MR磁敏感加权成像在肝硬化结节多步癌变中的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分MR磁敏感加权成像与T2*评价肝硬化铁沉积的比较研究及病理对照
     目的评价MR磁敏感加权成像(SWI)在肝硬化铁沉积检出及定量分析中的价值,与T2*序列比较并与病理对照。材料与方法55例病理证实的肝硬化患者纳入本研究,男性46例,女性9例,年龄26-79岁,平均44.6±7.1岁。术前行MRI检查,扫描序列包括梯度回波(GRE)单回波及多回波T2*和SWI。两名影像诊断医师共同阅片进行定性分析及定量评价。肝实质内斑点状的局灶性低信号区定义为SN,3mm以下SN定义为微小SN。对T2*及SWI均阳性的病例计数SN总数及微小SN数目。根据结节与背景肝组织的对比度分为三个等级。术后标本行普鲁士蓝染色半定量评价铁沉积程度。比较SWI与T2*检出SN数目及显示程度的差别。比较相位值与T2*值及铁沉积评分的相关性。。以铁沉积评分1-2分为轻度铁沉积组,3-4分为中重度铁沉积组,比较两组相位值差别,利用ROC曲线确定其相位值阈值及诊断效能。结果54例(98.2%)患者病理可见铁沉积,1级、2级、3级、4级铁沉积分别有15例(27.8%)、16例(29.6%)、18例(33.3%)和5例(9.3%),肝细胞型、网状内皮系统型和混合型铁沉积分别有28例(51.9%)、3例(5.5%)和23例(42.6%)。SWI检出肝硬化铁沉积的总体敏感性高于T2*(66.7%vs90.7%,P=0.002);其优势体现在对1级(26.7%vs73.3%,P=0.027)和2级铁沉积(56.3%vs93.8%,P=0.037)的检出能力上;对于3级和4级铁沉积, SWI和T2*均能检出。SWI检出SN的总数及微小SN的数目多于T2*(p=0.000).SWI图像上表现为3级对比的SN(94.4%)明显高于T2*(36.1%)(p=0.000)。SWI相位值与铁沉积程度呈强负相关(r=-0.803),与T2*值呈正相关(r=0.771)。3-4级铁沉积组的SWI相位值与T2*值均低于1-2级铁沉积组(p=0.000)。结论SWI能够敏感检出并精确定量肝硬化铁沉积,是肝硬化患者铁沉积无创性评价的重要方法。
     第二部分肝硬化结节多步癌变的磁敏感加权成像表现与病理对照研究
     目的观察肝硬化结节多步癌变的磁敏感加权成像(SWI)表现并与病理对照,以加深对结节癌变过程的认识。材料与方法71例病理证实的肝硬化背景下的83个结节纳入本研究,异型增生结节(DN)9例共9个病灶,DN癌变7例共15个病灶,肝细胞癌(HCC)57例共59个病灶。术前行3T MRI检查,平扫序列包括横断面快速小角度激发(FLASH) T1WI、呼吸触发快速自旋回波(FSE) T2WI和SWI,动态增强采用梯度回波(GRE)三维屏气内插(VIBE) TIWI抑脂序列,动脉期、门脉期及平衡期分别为25s、60s、180s。由两位腹部影像诊断医师共同阅片,首先评价背景肝脏有无铁沉积,再观察结节的信号特征。术后标本行普鲁士蓝染色,评价结节及背景肝脏铁沉积程度及模式。结果68例(95.8%)背景肝脏可见铁沉积。9个DN均见铁沉积,铁沉积模式与背景肝脏均保持一致;7个DN铁沉积程度与背景肝脏一致,2个低于背景肝脏。SWI显示了14个DN癌变结节,呈均匀或不均匀高信号,其中6个可见“结中结”,背景结节呈低信号,“结中结”呈高信号,背景结节病理均见铁沉积,“结中结”有1个见1级铁沉积,另5个无铁沉积。57例HCC患者中,54例背景肝脏见不同程度铁沉积,有4例1级铁沉积病例SWI未显示;50例SWI显示的背景肝脏有铁沉积者共有55个HCC病灶,3个HCC病理见1-2级铁沉积,52个HCC病理无铁沉积;HCC在SWI图像上呈高信号,但17个(30.4%)病灶因瘤内出血见斑片状低信号区,其中3cm以下者3个,超过3cm者14个。结论肝硬化结节多步癌变时经历了铁廓清过程。在铁沉积背景下,DN呈等或低信号,DN癌变结节及HCC因铁廓清而呈为结节样或肿块样高信号。
     第三部分MR磁敏感加权成像对肝硬化背景下小肝癌的诊断研究
     目的评价MR磁敏感加权成像(SWI)对肝硬化背景下小肝癌(sHCC)与癌前结节的鉴别诊断价值,以提高sHCC诊断准确性。材料与方法67例肝硬化背景下的105个结节(≤3cm)纳入本研究,其中异型增生结节(DN)22个结节,DN癌变结节8个,sHCC54个。术前行3T MRI检查,平扫序列包括横断面快速小角度激发(FLASH)T1WI、呼吸触发快速自旋回波(FSE) T2WI (?)口SWI,动态增强采用梯度回波(GRE)三维屏气内插(VIBE) TIWI抑脂序列,动脉期、门脉期及平衡期分别为25s、60s、180s。两位腹部影像诊断医师在工作站独自阅片。首先评价常规MRI序列,诊断HCC的标准如下:TIWI呈低信号,T2WI呈高信号,动脉期病灶明显强化,门脉期或平衡期呈低信号,符合“快进快出”的强化特征。随后将SWI图像纳入分析,诊断标准如下:①结节内见均匀铁沉积则判定为DN;②在低信号的铁沉积肝脏背景中,局灶性、结节或肿块样的乏铁区(高信号)判定为HCC,但需结合常规序列除外囊肿和血管瘤;③结节内有铁沉积,但内部可见结节样的乏铁区也判断为HCC;④无铁沉积背景时,无论结节相对于背景肝脏呈何种信号,均判定为不能明确的结节,其诊断仍以常规MRI为准。结果两位阅片者之间结果一致性良好,Kappa值在常规MRI评价组为0.923,常规MRI联合SWI评价组为0.865。基于病灶数目分析,阅片者1根据常规序列及联合SWI序列诊断DN癌变结节及sHCC的敏感性、阳性预测值和曲线下面积分别为80.6%和93.5%、92.6%和92.7%、0.804和0.898,阅片者2根据常规序列及联合SWI序列诊断DN癌变结节及sHCC的敏感性、阳性预测值和曲线下面积分别为80.6%和85.5%、90.9%和94.6%、0.782和0.859。对于2cm以下小病灶,两位阅片者诊断信心分别由3.40±0.91和3.41±0.92提升至3.86±0.47和3.85±0.57(p=0.005和0.014)。结论SWI能够提高肝硬化背景下sHCC与癌前结节的鉴别诊断准确性,对于2cm以下小病灶可以明显提升诊断信心。
     第四部分MR磁敏感加权成像评价进展期肝细胞癌血管生成的初步研究
     目的探讨MR磁敏感加权成像(SWI)在进展期肝细胞癌血管生成无创性评价中的应用价值。材料与方法34例进展期肝细胞癌(HCC)纳入本研究,其中男性32例,女性2例,年龄28-76岁,平均46.5岁。术前行3T MRI检查,平扫序列包括横断面快速小角度激发(FLASH) T1WI、呼吸触发快速自旋回波(FSE) T2WI和SWI,动态增强采用梯度回波(GRE)三维屏气内插(VIBE) T1WI抑脂序列,动脉期、门脉期及平衡期分别为25s、60s、180s。术后标本行CD34微血管标记并计数微血管密度(MVD),比较SWI相位值与MVD的相关性,比较不同级别HCC的MVD、SWI相位值及瘤内出血发生率差别。结果34例HCC中,Endonson-Steiner1级3例、2级17例、3级14例。HCC的SWI相位值与MVD呈中等正相关(r=0.486, p=0.004)。 Endonson-Steiner1-2级HCC的MVD(71.1±29.9条/视野)明显低于3级HCC(107.0±42.8条/视野)(P=0.018)。Endonson-Steiner1-2级与3级HCC的SWI相位值(173.9±70.8×10-3vs180.1±49.5×10-3)及瘤内出血发生率(70%vs64.3%)无统计学差别(P=0.795和0.726)。结论SWI评价HCC肿瘤血管生成的价值有限,可能与肿瘤氧和程度较高有关。
PART Ⅰ
     Detection and Quantification of Iron deposition in Cirrhotic Livers Using MR Susceptibility-weighted Imaging:Comparison with T2*-weighted Imaging and Correlation with Histopathology
