农杆菌介导海藻糖合酶基因遗传转化甘蔗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗是我国重要的工业原料作物,但85%左右的种植面积是旱地,而各蔗区每年或轻
    或重、或早或迟都要受到季节性干旱的影响,干旱是限制我国甘蔗生产的首要环境因素。
    甘蔗是高度杂合、遗传背景复杂的无性繁殖作物,常规的抗旱选育方法盲目性大,周期长,
    效果也有限。基因工程方法可以将外源的抗旱基因在人为调控操纵设计下导入优良品种,
    通过基因表达提高甘蔗的抗旱性,这就为甘蔗抗旱育种开辟了一条新的途径。
     本研究将来自担子菌灰树花的海藻糖合酶基因TSase插入到中间载体pBBB双拷贝35s
    启动子下面构建植物表达载体pBBBT,然后导入超毒力农杆菌EHA105菌株。通过农杆菌介
    导法转化甘蔗的胚性愈伤组织,在PPT的选择压力下,筛选抗性植株,通过PCR和斑点
    Southern杂交鉴定海藻糖合酶基因的转化整合。同时,为了检验所使用基因在异位表达的
    功能还进行了烟草转化试验;为了比较不同类型启动子和不同海藻糖合成途径在甘蔗体内
    表达的效率,还克隆了拟南芥干旱诱导型启动子Prd29A及大肠杆菌海藻糖磷酸合酶基因
    OtsA,植物表达载体正在构建之中。
     研究工作获得如下几个方面的结果:
     1、构建了灰树花海藻糖合酶基因植物表达载体pBBBT。该载体的目的基因启动子为双
    拷贝的CaMV35s启动子,抗性选择标记为bar基因。
     2、在国内首次获得农杆菌介导转化的甘蔗转基因植株。经过连续的PPT选择抗性筛
    选,获得了56株抗性植株,对其中8株进行PCR及斑点Southern杂交检测,有3株呈阳
    性反应,证明外源基因已整合到甘蔗基因组中。
     3、建立一个可行有效而又较简捷的甘蔗农杆菌介导转化系统。以甘蔗胚性愈伤组织
    为受体细胞,并通过短时的亚培养及干燥处理提高其感受能力;采用超毒菌株EHA105介
    导;同时组合了各种便于Vir基因活化和T-DNA转移的转化条件,如附加AS及果糖和葡
    萄糖、酸性环境感染、较低温度共培养等;使用抗PPT的bar基因作选择标记基因,在
    0.75mg/L浓度下连续筛选。
     4、观察不同培养龄期甘蔗愈伤组织的生长状态,并进一步观察胚状体的发生及分化,
    为甘蔗转化提供了可靠的受体细胞。
     5、以农杆菌EHA105菌株介导将海藻糖合酶基因转化烟草叶盘,经分子检测证明,已
    获得了转基因烟草植株。
     6、克隆了拟南芥干旱诱导型启动子Prd29A及大肠杆菌海藻糖磷酸合酶基因OtsA。
     7、观察到部分甘蔗转化子形态上的改变,如植株生长慢,株型矮小纤细,叶片曲折
    长出或尖细直立,发根困难,根变粗短或且变纤细曲折,并常带有绿、褐等颜色。
Sugarcane (Saccharum officinarum L.),which is the important industrial material crop in
     China, is affected by drought stress at some time and some degree every year. Drought is the
     most serious environmental factor limiting production of sugarcane because more than 85% of
     sugarcane growing area is upland and seasonal drought happens frequently. Moreover sugarcane
     is a nonsexual propagation crop of highly polyploidy and complex genetic background, use of
     traditional breeding techniques to improve drought tolerance will be a formidable task. In
     contrast, genetic engineering enables the specific up- or down-regulation of naturally occurring
     process or genetic modifications involving the ectopic expression of genes from non-plant
     sources, which will be an alternative pathway accessible.
    
     A plant expression vector, pBBBT, was constructed by inserting trehalose synthase gene
     from a basidiomycete, Grjfoiafrondosea, into pBBB, with a 2 copy CaM V35S as promoter and
     bar as selectable marker gene. Then, It was introduced into Agrobacterium tumefaciens strain
     EHA 105 via triparental mating. The protocol of transformation has been optimized. Sugarcane抯
     embryonic calli was transformed by Agrobacterium tumefaciens-mediated method. The
     transformed caili and shoots were screened under the selective pressure of PPT. The transformed
     plants were detected by PCR and dot Southern bolting. Meanwhile, Introduction of
     tobacco(Nicoiiana tabacum L.) transformation and Escherichia coil expression of the genes to
     identif~r the ectopic expression of the gene and its function. In order to compare the expression
     efficiency of different types of promoters and different pathways of trehalose synthesis in
     transgenic sugarcane, a drought responsive promoter, prd29A, form Arabidopsis thaliana and a
     trehalose-6-phosphate synthase gene, OtsA, from Escherichia coil were cloned. The results were
     as follows:
    
     I A plant expression vector, pBBBT, was constructed by inserted the trehalose synthase
     gene from Gnfola frondosa into pBBB, which contained a double CaMV3SS promoter and a
     PPT resistance gene(bar).
    
    
    
     2
    
    
    
    
    
    
    
    
    
     2 Transgenic sugarcane plants were recovered from co-culture of embryonic calli with
     Agrobacterium turn efaciens, 56 transformants were obtained after long PPT resistance selection,
     8 of them have been detected by PCR and dot Southern blotting, and the DNA of 3 plants
     showed positive.
    
     3 An efficient protocol for sugarcane transformation mediated by Agrobacterium
     turnefaciens has been established. Some factors may be important of the success:( I )Embryonic
     calli were induced as competent receptor cells, including subculture on fresh medium for a few
     days and dried treatment before infection, (2)Supervirulent strain EHA 105 was used;(3)Several
     transformation conditions were combined to improve the activation of vir genes and T-DNA
     transfer, such as added AS, fructose and glucose,and acid infection condition and low
     co-culture temperature;(4)bar gene, expression to resist PPT, was used as selectable marker
     gene.
    
