NGF促周围神经损伤修复支架的制备及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由各种外伤原因所导致的周围神经损伤或者断裂,会给伤者造成肢体感觉和运动功能的下降或者丧失。对于周围神经断裂类的损伤,若断裂缺口较大时,就须借助于对缺口进行桥接移植手术才能使断裂了的周围神经得到再生修复。目前采用的移植体有自体移植体和神经支架,但自体移植来源有限且会带来供体部位的后遗症。在神经支架研究方面,由于非降解材料可能导致神经压迫和二次手术的必要性,所以近年的工作主要趋向于生物可降解支架材料的研究和开发。截至2006年底,美国FDA已经批准了NeuraGen、SaluBridge、Neurolac、Neuro Matrix、Neuroflex和Neurotube等品牌的神经导管用于临床;我国也有几家单位正在申报国家三类医疗器械批文。尽管如此,由于所使用的材料不同,其促周围神经损伤修复的效果也很有差异;同时,它们基本都不适用于长段神经缺损的修复,故开展神经支架的研究仍有必要。
     基于以上原因,本论文拟研制出一种以猪皮来源的细胞外基质(ECM)粉末和聚乳酸-聚羟基乙酸共聚物(PLGA)为主要原料、对神经生长因子(NGF)有缓慢释放功能的促周围神经损伤修复的支架;通过体外检测及动物实验来评估其作为促周围神经损伤修复支架的可行性。具体内容主要包括以下几个方面:
     ①制备出了猪皮来源的ECM粉末。经H.E染色及扫描电子显微镜观测,没有观测到细胞残留;经琼脂糖凝胶电泳分析,未检测到核酸残留。
     ②制备出了具有生物活性的NGF明胶微球。经激光粒径分布仪检测,微球的粒径介于1μm和20μm之间,平均粒径主要分布在8μm和12μm之间;毛细管电泳检测结果显示微球对NGF的封载率为80.50%。
     ③通过添加弱碱性物质,达到了中和PLGA在降解过程中所产生的酸性产物以稳定组织pH的目的。对于纯的PLGA,随着降解时间的推移,降解液的pH值逐渐下降;不同种类的弱碱性调节剂与PLGA复合后都能对降解液的pH起到一定的调节作用,但效果各异;相同种类的弱碱性添加剂对降解液pH的影响与添加百分比相关;碳酸氢钠的调节作用最明显,使降解液的pH值一直处于碱性状态;壳聚糖的调节功效相对较平稳缓慢,使降解液的pH值一直处于酸性状态和平稳下降趋势;而碱性氨基酸添加剂的作用则处于中间状态,先使降解液上调成碱性,然后再下调为酸性,使降解液的pH值保持在中性附近;当组氨酸的添加量为5%和10%时,对降解液pH的影响差异不显著;而当添加剂为精氨酸和赖氨酸时,在高添加剂量下其对降解液pH值的影响比在低添加剂量下的作用更显著;当赖氨酸的添加量为5%时,在试验考察期内,其使降解液的pH值保存在7.28~6.62间,是最适合的添加方式。
     ④通过对由PLGA和ECM的不同混合比例所制备的支架进行比较发现,随着支架中ECM含量的增加,材料中的孔隙的在形态及孔径的大小分布上越不均匀;材料的断裂强度逐渐增大,当ECM含量在达到20-30%时为最大值,然后逐渐降低;材料的断裂伸长率逐渐降低;吸水率逐渐增大;失重率逐渐增大;降解速率逐渐增大。综合评价认为,材料中ECM的最佳含量应在20-30%。
     ⑤通过对不同组织工程原材料的筛选以及配伍比例的探讨和制备方法的摸索,制备出了目标支架。
     ⑥体外测试结果显示,本目标支架的断裂强度为8.308MPa,断裂伸长率为38.98 %,弹性模量为77.27 MPa。扫描电子显微镜观测发现,支架中PLGA和ECM发生了物理共混并形成了蜂窝状结构。在8周的考察期内,支架质量损失了15.6%,羟脯氨酸的累计释放率为62.8%。在第30d仍能检测到支架对NGF的释放。扫描电子显微镜观测结果显示雪旺氏细胞(SC)能够在支架上粘附、穿行。
     ⑦动物实验初步实验结果显示,本目标支架在兔坐骨神经部位生物相容性良好,无炎症反应,无过敏反应。通过对动物实施本目标支架移植后,在术后第5周术部神经实现了愈合,在术部神经的愈合中有雪旺氏细胞的参与。
     综上所述,本支架具有对NGF进行缓慢释放的功能并保持了NGF的生物活性;无细胞毒性,并对雪旺氏细胞的生长有促进作用;其三维结构为雪旺氏细胞在支架中的穿行提供了前提;其力学指标和生物可降解特性符合神经支架的要求;在支架中添加弱碱性物质是中和PLGA在降解过程中所产生的酸性物质的有效方法。本支架的力学性质、生物活性、生物相容性、生物可降解性符合神经支架的要求,可以作为一种候选的神经支架。
Peripheral nerve defects caused by various kinds of trauma can result in motor and sensory disabilities. Direct end-to-end suturing is suggested for a short nerve injury. For larger nerve defects or gaps, implantation of a nerve graft is often necessary to bridge the proximal and distal nerve stumps for facilitating nerve regeneration and functional recovery. At present, to recover the disrupted nerve is clinically carried out by autograft, but there still exist certain limits and disadvantages: the donator source limitation for autograft, and the accompanying risks in harvesting autograft. To overcome those disadvantages, artificial nerve scaffold has been developed and showed great potentiality. In recent research, biodegradation never conduits