     Purpose To preospectively compare susceptibility-weighted Imaging (SWI) and T2*-weighted imaging in the detection and quantification of iron deposition in cirrhotic livers using histopathologic result as the reference standard. Materials and methods Fifty-five patients (46men, nine women; age range26-79years) with pathologically confirmed cirrhosis underwent hepatic MR imaging with SWI, single-echo and multi-echo T2*sequences. For qualitative analysis, two sets of images from SWI and single-echo T2*were analyzed in random order for assessment of presence of hepatic iron deposition. Nodules that were hypointense to background liver parenchyma were considered siderotic nodules (SN). For cases with SN detected by SWI and T2*, number of SN as well as minute SN with diameter less than3mm were counted, respectively. The conspicuity of SN was assessed using a scale from1to3(1, weak;2, moderate;3, prominent). For quantitative analysis, SWI phase value and T2*value were measured. Prussian blue staining was performed for semiquantification of hepatic iron content. Correlation between SWI phase value and hepatic iron concentration were determined. SWI phase values were compared between patients stratified by hepatic iron grade and were correlated with histopathologic iron grade. Results Positive iron staining was found in54of55patients (98.2%) with grade1(n=15), grade2(n=16), grade3(n=18) and grade4(n=5). A significant improvement in the sensitivity for detecting iron deposition in cirrhotic livers was achieved by SWI compared with T2*(66.7%vs90.7%, p=0.002)., especially for grade1(26.7%vs73.3%, p=0.027) and grade2(56.3%vs93.8%, p=0.037). The number of SN and minute SN detected by SWI were significantly greater than that of T2*(p=0.000and0.000, respectively). Overall conspicuity of SN on SWI images was better than that on T2*images. Patients with iron grade3or greater had lower SWI phase values than those with iron grade2or less (p=0.000). There was a strong negative correlation between SWI phase values and histopathologic iron grade (r=r=-0.803) and a significant correlation between SWI and T2*(r=0.771). Conclusion Detection and quantification of iron deposition in cirrhotic livers could be better performed by SWI compared with T2*.
     PART Ⅱ
     Susceptibility-weighted Imaging of Multistep Hepatocarcinogenesis in Cirrhotic Livers:Correlation with Pathology
     Purpose To observe imaging characteristics of multistep hepatocarcinogenesis in cirrhotic livers on susceptibility-weighted imaging and correlate with histopathologic results. Materials and Methods Seventy-one patients with83nodules in cirrhotic livers underwent hepatic MR imaging with SWI, unenhanced (T1-and T2-weighted imaging) and gadolinium-enhanced dynamic MRI. Two radiologists reviewed MR images by consensus. Imaging characteristics of dysplastic nodules (DN), DN with malignant foci and HCC were evaluated. Prussian blue staining was performed for semiquantification of hepatic iron content and cirrhosis-associated nodules. Results Positive iron staining of background liver parenchyma was found in68of71patients (95.8%) and3HCC patients were iron-negative staining of background liver parenchyma. Nine DNs appeared as hypointensity or isointensity with pathologically confirmed similar (n=7) or slighly decreased (n=2) iron deposition compared with background liver parenchyma. SWI detected14of15DNs with malignant foci. Seven cases appeared as homogeneous hyperintensity and1case appeared as heterogeneous hyperintensity due to intratumoral hemorrhages. The remaining6cases demonstrated as nodule-in-nodule appearance with iron deposition in all background nodules, iron deposition with grade1in one internal HCC foci, and iron-free in5internal HCC foci. The remaining50patients with hepatic iron deposition had55HCC lesions. Three HCC lesions had iron deposition with grade1to2and the remaining52HCC lesions were pathologically iron-resistant. HCC appeared as hyperintensity compared with siderotic surrounding liver parenchyma. However, HCCs with diameter larger than3cm usully demonstrated heterogeneous hyperintensity due to intratumoral hemorrhage. Conclusion SWI could accurately visualize dynamic iron clearance on multistep hepatocarcinogenesis in cirrhotic livers with siderosis and iron-free hyperintense nodules on SWI images should be considered the possibility of HCC.