     4 The developmental process of calluses and embryoids have been investigated.
    
     5 Trehalose synthase gene transformation of tobacco, mediated by Agrobacterium
     tumefaciens, was carried out.
    
     6 A drought responsive promoter, Prd29A, from Arabidopsis thaliana and a
     trehaiose-6-phosphate synthase gene, OtsA, from Escherichia co/i were cloned.
    
     7 Some obvious morphological changes including d
引文
1 沈诩诽,方福德主编.真核基因表达调控(修订版),北京:高等教育出版社,施普 林格出版社.1997.
    2 Winter P C,Hichey G I,Fletcher H L.Instant Notes in Genteics(遗传学影印版),北 京:科学出版社,1999
    3 朱玉贤,李毅主编.现代分子生物学,北京:高等教育出版社,1997.
    4 Skriver k, Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 1990,2:503-512.
    5 Bray EA.Molecular responses to water deficit. Plant Physiol 1993,103:1035-1040.
    6 Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and Cold stress. Curr opin Biotecheol, 1996,2(2) : 161-167.
    7 Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997,115;327-334.
    8 Yamaguchi-Shinozaki K, Mundy J, Chua N H. Four tightly linked rab genes are differentially expressed in rice.Plant Mol Biol 1989, 14:29-39.
    9 Iwasak K. Yanmaguchi Shinozaki K, Shinozaki K. Identification of a cis-regulatory of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 1995,247;391-398.
    10 Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993,101:1119-1120.
    11 梁建生,张建华。ABA 对植物基因表达的调控。见:许智宏,刘春明主编,植 物发育的分子机理。北京:科学出版社,1999
    12 刘景生主编,细胞信息与调控,北京:北京医科大学,中国协和医科大学联合出 版社,1998
    13 Cote G G. Signal Transduction in leaf movement. Plant Physiol, 1996,109:729-734.
    14 Hiyayama T, Ohto C, Mizoguchi T, Shinozaki K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. proc Natl Acad Sci USA 1995, 92:3903-3907
    15 Urao T, Katagiri T, Mizoguchi T, et al. Two genes that encode Ca2+dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet 1994,224:331-340
    16 Mizoguchi T, Irie K, Hiraymam T, et al. A gene encoding a MAP kinase kinase Kinase is induced simultaneously with genes for a MAP Kinase and an S6 kinase by touch, cold and water stress in Arabidupsis thaliana. Proc Natl Acad Sci USA 1996, 93:765-769
    
    
    17 Liu Q, Kasuga M, Sakuma Y et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular Signal trasduction, respectivly, in Arabidopsis. plant cell, 198,10:1391-1406
    18 Wurgler-Murphy S M, Saito H. Two-component signal transducers and MAPK cascades. Trends Biochem sci, 1997,22:172-176
    19 Posas F, Wurgler-Murphy S M, Maeda T. et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in SLN1-YPD1-SSK1 'two component' osmosensor. Cell,1996,86:865-875
    20 Hare P D, Cress W A, Van Staden J. Dissecting the roles of Osmolyte Accumulation during stress. Plant Cell and Environment 1998,21:535-553
    21 Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell and Environment, 1993, 16:15-24
    22 Crowe J H, Hoestra FA, Crowe L M. Anhydrobiosis. Annu Rev Physiol, 1992,54:579-599
    23 Rhodes D, Hanson A D.Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physinlogy and Plant Molecular Biology, 1993, 44:357-384
    24 Larher F. Leport L. Petrivalsky M. et al. Effectors for the osmoinduced proline response in higher plants. Plant Physiology and Biochemistry 1993,31:911-922
    25 Hare P.D, Cress W.A. Metabolic implications of stressinduced proline accumulation in plants. Plant Growth Regulation 1997,21:79-102
    26 Yang WJ,. Nadolska-Orczyk A,. Wood K V, et al. Near-isogenic lines of maize differing for glycinebetaine. Plant Physiol, 1995, 107:621-630
    27 Kenonowicz A K. Biochemical and cellular mechanisms of stress tolerance in plant. Berlin: spring-verlag, 1994;381-414
    28 Delauney A J, Verma DPS. Proline biosynthesis and osmoregulation in plants. Plant, J 1993,4:215-223
    29 Yoshiba Y, Kiyosue T, Nakashima K et al. Regulation of levels of proline as an Osmolyte in plant under water stress. Plant Cell Physiol, 1997, 38(10) :1095-1102.
    30 Rhodes D, Handa S, Bressan R A. Metabolic changes associated with the adaptation of plant cells to water stress. Plant Physiol. 1986 82:890-903.
    31 汤章城.对渗透和淹水胁迫的适应机理,见:余叔文,汤章城主编.植物生理与 分子生物学(第二版),北京:科学出版社.1998:739-751。
    
