocean Drilling Program, Sceintific Results Volume 192. http://www-odp.tamu.edu/publications/192_IR/chap_06/chap_06.htm
    [88] Shipboard Scientific Party, Site 1187, Procedding of the Ocean Drilling Program, Sceintific Results Volume 192. http://www-odp.tamu.edu/publicafions/192_IR/chap_07/chap_07.htm
    [89] Shipboard Scientific Party, Site 1207, Procedding of the Ocean Drilling Program, Sceintific Results Volume 198. http://www-odp.tamu.edu/publications/198_IR/chap_03/chap_03.htm
    [90] Shipboard Scientific Party, Site 1213, Procedding of the Ocean Drilling Program, Sceintific Results Volume 198 http://www-odp.tamu.edu/publications/198_IR/chap_09/chap_09.htm
    [91] Shipboard Scientific Party, Site 1214, Procedding of the Ocean Drilling Program, Sceintific Results Volume 198.http://www-odp.tamu.edu/publications/198_IR/chap_10/chap_10.htm
    [92] Timothy J. Bralower, Paul D. Fullagar, Taylor A. McCay, Kenneth G. Macleod, James Bergen,Eglee Zapata, Strontium isotope stratigraphy of Cretaceous sediments at site 1183 and 1186, Ontong Java Plateau, Procedding of the Ocean Drilling Program, Sceintific Results Volume 192.
    [93] Veizer J, Alad, Azmy K, et al. ~(87)Sr/~(86)Sr, §~(13)C and §~(18)O evolution of Phanerozoic seawater[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 1997,161:59-88.
    [94] Veizer J, Bruckschen P, Pawellek F, et al. Oxygen isotpoe evolution of Phanerozoic seawater[J]. Palaeogeogrphy, Palaeoclimatology, Palaeoecology, 1997,132:159-172.
    [95] Wagreich M, Decker K. Sedimentary tectonics and subsidence modelling of the type Upper Cretaceous Gosau basin (Late Cretaceous, Eastern Alps, Austria) [J]. International Journal of Earth Sciences, 2001, 90: 714-726.
    [96] Wagreich M, Faupl P. Palaeogeography and geodynamic evolution of the Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps, Austria) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994,110:235—254.
    [97] Wagreich M, Krenmayer H G Upper Cretaceous Oceanic Red beds(CORB) in the Northern Calcareous Alps: Slope topography and clastic input as primary controlling factors[J].Cretaceous R esearch, 2005,26(l):57-64.
    [98] Wan X Q, Lamold M A, SI J L,et al.Foraminiferal stratigraphy of Cretaceous red beds in southern Tibet[J]. Cretaceous R esearch, 2005,26(1):43-48.
    [99] Wang C S, Hu X M, Jansa L F, et al. Late Cretaceous oceanic oxic event in southern Tibet[J]. Cretaceous Research, 2005, 26: 21-32.
    [100] Wang CS, HuXM, Jansa L, et al. Upper Cretaceous Oceanic Red beds(CORB) in southern Tibet: A major change from anoxic to oxic condition[J].Cretaceous Reaserch, 2005,26(l):3-20.
    [101] Wang Cheng shan, Hu Xiumian. Cretaceous world and oceanic red beds. Earth Science Frontiers, 2005, 12, (2): 11-21.
    [102] Xiumian Hua,, Luba Jansab, Chengshan Wang, Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments,Cretaceous Research 26 (2005) 3-20.
    [103] Xixi Zhao, Bryan C. Ladner, Kristeen Roessig, Sherwood W. Wise Jr, Elspeth Urquhart, Magnetostratigraphy and biostratigraphy of Cenozoic sediments recovered from the Iberia Abyssal Plain, Procedding of the Ocean Drilling Program, Scientific Results Volume 173.
    [104] Yusuke Suganuma and James G Ogg, Campanian through Eocene Magnetostratigraphy of Sites 1257-1261, ODP Leg 207, Demerara Rise (WesternEquatorial Atlantic), Proceedings of the Ocean drilling Program, Scientific Results, VOL 207.
    [105] Zou Y R, Kong F, Peng P A, et al. Orangic geochemical characterization of Cretaceous red beds in southern Tibet[J]. Cretaceous Research, 2005, 26(1): 65-71.
    [106] IGCP463/494秘书处,“白垩纪大洋红层——海洋/气候响应”研究进展综述,地学前缘,2005,12(2):069-080.
    [107] 陈曦,王成善,李祥辉,胡修棉,地学前缘,2005,12(2):61-68.
    [108] 胡修棉.藏南白垩系沉积地质与上白垩统海相红层——大洋富氧事件[D].成都,成都理工大学,2002,216.
    [109] 李祥辉,胡修棉,黄永健等,白垩纪古海洋气候变化及主要问题,地球科学进展,2004,19:83-92。
    [110] 李祥辉;王成善;万晓樵;陶然,藏南江孜县床得剖面侏罗-白垩纪地层层序及地层划分,地层学杂志,1999,4:303-309.
    [111] 穆恩之;文世宣;王义刚;章炳高;尹集祥,Stratigraphy of the mount Jolmo Lungma region in Southern Tibet,China,Science in China, Ser.A,中国科学A辑(英文版),1973,1:24-35.
    [112] 尚武,地质资源数字化信息建设的原则及若干问题的探讨,2005,7:38-41。
    [113] 万晓樵,李国彪,司家亮,西藏南部晚白垩世-古新世大洋红层的分布与时代,地学前缘,2005,12(2):31-37.
    [114] 王成善、胡修棉,白垩纪世界与大洋红层,地学前缘,2005,12(2),11-21.
    [115] 王成善;李祥辉;万晓樵;陶然,西藏南部江孜地区白垩系的厘定,地质学报,2000,2:97-107.
    [116] 汪品先,深海研究和新世纪的地球科学[A]。路甬祥,百年科技回顾与展望——中外著名学者学术报告[C].上海:上海教育出版社,2000:181-211.
    [117] 王义刚;孙东立;何国雄;喜马拉雅地区(我国境内)地层研究的新认识,地层学杂志.1980,1:31-42.
    [118] 王义刚;王玉净;吴浩若;西藏南部加不拉组问题的讨论及隆子地区下侏罗统的发现,地质科学,1976,2:55-64.
    [119] 魏玉帅,王成善,土耳其-高加索-喜马拉雅一线白垩纪大洋红层对比,地学前缘,2005,12(2):51-59.
    [120] 文世宣;青藏高原白垩纪双壳类生物地理,古生物学报,1999,1:1-23。
    [121] 吴浩若;王东安;王连城;西藏南部拉孜—江孜一带的白垩系地质科学,1977,3:89-101.
    [122] 吴浩若;西藏南部白垩纪深海沉积地层——冲堆组及其地质意义,地质科学,1984.1:79-92.
    [123] 吴浩若;西藏南部江孜地区晚白垩世晚期及早第三纪(?)地层,地层学杂志,1987,2:78-94.
    [124] 徐钰林;茅绍智,西藏南部白垩纪—早第三纪钙质超微化石及其沉积环境,微体古生物学报,1992,4:25-33.
    [125] 杨遵仪;吴顺宝,西藏南部晚侏罗世及早白垩世的若干箭石,古生物学报,1964,2:65-77.
    [126] 曾萱,李祥辉,王成善等,浅析海相沉积地层数据库的建立流程——以全球白垩纪大洋红层(CORB)综合数据库的建立为例,成都理工大学学报(自然科学版),33(2):140-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700