     PART III
     Added Value of Susceptibility-weighted Imaging to Unenhanced and Gadolinium-enhanced Dynamic MR imaging for Characterization of Small Hepatocellular Carcinoma in Cirrhotic Livers
     Purpose To assess the added value of MR susceptibility-weighted imaging (SWI) to unenhanced and gadolinium-enhanced dynamic MRI for characterization of small hepatocellular carcinomas (sHCCs) in cirrhotic livers. Materials and Methods Sixty-seven cirrhotic patients with105nodules with diameter less than3cm in cirrhotic livers underwnet hepatic MR imaging with SWI, unenhanced (T1-and T2-weighted imaging) and gadolinium-enhanced dynamic MRI. Two abdominal radiologists independently evaluated two image sets (conventional MRI set, unenhanced and gadolinium-enhanced dynamic images; SWI set, SWI, unenhanced and gadolinium-enhanced dynamic MRI) and assigned confidence levels for diagnosis of HCC using a five-point scale for each lesion. Interreader varaibility was assessed and sensitivity, positive predicitive value (PPV), and area under the alternative-free response receiver operating characteristic curve (Az) was calculated for each image set. Results The Az value of SWI set was larger than the conventional MRI set by both readers (reader1,0.804vs0.898, p<0.05; reader2,0.782vs0.859, p<0.05). Sensitivity with the combined susceptibility-weighted imaging and gadolinium set (93.5%) was significantly higher than those with the gadolinium set (80.6%)(P<0.05). The addition of susceptibility-weighted images lead to a change in diagnosis for12lesions by both observers, which at set1were assigned a confidence level of1or2but at additional reading of susceptibility-weighted images were assigned a confidence level of3or4. For the positive predictive values, each image showed a similar value for each observer. For confidence levels for diagnosis of HCC with diameter smaller than2cm (reader1,3.86±0.47vs3.86±0.47, p=0.005; reader2,3.41±0.92vs3.85±0.57, p=0.014)。 Conclusion SWI could provide additional valuable inforamtion to unenhanced and gadolinium-enhanced dynamic imaging for characterization of sHCC in cirrhotic livers.
     PART Ⅳ
     Evaluating Tumor Angiogenesis of Advanced Hepatocellular Carcinoma Using Susceptibility-weighted Imaging:A Preliminary Study
     Purpose To investige the value of susceptibility-weighted imaging (SWI) for evaluating tumor angiogenesis of advanced hepatocellular carcinoma (HCC). Materials and methods Thirtyty-four patients (32men,2women; age range28-76years) with pathologically confirmed HCC larger than3cm in diameter underwnet hepatic MR imaging with SWI, unenhanced and gadolinium-enhanced dynamic MRI. SWI phase value was measured and correlated with microvessel density (MVD) counted with immunhischemistry. SWI phase values and frequency of intratumoral hemorrhage of HCC with histopathological grade were compared. Results A moderate positive correlation was found beween the SWI phase values and MVD (r=0.486, p=0.004). There was no significant difference between SWI phase values, frequency of intratumoral hemorrhage of HCC of Endonson-Steiner1and2compared with HCC of grade3(P=0.795). Conclusion SWI demonstrated limited value for noninvasive assessment of angiogenesis of advanced HCC due to the possiblity of intratumoral high oxygen level.
引文
1. Sherman M. Epidemiology of hepatocellular carcinoma. Oncology.2010;78 Suppl 1:7-10.
    2. Benvegnu L, Gios M, Boccato S, et al. Natural history of compensated viral cirrhosis:a prospective study on incidence and hierarchy of major complications. Gut.2004; 53 (5):744-749.
    3. Kim YS, Um SH, Ryu HS, et al. The prognosis of liver cirrhosis in recent years in Korea. J Korean Med Sci.2003;18(6):833-841.
    4. Planas R, Balleste B, Alvarez MA, et al. Natural history of decompensated hepatitis C virus-related cirrhosis. Study of 200 patients. J Hepatol.2004;40(5): 823-830.
    5. Hytiroglou P, Park YN, Krinsky G, et al. Hepatic precancerous lesions and small hepatocellular carcinoma. Gastroenterol Clin North Am.2007;36(4):867-887.
    6. Hanna RF. Aguirre DA, Kased N, et al. Cirrhosis-associated hepatocellular nodules:correlation of histopathologic and MR imaging features. Radiographics. 2008;28(3):747-769.
    7. Shinmura R, Matsui O, Kobayashi S, et al. Cirrhotic nodules:association between MR imaging signal intensity and intranodular blood supply.Radiology.2005; 237 (2):512-519.
    8. Park YN. Update on precursor and early lesions of hepatocellular carcinomas. Arch Pathol Lab Med.2011;135(6):704-715.
    9. Kim MJ. Current limitations and potential breakthroughs for the early diagnosis of hepatocellular carcinoma. Gut Liver.2011;5(1):15-21.
    10. Ludwig J, Hashimoto E, Porayko MK, et al. Hemosiderosis in cirrrhosis; a study of 447 native livers. Gastroenterology.1997;112(3):882-888.
    11. Zhang JB, Krinsky GA. Iron-containing nodules of cirrhosis. NMR Biomed. 2004; 17(7):459-464.
    12. Eriksson L C, Torndal U-B, Andersson G N. The transferrin receptor in hepatocyte nodules:binding properties, subcellular distribution and endocytosis. Carcinogenesis 1986; 7(9):1467-1474.
    13. Eriksson L C, Andersson GN. Membrane biochemistry and chemical hepatocarcinogenesis. Crit Rev Biochem Mol Biol.1992; 27(1-2):1-55
    14. Nahon P, Ganne-Carrie N, Trinchet JC, et al. Hepatic iron overload and risk of hepatocellular carcinoma in cirrhosis. Gastroenterol Clin Biol.2010;34(1):1-7.
    15. Terada T, Kadoya M, Nakanuma Y,et al. Iron-accumulating adenomatous hyperplastic nodule with malignant foci in the cirrhotic liver. Histopathologic, quantitative iron, and magnetic resonance imaging in vitro studies.Cancer.1990; 65(9):1994-2000.
    16. Terada T, Nakanuma Y. Iron-negative foci in siderotic macroregenerative nodules in human cirrhotic liver. A marker of incipient neoplastic lesions. Arch Pathol Lab Med.1989;113(8):916-20.
    17. Honda H, Kaneko K, Kanazawa Y,et al. Imaging of hepatocellular carcinomas: effect of Cu and Fe contents on signal intensity. Abdom Imaging.1997;22(1):60-66.