    
    32 陈受宜,肖岗.植物抗旱抗盐基因工程。见:田波,许智宏,叶寅主编。植物基 因工程。济南:山东科学技术出版社。1996:294-299
    33 Deshnium P, Los Hayashi H, et al. Transformation of synechococcus with a gene for choline oxidase enhances tolerance to stress. Plant Mol Biol, 1995, 29,897-907.
    34 Papageorgiou GC, Murata N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem 2222 complex. Photosynthesis Research 1995, 44, 243-252
    35 Sakamoto A, Murat N. Genetic engineering of glycinebetaine synthesis in plants: Current status and implications for enhancement of stress tolerance. J Exp Bot, 2000, 51(342) :81-88.
    36 Matoh T, Watanabe J, Takahashi E. Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. Plant Physiology, 1987.
    37 Arakawa K, Katayama M, Takabe T. Levels of betaine in green leaves and etiolated leaves and roots of barley. Plant and Cell Physiology 1990,31:797-803.
    38 Ishitani M, Arakawa K, Mizuno S, et al. Betaine aldehyde dehydrogenase in the Gramineae-Levels in leaves of both betaine-accumuiating and nonaccumulating cereal plants. Plant and Cell Physiology 1993, 34: 493-495.
    39 Rajendrakumar CSV, Suryanarayana T, Reddy AR. DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Letters, 1997,410: 201-205
    40 Alia Kondo Y, Sakamoto A, et al. Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol, 1999,40:279-288
    41 林栖风 李冠一,植物耐盐性研究进展,生物工程进展,2000, 20(2) :20-25
    42 Keller F, Ludlow MM. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus Cajan), J Exp Bot, 1993, 44: 1351-1359
    43 Ishitani M, Majumder AL, Bornhouser A. et al. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. The Plant J, 1996, 537-548
    44 Geigenberger P. Reimholz R, Geiger M et al Regulation of sucrose and starch metabolism in potato tubers in respones to short-term water deficit. Planta, 1997, 201: 502-518
    45 Pelleschi S. Rocher JP, Prioul JL. Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves. Plant Cell and Enviroment, 1997, 20, 493-503
    46 Koch K.E. Carbohydrate-modulated gene expression in Plants. Annual Review of Plant Physiology and Plant Mole Biol 1996, 47,509-540
    
    
    47 Smeekens S, Rook F. Sugar Sensing and Sugar-mediated signal transduction in plants. Plant Physiol, 1997, 115:7-13.
    48 Jang JC, Leon P, Zhou L. et al. Hexokinase as a sugar sensor in higher plants. The Plant Cell 1997,9,5-19.
    49 Elbein A. The metabolism of a , a-trehalose. Adv carbohydr chem Biochem. 1974,30:227-256.
    50 Eleutherio E CH, Dearaujo P S, Panek A D. Role of the trehalose carrier in dehydration resistance of Saccharomyces Cerevisiae. Biochem Biophys Acta, 1993,1156:263-266.
    51 Muller J, Boller T, Wiemken A. Trehalose and trehalase in plants: recent developments. Plant Science, 1995, 112: 1-9.
    52 Holmstrom K. O, Mantyla E. Welin B, et al. Drought tolerance in tobacco. Nature, 379:683-684.
    53 Caimi PG, McCole LM, Klsin T M et al. Cytosolic expression of the Bacillus amyloliquefaciens SacB protein inhibits tissue development in transgenic tobacco and potato, The New Phytologist 1997, 136:19-28.
    54 Goddijn O J M, Verwoerd T C, Voogd E,. et al. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiology, 1997, 113:181-190.
    55 Romero C, Belles JM, Vaya J L, et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 1997,201:293-297.
    56 Turk SC HJ, de Roos K, Scotti P A, et al. The vacuolar sorting domain of sporamin transports GUS, but not levansucrase to the plant vacuole. The New Phytologist, 1997,136:29-38.
    57 Hare P D, Cress W A, Van Stdaden J. Dissecting the roles of osmolyte accumuletiom during stress. Plant, Cell and Environment 1998,21:535-553.
    58 Pilon-Smits EAH, Ebskamp MJ M, Paul MJJ, et al. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol, 1995, 107,125-130.
    59 Thomas JC, Sepahi M, Arendall B, Bohnert H J. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidosis thahiana. Plant, Cell and Environment, 1995, 18:801-806.
    60 Hare PD, du Plessis S, Cress WA, van Steden J. Stressinduced changes in plant gene expression: prospects for enhancing agricultural porductivity in South Africa. South African Journal of Science, 1996, 92, 431-439.
    61 McCue KF, Hanson A D. Drought and salt tolerance: towards understanding and application. TIBTECH, 1990,8:358-362.
    
    
    62 Tarzynski M C, Jensen R,G,. Bohnert HJ. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science,1993,259:508-510.
    63 Karakas B, Ozias-Akins P, Stushnoff C, et al. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant, Cell and Enironment 1997,20:609-616.
    64 Kavi Kishor PB, Hong Z, Miao GH et al. Overexpression of △'-pyrroline-5-carboxylate synthetase increases porline production and confers osmotolerance in transgenic plants. Plant Physiol 1995, 108:1387-1394.
    65 Rathinasabapathi B, McCue KF, Gage D,A et al. Metabolic engineering of glycine betaine synthesis: Plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 1994, 193:155-162.
    66 Tao R, Uratsu SL, Dandekar A M. Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorlbitol-6-phosphate dehydrogenase. Plant and Cell physiol, 1995,36:525-532.
    67 Lilius G,. Holmberg N, Bulow L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio/Technol, 1995,14:177-180.
    68 Smart C,C,. Flores S. Overexpression of a-myo-inositol-3-phosphate synthase leads to elevated levels of inositol in Arabidopsis. Plant Molecular Biology 1997, 33: 811-820.
    69 Sheveleva E, Chmara W, Bohnert HJ, et al. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol, 1997, 115:1211-1219.
    70 Hayashi H, Alia Mustardy L, Deshnium P, et al. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. The Plant J, 1997, 12: 133-142.
    71 Ray W. Jin S,Jayaprakash T. How to obtain optimal gene expression in transgenic plants.中国第七次基因学术会议,1999,4。
    72 袁朝兴,匡达人。在烟草中酵母脯氨酸基因 B 的转化。植理生物学报,1993, 19(3) :306-312
    73 王关林,方宏筠主编。植++物基因工程原理与技术,。北京:科学出版社,1998
    74 李学宝,毛慧珠.白永延。酵母 Pro2 基因转化紫云英的研究。实验生物学报, 1997,30(2) :115-118
    75 Rudulier L, Strom A R. Science, 1984,244:1064-1068
    76 Ishitani M., Nakamura T, S.Y. et al. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and sbscisic acid. Plant Mol Biol, 1995, 27:307-315
    77 Nuccio ML, Russell BL, Nolte KD, et al. The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. The Plant J, 1998, 16: 487-496
    