have attracted much more attention. By the end of 2006, there are some conduits that were FDA approved for clinic, including SaluBridge Nerve cuff, Neurolac nerve conduit, Neuro Matrix, Neuroflex and Neurotube. In our country, a few of institutions are applying for national medical equipment certificates. However, different kinds of conduits have different effectiveness on nerve regeneration. In addition, these present treatments are served for small defects (several millimeters) and do not address larger peripheral nerve injuries. Thus, it was deserved to further develop new nerve scaffolds to satisfy the requirement of clinical using.
     Polylactic acid-polyglycolic acid (PLGA) has been widely utilized in tissu engineering, due to its good biocompatibility, biodegradation and easy fabrication. But the scaffold fabricated by PLGA is fragile and hard. So it is essential to compounded PLGA with other kinds of materials in order to improve its biomechanics. Meanwhile, acidity from PLGA degradation in vivo could result in local acid collection, which would change the pH stabilization of tissue. Thus how to overcome this problem is should be taken consideration.
     Moreover, studies confirm the addition of nerve growth factors [NGFs] into artificial nerve scaffold can promote its regeneration and repair, however, due to the very short half-life time of NGFs in vivo, thus sustained release of NGFs is required for them to function better.
     It is well known that porcine-derived extracellular matrix (ECM) has good biocompability and will not cause the risk that sufferer is infected with porcine endogenous retrovirus. ECM, which is composed with collagen and a little laminin and fibronectin, has been shown to play a significant role in axonal regeneration. However it is difficult to fabricate a nerve scaffold with ECM molecules directly. As porcine-derived ECM has favourable hydrophilicity and water insoluble, we mixed ECM with PLGA to fabricate a compound conduit, which could keep its shape in vivo for a long time.
     In this study, we manufactured a compound nerve scaffold with porcine-derived ECM and PLGA, which could release NGF sustainly. The compound scaffold was evaluated by vitro testing and animal experiments. The concrete contents are as follows:
     ①Porcine-derived extracellular matrix was prepared by enzymolysis. The matrix was underwent H-E Staining, SEM observation and DNA remains assay to ensure the pigskin free of cell. It was seen cells have been completely removed by H.E staining and scanning electron macrograph (SEM) observation. The result of DNA remains assay showed that there is no DNA band in acellular matrix.