    18. Gandon Y, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet. 2004;363:357-362.
    19. Haacke EM, Xu YB, Cheng YC, et al. Susceptibility weighted imaging (SWI). MRM.2004;52(3):612-618.
    20. Thomas B, Somasundaram S, Thamburaj, et al. Clinical applications of susceptibility-weighted imaging of the brain-a pictorial review. Neuroradiology. 2008,50(2):105-116.
    21. Haacke EM, Mittal S, Wu Z, et al. Susceptibility weighted imaging:technical ascepts and clinical applications, part. AJNR Am J Neuradiol.2009;30(1):19-30.
    22. Haacke EM, Mittal S, Wu Z, et al. Susceptibility weighted imaging:technical ascepts and clinical applications, part 2. AJNR Am J Neuradiol.2009;30(2):232-252.
    23. Zhang J, Zhang Y, Wang J, et al. Characterizing iron deposition in Parkinson's disease using susceptibility-weighted imaging:an in vivo MR study. Brain Res. 2010;1330:124-130.
    24. Zhu WZ, Zhong WD, Wang W, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology.2009;253(2):497-504.
    25. Costa C, Soares R, Schmitt F. Angiogenesis:now and then. APMIS.2004; 112(7-8):402-412.
    26. Kerbel RS. Tumor angiogenesis. N Engl J Med.2008;358(19):2039-2049.
    27. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat. 1995;36(2):169-80. Review.
    28. Park MJ, Kim HS, Jahng GH, et al. Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas:comparison with MR perfusion imaging. AJNR.2009;30:1402-1408.
    29. Pinker K, Noebauer -Huhmann IM, Stavrou I. High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR,2007;28:1280-1286.
    1. Ludwig J, Hashimoto E, Porayko MK, et al. Hemosiderosis in cirrrhosis; a study of 447 native livers. Gastroenterology.1997;112(3):882-888.
    2. Ito K, Mitchell DG, Gabata T, et al. Hepatocellular carcinoma:association with increased iron deposition in the cirrhotic liver at MR imaging. Radiology.1999; 212(1):235-40.
    3. Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet.2004;363:357-362.
    4. Allen KJ, Gurrin LC, Constantine CC,et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med.2008;358(3):221-230.
    5. Chapoutot. Liver iron excess in patients with hepatocellular carcinoma developed on viral C cirrhosis. Gut 2000;46:711-714.
    6. Nahon et al. Liver iron, HE gene mutations, and hepatocellular carcinoma occurrence in patients with cirrhosis. Gastroenterology.2008; 134:102-1110.
    7. Zhang J, Zhang Y, Wang J, et al. Characterizing iron deposition in Parkinson's disease using susceptibility-weighted imaging:an in vivo MR study. Brain Res, 2010;1330:124-130.
    8. Zhu WZ, Zhong WD, Wang W, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology,2009,253(2):497-504.
    9. Scheuer PI, et al. Hepatic pathology in relatives of patients with hemochromatosis. J Pathol Bacterial 1962;84:53-63.
    10. Relationship between the pattern of hepatic Iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology.
    11. Haacke EM, Xu YB, Cheng YC, et al. Susceptibility weighted imaging (SWI) [J]. MRM,2004,52(3):612-618.
    12. Deistung A, Rauscher A, Sedlacik J,et al. Susceptibility weighted imaging at ultra high magnetic field strengths:theoretical considerations and experimental results.Magn Reson Med,2008,60(5):1155-1168.
    13.Goos JD, van der Flier WM, Knol DL,et al. Clinical relevance of improved microbleed detection by susceptibility weighted magnetic resonance imaging. Stroke,2011,42(7):1894-1900.
    14. Haacke EM, Cheng YNC, House W, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging,2005,23(1):1-25.
    15. Rcichenbach JR, Jonetz-Mentzel L, Fitzek C, et al. High-resolution blood oxygen-level dependent MR venography (HRBV):a new technique[J]. Neuroradiology,2001,43(5):364-369.
    16. Takeuchi M, Matsuzaki K, Nishitani H. Susceptibility weighted MRI of endometrioma:preliminary results[J]. AJR Am J Roentgenol,2008,191(5):1366-1370.
    17. Mie MB, Nissen JC, Zollner FG, et al. Susceptibility weighted MR imaging (SWI) of the kidney at 3T-initial results[J]. Z Med Phys,2010,20(2):143-150.
    18. Lee KH, Liapi E, Vossen JA, et al. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer:evaluation with MR imaging and implication for therapy[J]. J Vasc Interv Radiol,2008,19 (10):1490-1496.
    19. Machann J, Haap M, Liebig G, et al. Susceptibility-weighted MRI for assessment of ferritin content in liver and spleen in people at high risk for type 2 diabetes and detection of changes after phlebotomy[J]. Proc Int Soc Mag Reson Med,2007,15: 219.
    20.李秋云,肖恩华,李华兵,等.磁敏感加权成像在肝脏局灶性病变的初步应用.中国临床医学影像杂志.2011;22(2):100-104.
    21.Gandon Y, Guyader D, Heautot JF et al. Hemochromatosis:diagnosis and quantification of liver iron with gradient-echo MR imaging. Radiology.1994; 193 (2):533-538.
    22. Queiroz-Andrade M, Blasbalg R,et al. MR imaging findings of iron overload. Radiographics.2009;29(6):1575-1589.
    23. Chandarana H, Lim RP, Jensen JH, et al. Hepatic iron deposition in patients with liver disease:preliminary experience with breath-hold multiecho T2*-weighted sequence. AJR Am J Roentgenol.2009;193(5):1261-1267.
    24. Lim RP, Tuvia K, Hajdu CH, et al. Quantification of hepatic iron deposition in patients with liver disease:comparision of chemical shift imaging with single-echo T2*-weighted imaging. AJR Am J Roentgenol.2010; 194(5):1288-1295.
    25. Kirk P, He T, Anderson LJ, et al. International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging.2010;32(2):315-319.
    26. Tanner MA, He T, Westwood MA, et al. Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron. Haematologica.2006;91(10):1388-91.
    27. Kayali et al. Hemosiderosis is associated with accelerated decompensation and decreased survival in patients with cirrhosis. Liver International 2005,25:41-48.
    28. Ito K, Mitchell DG, Gabata T, et al. Hepatocellular carcinoma:association with increased iron deposition in the cirrhotic liver at MR imaging. Radiology. 1999;212(1):235-240.