    
    78 Holmstrom KO, Welin B, Mandal A, et al. Production of the Escherichia coli glycinebetaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. The Plant J , 1994,6:749-758
    79 Huang J, Hirji R, Adam L, et al. Genetic engineering of glycinebetaine production toward enhancing stress toleramce in plants: metabolic Limitatons. Plant physiol, 2000,122: 747-756
    80 刘风华,郭岩,谷冬梅等。转甜菜碱醛脱氢酶基因植物的耐盐性研究。遗传学报。 1997, 24(1) :54-58
    81 梁峥,马德钦、汤岚等.菠菜甜菜碱醛脱氢酶基因在烟草中的表达.生物工程学 报。1997,13(3) :236-240
    82 李银心,常风启,杜立群等,转甜菜碱脱氢酶基因豆瓣菜的耐盐性。植物学报, 2000. 42(5) :480-484
    83 Yeo E T, Kwn HB, Han S E et al. Genetic engineering of dronght resistant potato plants by introduction of the trehalose-6-Phosphonte synthase (TPS1) gene form saccharomyces cerevisiae. Mol Cells, 2000,10(3) :263-268.
    84 赵恢武,陈杨坚,胡鸢雷等。干早诱导性启动子驱动的海藻糖-6-磷酸合酶基因载 体的构建及转基因烟草的耐旱性。植物学报,2000,42(6) :616-619
    85 张树珍,海藻糖合酶基因的克隆及其遗传转化甘蔗的研究。华南热带农业大学博 士学位论文.2000,5
    86 刘俊君.黄绍兴,王海云等.转基因烟草的甘露醇合成酶和耐盐性.生物工程学 报,1996. 12(2) :206-210.
    87 刘岩,王国英,刘俊君等.大肠杆菌 gutD 基因转入玉米及耐盐转基因植株的获得. 中国科学(C辑),1998. 28(6) :542-547。
    88 吴东儒,李振华,黄德民等.糖类的生物化学。北京:高等教育出版社,1987:
    89 杉本利行。糖类新资源的开发现状和应用。食品工业.1994,34-38
    90 袁勤生。隐生生物中的典型化合物-海藻糖。中国生化药物杂志.1999,20(1) : 48-50
    91 Gussin A E S. Does trehalose occur in angiospermae?. phytochem, 1972,11:1827-1828.
    92 Growe J H, Hoekstra F A, Crowe L M. Anhydrobiosis. Annu Rev Plant Physiol. 1992,54:579-599.
    93 Drnnan P M, Smith M T, Goldsworthy D et al. The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius welw. J Plant Physiol
    
    1993, 142:493-496.
    94 Bianchi G, Gamba A, Limiroli R et al. The unsual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant, 1993, 87:223-226.
    95 Strom AR, Kaasen I. Trehalose metabolism in Escherichia coli-Stress protection and stress regulation of gene expression. Mol Microbiol. 1993, 8:205-210
    96 Thevelein J M. Regulation of trehalose metabolism and its relevance to cell growth and function. In: The Mycota(Brambl, R. and Marzluf, G.A., eds).Berlin, Springer Verlag.1996, pp 395-420
    97 Becker A, Schloder P, Steele J E et al. The regulation of trehalose metabolism in insects. Experientia, 1996, 52:433-439
    98 Meller R B. Is trehalose a symbiotic determinant in symbioses between higher plants and microorganisms? Symbiosis, 1992, 12:113-129
    99 Vogel G, Aeschbacher R A, Muller J, et al. Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: Identification by functional complementation of the yeast tps2 mutant. Plant J. 1998 13:673-683.
    100 Thevelein JM, Hohmann S. Trehalose synthase:guard to the gate of glycolysis in yeast? Trends Biochem. Sci. 1995, 20: 3-10.
    101 Goddjin O, Smeekens S. Sensing trehalose biosynthesis in plants. The plant J, 1998, 14(2) : 143-146
    102 Hottiger T, Boiler T, Wiemken A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett, 1987, 220:113-115
    103 Jacobson K. Phase transition and separations in phospholipid membranes induced by changes in temperature, PH and concentration of bivalent cation. Biochemistry, 1975,14:152.
    104 Lucy LA. The fusion of biological membranes. Nature. 1970,227:815
    105 Otting G. Protein hydration in apueons. Science, 1991,254:974
    106 Growe JH, Crowe LM, Corpenter J F et al. Interaction of sugers with membranes. Biochem Biophys Acta, 1998, 947:367-384
    107 Fraks F. Materials science and the production of shelf-stable biologicals. Biopharm, 1991,4:38
    108 Kassen I, MeDougall J, Strom A R. Molecular cloning and physical mapping of the OtsBA gense, which encode the osmoregulatory trehalose pathway of Escherichia coli. J Bacteriol 1992, 174:889-898.
    