    29. Nahon P, Sutton A, Rufat P, et al. Liver iron, HFE gene mutations, and hepatocellular carcinoma occurrence in patients with cirrhosis. Gastroenterology. 2008;134(1):102-110.
    30. Chapoutot C, Esslimani M, Joomaye Z, et al. Liver iron excess in patients with hepatocellular carcinoma developed on viral C cirrhosis.Gut.2000;46(5):711-714.
    31. Nahon P, Ganne-Carrie N, Trinchet JC, et al. Hepatic iron overload and risk of hepatocellular carcinoma in cirrhosis. Gastroenterol Clin Biol.2010;34(1):1-7.
    32. Terada T, Nakanuma Y. Survey of iron-accumulative macroregenerative nodules in cirrhotic livers. Hepatology.1989; 10(5):851-854.
    33. Honda H, Kaneko K, Kanazawa Y,et al. Imaging of hepatocellular carcinomas: effect of Cu and Fe contents on signal intensity. Abdom Imaging.1997;22(1): 60-6.
    34. Terada T, Kadoya M, Nakanuma Y,et al. Iron-accumulating adenomatous hyperplastic nodule with malignant foci in the cirrhotic liver. Histopathologic, quantitative iron, and magnetic resonance imaging in vitro studies.Cancer.1990; 65(9):1994-2000.
    1. Sherman M. Epidemiology of hepatocellular carcinoma.Oncology.2010;78 Suppl 1:7-10.
    2. Benvegnu L, Gios M, Boccato S, et al. Natural history of compensated viral cirrhosis:a prospective study on incidence and hierarchy of major complications. Gut.2004;53 (5):744-749.
    3. Kim YS, Um SH, Ryu HS, et al. The prognosis of liver cirrhosis in recent years in Korea. J Korean Med Sci.2003;18(6):833-841.
    4. Planas R, Balleste B, Alvarez MA, et al. Natural history of decompensated hepatitis C virus-related cirrhosis. Study of 200 patients. J Hepatol.2004;40(5): 823-830.
    5. Hytiroglou P, Park YN, Krinsky G, et al. Hepatic precancerous lesions and small hepatocellular carcinoma. Gastroenterol Clin North Am.2007;36(4):867-887.
    6. Zhang JB, Krinsky GA. Iron-containing nodules of cirrhosis. NMR Biomed. 2004; 17(7):459-464.
    7. Pinker A, Noebauer-Huhmann IM, Stavrou I,et al. High-resolution contrast-enhanced,susceptibility-weighted MR imaging at 3T in patients with brain tumors:correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol.2007;28(7):1280-1286.
    8. Kim HS, Jahng GH, Ryu CW, et al. Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of dolitary enhancing brain lesions:preliminary study.AJNR Am J Neuroradiol.2009;30(8): 1574-1579.
    9. Sehgal V, Delproposto Z, Haddar D, et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging.2006;24(1):41-51.
    10. Deugnier Y, Turlin B. Pathology of hepatic iron overload. Semin Liver Dis.2011; 31(3):260-271.
    11. Nelson JE, Wilson L, Brunt EM,et al. Relationship between the pattern of hepatic Iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology.2011;53(2):448-457.
    12. Terminology of nodular hepatocellular lesions. International Working Party. Hepatology.1995;22(3):983-993.
    13. Hytiroglou P, Park YN, Krinsky G, et al. Hepatic precancerous lesions and small hepatocellular carcinoma. Gastroenterol Clin North Am.2007;36(4):867-887.
    14. Park YN. Update on precursor and early lesions of hepatocellular carcinomas. Arch Pathol Lab Med.2011;135(6):704-715.
    15.Roncalli M, Roz E, Coggi G et al. The vascular profile of regenerative and dysplastic nodules of the cirrhotic liver:implications for diagnosis and classification. Hepatology.1999;30(5):1174-1178
    16. International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma:a report of the internationa consensus group for hepatocellular carcinoma. Hepatology.2009;49(2):658-664.
    17. Kim MJ. Current limitations and potential breakthroughs for the early diagnosis of hepatocellular carcinoma. Gut Liver.2011;5(1):15-21.
    18. Hytiroglou P. Morphological changes of early human hepatocarcinogenesis. Semin Liver Dis.2004;24(1):65-75.
    19. Hanna RF, Aguirre DA, Kased N, et al. Cirrhosis-associated hepatocellular nodules:correlation of histopathologic and MR imaging features. Radiographics. 2008;28(3):747-769.
    20. Shinmura R, Matsui O, Kobayashi S, et al. Cirrhotic nodules:association between MR imaging signal intensity and intranodular blood supply.Radiology. 2005; 237 (2):512-519.
    21. Park YN, Kim MJ. Hepatocarcinogenesis:imaging-pathologic correlation. Abdom Imaging.2011;36(3):232-243.
    22. Willatt JM, Hussain HK, Adusumilli S,et al. MR Imaging of hepatocellular carcinoma in the cirrhotic liver:challenges and controversies. Radiology.2008; 247(2):311-330.
    23. Kadoya M, Matsui O, Takashima T, et al. Hepatocellular carcinoma:correlation of MR imaging and histopathologic findings. Radiology.1992;183(3):819-825.
    24. Efremidis SC, Hytiroglou P, Matsui O.Enhancement patterns and signal-intensity characteristics of small hepatocellular carcinoma in cirrhosis:pathologic basis and diagnostic challenges. Eur Radiol 2007; 17(11):2969-2982.
    25.杨汉丰,周翔平,宋彬,等.肝内局灶性病变菲立磁增强MRI-组织病理相关性研究.中华放射学杂志.2005,39(2):181-186.
    26. Macarini L, Milillo P, Cascavilla A,et al. MR characterisation of dysplastic nodules and hepatocarcinoma in the cirrhotic liver with hepatospecific superparamagnetic contrast agents:pathological correlation in explanted livers. Radial Med.2009;114(8):1267-82.
    27. Park HS, Lee JM, Kim SH, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging.2009; 29(2):328-35.
    28. Narita M, Hatano E, Arizono S,et al. Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J of Gastroenterology.2009;44 (7):793-798.
    29. Kitao A, Zen Y, Matsui O, et al. Hepatocellular carcinoma:signal intensity at gadoxetic acid-enhanced MR Imaging--correlation with molecular transporters and histopathologic features. Radiology.2010 Sep;256(3):817-826.