    
    109 Vuorio O E, Kalkkinen N, Londesborough J. Cloning of two related genes encoding the 56-kda and 123 kda subunits of trehalose synthase from the yeast saccharomyces Cerevisiae. European Journal of Biochem, 1993, 216:849-861.
    110 Saito K, Kase T, Takahashi E et al. Purification and characterization of a trehalose synthase from the basidiomycete grifola frondosa.Appl Environ Bicrobiol, 1998,64(11) :4340-4345
    111 Saito K, Yamazaki H, Ohnishi Y et al. Production of trehalose synthase from a basidiomycete, Grifola frondosa in Escherichia Coli. Appl Microbil Biotechnol, 1998,50(2) :193-198
    112 Holmstrom K O. Engineering plant adaptation to water stress. Acta universitatis Agriculture sueciae Agraia, 1998,84:49.
    113 Newell CA. Plant transformation technology: Developments and applications. Mol Biotechnol, 2000,16(1) :53-65.
    114 De Block M, Herrera-Estrella L, Van Montagu M et al. Expression of foreign genes in regenerated plants and their progeny. EMBO J, 3:1681-1689.
    115 Horsch RB, Fraley RT, Rogers G et al. Inheritance of functional foreign genes in plants. Science, 1984, 223:496-498.
    116 Paszkowski J, Shillito R D, Saul M, et al. Direct gene transfer to plants. EMBO J, 1984,3:2717-2722.
    117 Birch R G. Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol, 1997,48:297-326.
    118 贾士荣,王克兴。农杆菌介导的植物遗传转化,见莽克强主编,农业生物工程, 北京:化学工业出版社,1998:854-115。
    119 Hooykaas P J J, Schiperoort R A. Agrobacterium and plant genetic engineering. Plant Mol Biol,1992,19:15-38.
    120 Zupan J R, Zambryski P. Transfer of T-DNA form Agrobacterium to the Plant cell. Plant Physiol, 1995,107:1041-1047.
    121 Koncz C, Nemeth K, Redei G P et al. In: Paszkowski(ed). Homologous recombination and gene silencing in plants, klumer, Dordrecht, The Netherlands. 1994:167-189.
    122 Hansen G, Shillito R D, Chilton M D. T-strand integration in Maize protoplasts affer codelivery of a T-DNA substrate and Virulence genes. Proc Natl Acad Sci USA, 1997, 94:11726-11730.
    123 Enriquez-Obregon G A, Vazquez-Padron R I, prieto-samsonov, DL et al. Genetic transformation of Sugarcane by Agrobacteriun tumefaciens using antioxidants compounds. Biotecnologia Aplicada 1997, 14:169-174.
    
    
    124 Enriquez-Obregon G A, Vazquez-Padron R I, prieto-samsonov D L, et al. Herbicide resistant sugarcane(Saccharum officinarum L.)Plants by Agrobacterium-mediated transformation. Planta, 1998,206:20~27.
    125 T Tzfira,V Citovsky. From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobaclerium-Plant cell interaction. Mol Plant Pathol, 2000, (4) :201~212
    126 A G Matthysse. Initial interactions of Agrobacterium tumefaciens with plant host cells. Crit Rev Microbiol, 1986,13:281-307
    127 G A Cangelosi, R G Ankenbaner, E W Nester. Sugars induce the Agrobacterium Virulence genes through a periplasmic binding protein and a transmembrane signal protein. PROCeedings of the National Academy of Sciences USA, 1990, 87:6708~6712.
    128 L S Chen, C M Li, E W Nester. Transferred DNA (T-DNA)-associated proteins of Agrobacterium tumefaciens are exported independently of VirB. Proc Natl Acad Sci USA,2000,97:7545~7550.
    129 J Nam, K S Mysore, C Zheng et al. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet,1999,261:429~ 438
    130 S E Stachel, E Messens, M M Van et al. Indentification of the signal molecules by wounded plant cell that activated T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985,318:624-629.
    131 W T Peng, Y W Lee, E W Nester. The phenolic recognition profiles of the Agrobacterium tumefaciens VirA proetin are broadened by a higy level of the Sugar binding protein Chv E. J Bacteriol, 1998,180:563-5638.
    132 S G Jin, T Roitsch, P J Christie et al. The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens Vrulence genes. J Bacteriol, 1990,172: 531-537.
    133 L Van der Fits, E A Deakin, J H Hoge et al. The ternary transformation system :Constitutive VirG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol ,2000, 43(4) : 495-502.
    134 VS Kalogeraki, J Zha, A Eberhard et al. The phenolic vir gene inducer ferulic acid is O-demethy lated by VirH2 proteim of an Agrobacterium tumefaciens Ti plasmid. Mol Microbiol 1999,34:512-522.
    135 P Scheiffele, W pansegran, E lanka. Initiation of Agrobacterium tumefaciens T-DNA
    
    processing. J Biol Chem, 1995, 270:1269-1276.
    136 V Citovsky, B Guralnick, M N Simon et al. The molecular structrue of Agrobacterium VirE2-Single Stranded DNA Complexes imvolved in nuclear import. J Mol Biol, 1997,272:718-727.
    137 W Deng, L Chen, W T Peng et al. VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol, 1999,31:1795-1807.
    138 S B Gelvin. Agrobacerium VirE2 proteins can form a complex with T strands in the plant cytoplasm J Bacteriol 1998,80:4300-4302.
    139 P Christie. Agrobacterium tumefciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 1997, 179:3085-3094.
    140 J Zupan, D Ward, P Zambryski. Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr Opin Microbiol, 1998, 1:649-655.
    141 A Das, Y H Xie. The Agrobacterium T-DNA transport proe proteins VirB8,VirB9,and VirB 10 Interact one another. J Bateriol, 2000 182(3) :758-763.
    142 L M Banta, J Bohne, S D Lovejoy et al.. Stability of the Agrobacterium tumefaciens VirB 10 is medulated by growth temperature and periplasmic osmoadaption. J Bacteiol, 1998,180(24) :6597~6606
    143 T Tzfira, Y Rhee, M H Chen et al. Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev microbiol, 2000, 54:187-219.
    144 W Deng, L Chen, D W Wood et al. Agrobacterium VirD2 protein interacts with plant host cyclophilins. proc Natl Acad sci USA, 1998,95:7040-7045.
    145 N Ballas, V Citovsky. Nuclear localization signal binding proteiu from Arabidopsis mediates nuclear import of Agrobacterium VirD2 portein. proc Natl Acad Sci USA, 1997,94:10723-10728.
    146 K S Mysore, B Bassuner, X B Deng et al. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant-Microbe Interact, 1998,11:668-683.
    147 K S Mysore, J Nam, S B Gelvin. An Arabidopsis histone H2A mutant is deficient in Agrobacteriun T-DNA integration. Proc Natl Acad Sci USA, 2000,97:948-953.
    148 S B Narasimhulu, X B Deng, R Sarria et al. Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell, 1996,8;873-886.
    149 De Cleene M, Deley J. The host range of crown gall. Bot Rev, 1976, 42:389-466.
    150 Potrykus I. Gene transfer to cereals: an assessment. Bio Technology, 1990, 6:535-
    
    542
    151 Hernalsteens JP, Thia-Toong L. Schell J.et al An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J, 1984,13:3039-2041
    152 Hooykaas-van Slogteren CMS, Hooykaas PJJ, Schilperoort. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Natrue, 1984,311:763-764
    153 Graves AE. Goldman SL. The transformation of Zea mays seedling with Agrobacterium tumefaciens. Plant Mol Biol, 1986
    154 Graves ACF, Glodman S L. Agrobacterium tumefaciens mediated transformation of the monocot genus Gladiolus:detection of expression of T-DNA encoded genes. J Bacteriol, 1987,169:1745-1746
    155 Grimsley N. Hohn B. Hohn T, et al. 'Agroinfection' an alterative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA, 1986, 83:3282-3286
    156 Bytebier B, Deboeck F, Greve H D, et al. T-DNA organization in tumor Cultures and transgenic plants of the monocotyledon Agrobacterium officimalis.proc Natl Acad sci USA, 1987,84:5345-5349
    157 Hiei Y, Ohta S, Komari T. et al. Efficient transformation of rice(Oryza Saliva L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Pant J 1994,6:271-282
    158 Rashid H. Yokos S, Toriyama K. et al. Transgenic plant production medated by Agrobacterium in Indica rice. Plant Cell Rep, 1996,15:727-730
    159 Dong J. Teng W, Buchholz WG. et al. Agrobacterium mediated transformation of Javanica rice. Molecular Breeding, 1996, 2:267-276
    160 Aldenita RR, Hodges TK. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta,1996, 199:612-617
    161 Ishida Y, Saito H, Ohta S. et al. High efficieney transformation of maize(Zea mays L.)mediated by Agrobacterium mmefaciens .Nature biotechnology. 1996, 14:745-750
    162 Cheng M, Fry J E, Pang S Z, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant physiol, 1997, 115:971-980
    163 Tingay S, McElroy D, Kalla R, et al. Agrobacterium tumefaciens-mediated baley transformation. Plant J. 1997,11 (6) : 1369-1376
    164 夏光敏。李忠谊,贺晨霞等。根癌农杆菌介导的小麦转基因植株再生。植物生 理学报,1999,25(1) :22-28
    165 李宝健,欧阳学智,许耀。应用农杆菌Ti质粒系统将外源基因转入籼稻细胞研 究,中国科学B辑,1990, 2:144-149
    
    
    166 许东晖,许实波,李宝健等,诱导根癌土壤杆菌Vir区基因表达信号分子的构效 研究。植物学报,1999. 41(11) :1252-1254。
    167 许东晖,许实波,李宝健等,抑制根癌土壤杆菌生长和转移的水稻信号分子的 鉴定。植物学报,1999,41(12) :1283-1286。
    168 刘巧泉,张景六,王宗阳等。根癌农杆菌介导的水稻高效转化系统的建立。植 物生物学报,1998,24(3) :259-271。
    169 尹中朝,杨凡,许耀等,利用根癌农杆菌法获得转基因水稻植株及其后代,遗 传学报,1998,25(6) :517-524。
    170 项友斌,梁竹青,高明尉等。农杆菌介导的苏云金杆菌抗虫基因 CryIA(b)和 CrylA(C)在水稻中的遗传转化及蛋白表达。生物工程学报,1999,15(4) :494-500。
    171 黄健秋,卫志明,安海龙等,根癌土壤杆菌介导的水稻高效转化和转基因植株 的高频再生,植物学报,2000,42(11) :1172-1178。
    172 Smith RH. Hood EE. Review and interpretation: Agrobacterium tumefaciens transformation of monocotyledons. Crop Sei, 1995,35:301-309.
    173 Raineri DM. Bottino P, Gordon Mp et al. Agrobacterium-mediated transformation of rice(oryza saliva L.,), Bio/techmol, 1990, 8:33-38.
    174 Vijayachandra K, Palanichelvam K, Veluthanbi K. Rice scutellum induces Agrobacterium tumefaciens vir genes and T-strand generation. Plant Mol Biol 1995,29:125-133
    175 Guo G Q, Maiwald E, Lorenzen P. et al. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cereal Research communications. 1998. 26(1) : 15-22
    176 许耀,贾敬芬。郑国昌。酚类化合物促进根癌农杆菌对植物离体的高效转化. 科学通报。1988. 33(22) ;1745-1748
    177 李卫,郭光沁,郑国昌,根癌农杆菌介导遗传转化研究的若干新进展。科学通 报,2000,45(8) :798-807
    178 Gubba S, Xie YH, Das A. Regulation of Agrobacterium tumefaciens virulence gene expression: isolation of a mutation the restores virGD52E function. Molecular Plant-Microbe Interactions. 1995,8(5) 788-791
    179 McLean B G, Greene E A, Zambryski P C. Mutants of Agrobacterium VirA that activates vir gene expression on the absence of the inducer acetosyringone. J Biol Chem. 1994. 269(4) : 2645-2651
    180 Hansen G, Das A, Chilton M D. Constitutive expression of the virulence genes improves the effciency of plant transformation by Agrobacterium. PROC Natl Acad Sci USA. 1994. 91:7603-7607
    181 Alt-Morbe J, Kulhmann H, Schroder J. Differences in induction of fi-plasmid
    