    30. Lee MH. Lee MH, Kim SH, Park MJ, et al. Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI and High-b-Value Diffusion-Weighted Imaging to Distinguish Well-Differentiated hepatocellular carcinomas From Benign nodules in Patients With Chronic Liver Disease. AJR Am J Roentgenol.2011;197(5): W868-75.
    31. Rhee H, Kim MJ, Park YN, et al. Gadoxetic acid-enhanced MRI findings of early hepatocellular carcinoma as defined by new histologic criteria. J Magn Reson Imaging.2012;35(2):393-398.
    32. Kumada T, Toyoda H, Tada T,et al. Evolution of Hypointense Hepatocellular Nodules Observed Only in the Hepatobiliary Phase of Gadoxetate Disodium-Enhanced MRI. AJR Am J Roentgenol.2011;197(1):58-63.
    33. Ludwig J, Hashimoto E, Porayko MK, et al. Hemosiderosis in cirrrhosis; a study of 447 native livers. Gastroenterology.1997;112(3):882-888.
    34. Eriksson L C, Torndal U-B, Andersson G N. The transferrin receptor in hepatocyte nodules:binding properties, subcellular distribution and endocytosis. Carcinogenesis 1986; 7(9):1467-1474.
    35. Eriksson L C, Andersson GN. Membrane biochemistry and chemical hepatocarcinogenesis. Grit Rev Biochem Mol Biol.1992; 27(1-2):1-55.
    36. Terada T, Nakanuma Y. Iron negative foci in siderotic macroregenerative nodules in human cirrhotic liver. A marker of incipient neoplastic lesions. Arch Pathol Lab Med.1989; 113(8):916-920.
    37. Arakawa M, Kage M, Sugihara S et al. Emergence of malignant lesions within an adenomatous hyperplastic nodule in a cirrhotic liver. Observations in five cases. Gastroenterology.1986; 91(1):198-208.
    38. Hirota N, Hamazaki M, Williams GM. Resistance to iron accumulation and presence of hepatitis B surface antigen in preneoplastic and neoplastic lesions in human hemochromatotic livers.Hepatogastroenterology.1982;29(2):49-51.
    39. Honda H, Kaneko K, Kanazawa Y,et al. Imaging of hepatocellular carcinomas: effect of Cu and Fe contents on signal intensity. Abdom Imaging.1997;22(1): 60-66.
    40. Pascale R M, De Miglio M R, Muroni M R, et al. Transferrin and transferrin receptor gene expression and iron uptake in hepatocellular carcinoma in the rat. Hepatology.1998; 27(2):452-461.
    41. Lee AW, Oates P S, Trinder D. Effects of cell proliferation on the uptake of transferrin-bound iron by human hepatoma cells. Hepatology.2003;38(4):967-977.
    42.谢天培,吴孟超,沈锋,等.肝癌肝细胞膜上转铁蛋白受体和去唾液酸糖蛋白受体数量的变化.第二军医大学学报,1997,18(1):6-8.
    43. Holmstrom P, Gafvels M, Eriksson LC,et al. Expression of iron regulatory genes in a rat model of hepatocellular carcinoma. Liver International.2006;26(8): 976-985.
    44. Tan MG, Kumarasinghe MP, Wang SM,et al. Modulation of iron-regulatory genes in human hepatocellular carcinoma and its physiological consequences. Exp Biol Med (Maywood).2009 Jun;234(6):693-702.
    45. Terada T, Kadoya M, Nakanuma Y,et al. Iron-accumulating adenomatous hyperplastic nodule with malignant foci in the cirrhotic liver. Histopathologic, quantitative iron, and magnetic resonance imaging in vitro studies.Cancer.1990; 65(9):1994-2000.
    46. Haacke EM, Xu YB, Cheng YC, et al. Susceptibility weighted imaging (SWI). MRM.2004,52(3):612-618.
    47. Lobel U,Sedlacik J,Sabin ND,et al.Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology.2010;52(12):1167-1177.
    48.孙晓力,李国威,杨少毅,等.肝海绵状血管瘤超微结构及其与临床特征的关系.世界华人消化杂志.2004;38(7):746-750.
    1. Lee JM,Wong CM,Ng Io.Hepatitis B virus-Associated multistep hepatocarcinogenesis:a stepwise increase in allelic alterations. Cancer Res,2008,68(14):5988-5996.
    2. Hytiroglou P, Park YN, Krinsky G, et al. Hepatic precancerous lesions and small hepatocellular carcinoma. Gastroenterol Clin North Am.2007;36(4):867-887.
    3. Willatt JM, Hussain HK, Adusumilli S, et al. MR Imaging of hepatocellular carcinoma in the cirrhotic liver:challenges and controversies. Radiology.2008; 247(2):311-30.
    4. Park YN, Kim MJ. Hepatocarcinogenesis:imaging-pathologic correlation.Abdom Imaging.2011;36(3):232-243.
    5. Krinsky GA, Lee VS, Theise ND, et al. Hepatocellular carcinoma and dysplastic nodules in patients with cirrhosis:prospective diagnosis with MR imaging and explantation correlation. Radiology.2001;219(2):445-454.
    6. Zhang JB, Krinsky GA. Iron-containing nodules of cirrhosis. NMR Biomed. 2004; 17(7):459-464.
    7. Hanna RF, Aguirre DA, Kased N, et al. Cirrhosis-associated hepatocellular nodules:correlation of histopathologic and MR imaging features. Radiographics. 2008;28(3):747-69.
    8. Tanimoto A, Kuribayashi S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur J Radiol.2006;58(2):200-16.
    9. Tanabe M, Ito K, Shimizu A,et al. Hepatocellular lesions with increased iron uptake on superparamagnetic iron oxide-enhanced magnetic resonance imaging in cirrhosis or chronic hepatitis:comparison of four magnetic resonance sequences for lesion conspicuity. Magn Reson Imaging.2009;27(6):801-6.
    10. Yoo HJ, Lee JM, Lee JY,et al. Additional value of SPIO-enhanced MR imaging for the noninvasive imaging diagnosis of hepatocellular carcinoma in cirrhotic liver. Invest Radiol.2009;44(12):800-7.
    11. Liu K, He X, Lei XZ, et al. Pathomorphological study on location and distribution of Kupffer cells in hepatocellular carcinoma. World J Gastroenterol.2003;9(9): 1946-1949.