    virulence genes virG and virD. and continued control of virD expression by four external factors. Mol Plant-Microbe Interact, 1989,2:301-308
    182 Turk SCHJ. Melchers LS, den Dulk-Ras H, et al. Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the Vir A sensor protein. Plant Mol Biol 1991,16:1051-1059.
    183 Alt-Morbe J, Neddermann P. Von Lintig J, et al. Temperature sensitive step in Ti plasmid vir region induction and correlation with cytokinin secretion by Agrobacterium. Mol Gen Genet, 1998,213:1-8.
    184 Usami S, Okamoto S, Takebe I, et al. Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc Natl Acad Sci USA, 1998, 85:3748-3752.
    185 Veluthambi K. Krishnan M, Gould JH. et al. Opines stimulate induction of the vir genes of the Agrobacterium tumefaciens Ti plasimd. J Bacteriol, 1989, 171: 3696-3703.
    186 Shimoda N. Toyola-Yamamoto A. Nagamine J, et al. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA, 1990, 87:6684~6688.
    187 Cangelosi GA. Ankenbauer RG. Nester EW. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and transmembrane signal protein. Proc Natl Acad Sci USA, 1990, 87:6708-6712.
    188 Arenciba AD, Carmona E R, Tellez P et al. An efficient Protocol for sugarcane(saccharum SPP.L.)transformatian mediated by Agrobacterium tumefaciens. Transgenic Research, 1998, 7:1-10.
    189 Sahi SS, Chilton MD, Chilton W S. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. proc Natl Acad Sci USA, 1990, 87:3879-3883.
    190 Binns AN. Thomashow ME. Cell biology of Agrobacterium infection and transformation of plants. Ann Rew Microbiol, 1988,42:575-606.
    191 An G. High efficiency of transformaition of cultured tobacco cells. Plant Physiol, 1985,79:568-570.
    192 Iida A, Yamashita Y, Yamada Y. et al. Efficiency of particle-bombardment-mediated transformation is influenced by cell stage in synchronized cultured cells of tobacco. Physiol, 1991,.97:1585~1587.
    193 Kudirka DT, Colburn SM. Hinchee MA.et al. Interactions of Agrobacterium tumefaciens. with soybean (Glycme max L. Merr.)leaf explants in tissue cultures. Can J Genet Cytol, 1986,28:808-817.
    
    
    194 Okala K. Takebe I. Nagata T. Expression and integration of genes introduced into highly synchronized plant protoplasts. Mol Gen Genet, 1986, 205: 398-103.
    195 Valvekens D, van Montagu M, van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamyein selection. Proc Natl Acad Sci USA, 1988, 85:5536-5540.
    196 Wullems GJ, Molendijk L, Ooms G, et al. Diferential expression of crown gall tumor markers in transformants obtained after in vitro Agrobacterium tumefaciens-induced transformation of cell wall-regenerating protoplasts derived from Nicotiana tabacum. Proc Natl Acad Sci USA, 1981, 78:4344-4348.
    197 Kahl G. Molecular biololgy of wound healing:the conditioning phenomenon. In:Kahl G, Schell J(eds) Molecular biology of Plant Tumor, PP:211-267 Academic press New York, 1982.
    198 Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997, 35:205-218.
    200 Liu C-N, Li X-Q, Gelvin SB. Multiple copies of virG enhance the transient transformation of celery carrot and rice tissues by Agrobacterium tumefaciens. Plant Mol Biol, 1992, 20:1071-1087.
    201 Li X-Q, Liu C-N, Ritchie ST, et al. Factors influencing Agrobacterium-mediated transient expression of gusA in rice Plant Mol Biol,1992, 20:1037-1048.
    202 Schlappi M, Hohn B. Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell, 1992, 4:7-16.
    203 Simon E. Membranes in dry and imbibed Seeds. In:Crowe J, Clegg J ed. Dry Biological systems. London, UK. London Academic Press, 1987:205-224.
    204 McCormac A C, Wu H X, Bao M Z, et al. The use of Visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat(Triticum aestivum L.) and bailey(Hordeum Vulgare L.). Euphytica,1998, 99:17-25.
    205 Cheng M, Fry J E, Pang S Z, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant physiol. 1997, 115:971-980.
    206 Elliotl A R, Campbell J A, Brettell R I S, et al. Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aust J plant physiol, 1998, 25: 739-743.
    207 林俊芳,甘蔗钙调蛋白的基因克隆及遗传转化方法的研究。福建农业大学博士 学位论文,1996
    208 彭绍光。甘蔗育种学,北京:农业出版社,1990
    209 Gustavo A, de La Riva. Agrobacterium tumefaciens: a natural tool for plant transformation. EJB Electronic Journal of Biotechnology ISSN: 0717-3458, 1(3) , 1998
    
    
    210 Robert Bower, Robert Birch. Transgenic sugarcane plants via microprojectile bombardment. The plant J, 1992, 2:409-416
    211 Gambley RL, Frod-R, Smith-GR. Microprojectile transformation of sugarcane meristems and regeneration of shoots expressing beta-glucuronidase. Plant Cell Reports, 1993 12(6) :343-346
    212 Smith GR, Gambley RZ, Egan BT et al. Progress in development of a sugarcane meristem transformation system and production of SCMV-resistant transgenics. Proceedings of the 15th conference of the Australian society of sugarcane Technologists. Cairns. Queensland, 27-30 April 1993:237-250.
    213 Gambley RL, Bryant JD, Masel-NP. Cytokinin-enhanced regeneration of plants from micoprojectile bombarded sugarcane meristematic tissue. Austratian Journal of plant physiology, 1994,21(5) :603-612.
    214 Arencibia A, Molina PR, Riva G de La et al. Production of transgenic sugarcane(Saccharum officinarum L.)plants by intact cell electroporation. Plant Cell Reports, 1995,14(5) :305-309.
    215 Black KG. Huckett BI, Botha FC. Ability of Pseudomonas fluorescens, engineered for insecticidal activity against sugarcane stalk borer, to colonise the surface of sugarcane plants.Proceedings of the Annual congress south African Sugar Technologists Association, 1995,69:21-24.
    216 Gallo Meagher M, Irving JE. Herbicide resistant transgenic sugarcane plants conaining the bar gene. Crop science, 1996, 36(5) : 1367-1374.
    217 Crop CPL, Glassop D, Quick WP et al. Molecular manipulation of sucrose phosphate synthase in sugarcane. Sugar 2000 symposium :sugarcane:research to wards efficient and sustainable production, 1996:124-126.
    218 Arencibia A, Vazquez RI, Prieto D et al. Transgenic sugarcane plants resistant to stem borer attack.Molecular Breeding, 1997,3(4) :247-255.
    219 Gonzalez C J, Coego G A, Martinez G A F, et al. Optimization of transgene expression in sugarcane cells. Biotechnology Techniques, 1998,12(10) : 793-796.
    220 Nutt K A, Allsopp P G, McGhie T K, et al. Transgenic Sugarcane with increased resistance to canegrubs. proceedings of the 1999 conference of the Australian society of Sugar cane technologists, 1999, 171-176.
    221 Zhang L H, Xu J L, Birch R G, et al. Engineered detoxification confers resistance against a pathogenic bacterium. Nature Biotechnol, 1999, 17(10) , 1021-1024.
    222 陈如凯,林俊扬.林俊芳等。农杆菌介导的甘蔗遗传转化研究。甘蔗,1996, 3(3) :1-4
    