    12. Tananka M, Nakashima O, Wada Y, et al.Pathomorphological study of Kupffer cells in hepatocellular carcinoma and hyperplastic nodular lesions in the liver. Hepatology 1996,24(4):807-812.
    13.杨汉丰,周翔平,宋彬,等.肝内局灶性病变菲立磁增强MRI-组织病理相关性研究.中华放射学杂志.2005,39(2):181-186.
    14. Macarini L, Milillo P, Cascavilla A,et al. MR characterisation of dysplastic nodules and hepatocarcinoma in the cirrhotic liver with hepatospecific superparamagnetic contrast agents:pathological correlation in explanted livers. Radiol Med.2009; 114(8):1267-82.
    15. Lim JH, Choi D, Cho SK, et al. Conspicuity of hepatocellular nodular lesions in cirrhotic livers at ferumoxides-enhanced MR imaging:importance of Kupffer cell number. Radiology.2001;220(3):669-676.
    16. Park HS, Lee JM, Kim SH, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging. 2009;29(2):328-35.
    17. Ward J, Guthrie JA, Scott DJ,et al. HCC in the cirrhotic liver:double-contrast MR imaging for diagnosis.Radiology,2000.216(1):154-62.
    18. Hanna RF, Kased N, Kwan SW, et al. Double-contrast MRI for accurate staging of hepatocellular carcinoma in patients with cirrhosis. AJR Am J Roentgenol. 2008;190(1):47-57.
    19. Bhartia B, Ward J, Guthrie JA, et al. Hepatocellular carcinoma in cirrhotic livers: double-contrast thin-section MR imaging with pathologic correlation of explanted tissue. AJR Am J Roentgenol.2003;180(3):577-584.
    20. Yoo HJ, Lee JM, Lee MW,et al. Hepatocellular carcinoma in cirrhotic liver: double-contrast-enhanced, high-resolution 3.0T-MR imaging with pathologic correlation. Invest Radiol.2008;43(7):538-546.
    21. Yu JS, Chung JJ, Kim JH, et al. Small hypervascular hepatocellular carcinomas: value of "washout" on gadolinium-enhanced dynamic MR imaging compared to superparamagnetic iron oxide-enhanced imaging. Eur Radiol.2009;19(11):2614-2622.
    22. Yoo HJ, Lee JM, Lee MW, et al. Hepatocellular carcinoma in cirrhotic liver: double-contrast-enhanced, high-resolution 3.0T-MR imaging with pathologic correlation. Invest Radiol.2008;43(7):538-546.
    23. Chung YE, Park MS, Kim MS,et al. Quantification of superparamagnetic iron oxide-mediated signal intensity change in patients with liver cirrhosis using T2 and T2* mapping:a preliminary report. Magn Reson Imaging.2010;31(6): 1379-1386.
    24. Honda H, Kaneko K, Kanazawa Y,et al. Imaging of hepatocellular carcinomas: effect of Cu and Fe contents on signal intensity. Abdom Imaging.1997;22(1): 60-66.
    25. Terada T, Kadoya M, Nakanuma Y,et al. Iron-accumulating adenomatous hyperplastic nodule with malignant foci in the cirrhotic liver. Histopathologic, quantitative iron, and magnetic resonance imaging in vitro studies.Cancer.1990; 65(9):1994-2000.
    26. Terada T, Nakanuma Y. Iron-negative foci in siderotic macroregenerative nodules in human cirrhotic liver. A marker of incipient neoplastic lesions. Arch Pathol Lab Med.1989;113(8):916-20.
    27. Holmstrom P, Gafvels M, Eriksson LC,et al. Expression of iron regulatory genes in a rat model of hepatocellular carcinoma. Liver International.2006;26(8): 976-985.
    28. Tan MG, Kumarasinghe MP, Wang SM,et al. Modulation of iron-regulatory genes in human hepatocellular carcinoma and its physiological consequences. Exp Biol Med (Maywood).2009 Jun;234(6):693-702.
    29. Zhang J, Zhang Y, Wang J, et al. Characterizing iron deposition in Parkinson's disease using susceptibility-weighted imaging:an in vivo MR study. Brain Res, 2010;1330:124-130.
    30. Zhu WZ, Zhong WD, Wang W, et al. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology,2009,253(2):497-504.
    1. Folkman J. New perspectives in clinical oncology from angiogenesis research. Eur J Cancer,1996,32A(14):2534-2539.
    2. Costa C, Soares R, Schmitt F. Angiogenesis:now and then. APMIS.2004;112(7-8):402-412.
    3. Kerbel RS. Tumor angiogenesis. N Engl J Med.2008;358(19):2039-2049.
    4. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat. 1995;36(2):169-80. Review.
    5. Wang B, Gao ZQ, Yan X. Correlative study of angiogenesis and dynamic contrast-enhanced magnetic resonance imaging features of hepatocellular carcinoma. Acta Radiol.2005;46(4):353-358.
    6. Wang J, Chen LT, Tsang YM, et al. Dynamic contrast-enhanced MRI analysis of perfusion changes in advanced hepatocellular carcinoma treated with an antiangiogenic agent:a preliminary study. AJR Am J Roentgenol.2004; 183(3): 713-719.
    7. Miyazaki K, Collins DJ, Walker-Samuel S, et al. Quantitative mapping of hepatic perfusion index using MR imaging:a potential reproducible tool for assessing tumour response to treatment with the antiangiogenic compound BIBF 1120, a potent triple angiokinase inhibitor. Eur Radiol.2008;18(7):1414-1421.
    8. Haacke EM, Xu YB, Cheng YC, et al. Susceptibility weighted imaging (SWI) [J]. MRM,2004,52(3):612-618.
    9. Reichenbach JR, Venkatesan R, Schillinger DJ, et al. Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent.Radiology,1997,204:272-277.
    10. Ishizaka K,Kudo K, Fujima N, et al. Detection of normal spinal veins by using susceptibility-weighted imaging[J]. J Magn Reson Imaging,2010,31(1):32-38.
    11. Fujima N, Kudo K,Terae S, et al. Spinal arteriovenous malformation:evaluation of change in venous oxygenation with susceptibility-weighted MR imaging after treatment[J]. Radiology,2010,254(3):891-899.
    12. Pinker K, Noebauer-Huhmann IM, Stavrou I. High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR.2007;28:1280-1286.