    
    223 林俊芳,张银东,陈如凯等,基因枪法转化甘蔗胚性愈伤组织获得白化苗,福 建农业大学学报,1997,26(1) 18-23
    224 张树珍,郑学勤,林俊芳等.海藻糖合酶基因的克隆及其转化甘蔗的研究,农业 生物技术学报,2000,8(4) :385-388
    225 Marcotte W R J et al. Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell, 1989, 1: 969-976.
    226 Kearns E V, Assmann S M. The guard cell-environment connection. Plant Physiol 1993, 102:711-715
    227 萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T,分子克隆实验指南(第二版)金冬雁, 黎孟枫等译。北京:科学出版社,1992
    228 顾红雅.植物基因与分子操作。北京,北京大学出版社.1995
    229 Vasil I, Vasil V. Regeneration in cereals and other grass species. In: Vasil I K ed. Cell culture and somatic cell genetics of plants. Orlando Florda USA: Acedemic press, 1986
    230 Goddijn O J M,Pen J.植物代谢工程生物反应器,Trends in Biotecnnol, 1995. 13(9) :379-387. 曾庆平译,生物技术通报,1996,5:5-10
    231 瞿礼嘉,顾红雅,胡苹,陈章良。现代生物技术导论。北京:高等教育出版社, 施普林格出版社,1998:281
    232 Kidd G, Dovorak J. Trehalose is a sweet target for agbiotech. Technol, 1994, 12:1328-1329
    233 田波。植物病毒启动子。见田波,许智宏,叶寅编。植物基因工程。济南:山东 科学技术出版社,1996:121-123
    234 Omirulleh S, Abraham M, Golovkin M et al. Plant Mol Biol, 1993,21:415-428
    235. Yamaguchi-Shinozaki k, Shinozaki k. Characterization of the expression of a desiccation-responsive rd 29gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Gent, 1993, 236(2-3) :331-340
    236. Yamaguchi-Shinozaki k, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, Low-temperature, or high-salt stress. Plant Cell 1994,6(2) :251-264
    237. Xiong L, Ishitani M, Zhu J K. Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant physiol ,1999, 119(1) :205-212.
    238. Toriyama K, Arimoto Y, Uchimiya H et al. Transgenic rice plants affer direct gene transfer into protoplasts. Bio/Technology, 1988,6:1072-1074.
    239. Rhodes CA, Pierce DA, Matter I J, et al. Genetically transformed maize plants from protoplasts, science, 1988,240-207.
    
    
    240. DeBlock M D, Botterman J, Vandewiele M et al. Engineering herbicide resistance in plants by expression of a detoxifying enzyme, EMBOJ, 1987, 6:2513~2518.
    241. Rathore K S, Chowdhury VK, Hodges Tk. Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts. Plant Mol Biol, 1993,21:871~884.
    242. Takimoto I, Christensen AH, Quail PH et al. Non-systemic expression of a stress-responsive maize polyubiquitin gene(Ubi-l). in transgenic rice plants. Plant Mol Biol, 1994,26:1007-1012.
    243. Tachibana K, Watanabe T, Sekizawa T et al. Action mechanism of bialaphos. II. Accumulation of ammonia in plants treated with bialaphos. J Pest Sic, 1986,11:33~37.
    244. Murakami T, Anzai H, Imai S, et al.The bialaphos biosynthetic genes of streptomyces hygroscopicits:molecular cloning and characterization of the gene chuster. Mol Gen Gent, 1986,205:42-50.
    245. Wang M B, waterhouse PM, A rapid and simple method of assaying plants transformed with hygromyein or PPT resistance genes .Plant Mol Biol Rep,1997,15;209~205.
    246. Gravois K A, Moldenhauer K A K, Baldwin F L et al. Evaluation of Liberty-resistant rice in Arkansas. In:Norman R J, Johnston TH eds. Rice research studies. Fayetteville:Arkansas Agricultural Experiment station, University of Arkansas, 1997,12-16
    247. Bower R, Elliott A R, Potier B A M et al. High-efficiency, microprojectile-mediated cotransformation of sugarcane using visible or selectable markers. Mol Breeding ,1996,2:239-249.
    248. Ingelbrecht I L, Irvine J E, Mirkiv T E. Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant physiol, 1999,119:1187-1198
    249. Chan M T, Chang H H, Ho S L et al. Agrobacterium-mediated productin of transgenic rice plants expressing a chimereric α amylase promoter/ β-glucuronidase gene. Plant Mol Biol, 1993,22:491-506
    250. Hood E E et al. Transgenic Res , 1993,2:208-218
    251. Hood E E. Jen G, Kayes L et al. Restriction endonuclease map of pTiBo542, a potential Ti-plasmid vecter for genetic engineering of plants.Bio/technology, 1984,2:702-709.
    252. Komaric T, Halperin W, Hester E W, physical and fametional mpa of superivrulent Agrobacterium tumefaciens tumor inducing plasmid pTiBo542 , J Bacteriol, 1986, 166:88-94.
    253. Smith R, Hood E E. Argobacterium tumefaciens transformation of monocotyledons, Crop Sci, 1995, 35,301-309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700