    13. Park MJ, Kim HS, Jahng GH, et al. Semiquantitative assessment of intratumoral susceptibility signals using non -contrast -enhanced high -field high -resolution susceptibility -weighted imaging in patients with gliomas:comparison with MR perfusion imaging. AJNR,2009,30:1402-1408.
    14. Chan SL, Yeo W. Targeted therapy of hepatocellular carcinoma:Present and Future. J Gastroenterol Hepatol.2012;27. [Epub ahead of print]
    15. Xie B, Wang DH, Spechler SJ. Sorafenib for Treatment of Hepatocellular Carcinoma:A Systematic Review. Dig Dis Sci.2012; 27. [Epub ahead of print]
    16. Park YN, Kim MJ. Hepatocarcinogenesis:imaging-pathologic correlation. Abdom Imaging.2011;36(3):232-243.
    17.于德新,马祥兴,曲迅,等.肝细胞癌微血管和成熟血管的特征及其相互关系.山东大学学报(医学版).2009;47(9):129-133.
    18. Persigehl T, Wall A, Kellert J,et al. Tumor blood volume determination by using susceptibility-corrected DeltaR2* multiecho MR. Radiology.2010;255(3):781-789.
    19.于德新,马祥兴,魏华刚,等.利用R2*、T2*值无创性评价肝细胞癌血氧水平与血管生成及其成熟度的关系.中国医学科学院学报.2009;31(5)589-593.
    20.李秋云,肖恩华,李华兵,等.磁敏感加权成像在肝脏局灶性病变的初步应用.中国临床医学影像杂志.2011;22(2):100-104.
    1. Haacke EM, Xu YB, Cheng YC, et al. Susceptibility weighted imaging (SWI). MRM.2004,52(3):612-618.
    2. Thomas B, Somasundaram S, Thamburaj, et al. Clinical applications of susceptibility-weighted imaging of the brain-a pictorial review. Neuroradiology. 2008;50(2):105-116.
    3. Haacke EM, Mittal S, Wu Z, et al. Susceptibility weighted imaging:technical ascepts and clinical applications, part 1. AJNR Am J Neuradiol.2009;30(1):19-30.
    4. Haacke EM, Mittal S, Wu Z, et al. Susceptibility weighted imaging:technical ascepts and clinical applications, part 2. AJNR Am J Neuradiol.2009;30(2):232-252.
    5. Rauscher A, Sedlacik J, Barth M, et al. Magnetic susceptibility-weighted MR phase imaging of the human brain. AJNR Am J Neuroradiol.2005;26(4):736-742.
    6. Deistung A, Rauscher A, Sedlacik J,et al. Susceptibility weighted imaging at ultra high magnetic field strengths:theoretical considerations and experimental results.Magn Reson Med.2008;60(5):1155-1168.
    7. Goos JD, van der Flier WM, Knol DL,et al. Clinical relevance of improved microbleed detection by susceptibility weighted magnetic resonance imaging. Stroke.2011;42(7):1894-1900.
    8. Haacke EM, Cheng YNC, House W, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging.2005;23(1):1-25.
    9. Schweser F, Deistung A, Lehr BW,et al. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys.2010;37(10):5165-5178.
    10. Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging.J Magn Reson Imaging.2005;22(4):439-450.
    11. Chavhan GB, Babyn PS, Thomas B,et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications.Radiographics.2009;29(5): 1433-1449
    12. Casciaro S, Bianco R, Franchini R, et al. A new automatic phase mask filter for high-resolution brain venography at 3 T:theoretical background and experimental validation. Magn Reson Imaging.2010.28(4):511-519.
    13. Rcichenbach JR., Jonetz-Mentzel L, Fitzek C, et al. High-resolution blood oxygen-level dependent MR venography (HRBV):a new technique. Neuroradiology.2001; 43(5):364-369.
    14. Schilling AM, Blankenburg FB, Bernarding J, et al. Intracerebral PH affects the T2 relaxation time of brain tissue.Neuroradiology.2002;44(12):968-972.
    15. Ishizaka K,Kudo K, Fujima N, et al. Detection of normal spinal veins by using susceptibility-weighted imaging.J Magn Reson Imaging.2010;31(1):32-38.
    16. Fujima N, Kudo K,Terae S, et al. Spinal arteriovenous malformation:evaluation of change in venous oxygenation with susceptibility-weighted MR imaging after treatment.Radiology.2010;254(3):891-899.
    17. Wang M, Dai Y, Han Y, et al. Sesceptibility weighted imaging in detecting hemorrhage in acute cervical spinal cord injury.Magnetic Resonance Imaging. 2011;29(3):365-373.
    18. Yang Q, Liu J, Samuel RS, et al. Imaging the vessel wall in major peripheral arteries using susceptibility-weighted imaging. J Magn Reson Imaging.2009,30 (2):357-365.
    19. Liu Q, Fan Z, Yang Q, et al. Peripheral arterial wall imaging using contrast-enhanced, susceptibility-weighted phase imaging. J Comput Assist Tomogr.2012; 36(1):77-82.
    20.李树金,张辉,刘起旺,等.磁敏感加权成像对四肢软组织海绵状血管瘤临床应用初探.医学影像学杂志.2011,21(2):248-251.
    21.曲海源,邓意辉,徐克,等.兔VX2肿瘤血管生成靶向成像磁共振扫描技术研究.中国医科大学学报.2009.38(3):163-166.
    22. Fatemi-Ardekani A, Boylan C, Noseworthy MD. Magnetic resonance imaging sialolithography:direct visualization of calculi in the submandibular gland using susceptibility-weighted imaging (SWI) at 3 Tesla. J Comput Assist Tomogr. 2011;35(1):46-49.
    23. Lee KH, Liapi E, Vossen JA, et al. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer:evaluation with MR imaging and implication for therapy.J Vasc Interv Radiol.2008;19 (10):1490-1496.
    24. Machann J, Haap M, Liebig G, et al. Susceptibility-weighted MRI for assessment of ferritin content in liver and spleen in people at high risk for type 2 diabetes and detection of changes after phlebotomy. Proc Int Soc Mag Reson Med.2007;15: 219.
    25. Takeuchi M, Matsuzaki K, Nishitani H. Susceptibility weighted MRI of endometrioma:preliminary results.AJR Am J Roentgenol.2008; 191(5):1366-1370.
    26. Mie MB, Nissen JC, Zollner FG, et al. Susceptibility weighted MR imaging (SWI) of the kidney at 3T-initial results. Z Med Phys.2010;20(2):143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700