     ②Gelatin microballoon with bioactive NGF was fabricated. By laser particle diameter distribution device testing, it was found that the particle diameter was range from 1μm to 20μm and the mean diameter from 8μm to12μm. The encanpsulation ratio of NGF is 80.50% by capillary electrophoresis.
     ③Alkaline substance added into the scaffold could neutralize acidoid from degradation of PLGA to maintain tissue pH. As for pure PLGA, the pH of degradation solution will decrease gradually as it was degradated in purified water. Variety kinds of weak base moderators, which were combinated with PLGA, could regulate the pH of degradation solution. But the regulated effectiveness vary with the kinds of moderator and the percentage of moderator added to the PLGA. According to our experiment, all the basic additives investigated in the experiment showed good potential to relieve the level of acid collection in the course of PLGA degradation. Among those, the relieving ability of NaHCO3 was in the top, basic amino acid in the moderate, while Algin and chitosan ranked lower. 5% addition of Lysine produced a best outcome that is the pH remainning at 7.28~6.62.
     ④Comparing the compound scaffolds with different mixture ratio of PLGA and ECM, the results were as follows : (1) The pore diamater and the appearance were vary with the increasement of the content of ECM in the scaffold; (2)the breaking strength increased up to the peak with the extent of ECM in the scaffold increasing to 20%~30%; (4) the breaking extensibility decreased gradually with increment of ECM in scaffold; (5) the max water-uptake and mass losing rate of conduits increased with the increment of ECM in the scaffold during the degradation period. By comprehend evaluation; it is considered that the most optimization content of ECM in scaffold is about 20%~30%.
     ⑤Target scaffold has been fabricated.
     ⑥According to test in vitro, the result displayed as follows: (1)Mechanical testing showed that the breaking strength was about 8.308MPa, the breaking extensibility was about 38.98 % and the elastic modulus was about 77.27 MPa. (2) SEM result showed PLGA has mixed with ECM to form cellular structure. (3) During 8 weeks of degradation in vitro, and the mass loss ratio was about 15.6%, the accumulative releas rate of hydroxyproline is 62.8%. (4) The release of NGF could be still detected on the 30th day. (5) Cells could adhere to the scaffold and extend on it.
     ⑦The results of animal experiment suggested that the scaffold implanted into rat’s sciatic nerve has good biocompatibility, no inflammation and is free of hypersensitive response.
     To sum up, the scaffold could release NGF sustainedly and protect NGF from denaturation; it was free of cytotoxicity and could promote Schwann cells’growth; it’s three dimensional structure is the prerequisite of SCs extended on it; it has appropriate mechanics property and good bio-degradablity; Addition alkaline substance is an effective method for neutralization acidoid from PLGA. So the compound scaffold may be a potential artificial nerve scaffold.
引文
[1] Wiberg, M., Terenghi,G. Will it be possible to produce peripheral nerves[J]. Surg.Technol.Int, 2003,11: 303-310.
    [2] Seddon HJ , Medawar PB , Smiths H. Rate of regeneration of peripheral nerves in man[J]. J Physiol (Lond), 1943 , 102 : 191 -201.
    [3] Sunderland S. Rate of regeneration ofⅠ:sensory nerve fibres andⅡ: motor fibres[J]. Arch Neurol Psychiatry, 1947, 58: 1 - 14.
    [4]韩秀月.周围神经损伤的手术治疗进展[J].实用手外科杂志,2007, 21(2): 103-105.
    [5]许家军,陈尔瑜,何成等.周围神经损伤后局部一次给予重组CNTF对神经元变性和再生的作用[J].中国临床解剖学杂志,2000,18(4):360-362.
    [6]郑林丰,易西南.周围神经损伤的再生与修复的哲学启示[J].创伤外科杂志,2006,8(1): 93-95.
    [7] MacKinnon SE. New directions in peripheral nerve surgery[J]. Ann Plast Surg, 1989, 22 (3) : 257 - 273.
    [8]李平生,林国叶,何向阳等.周围神经损伤的修复治疗[J].中国骨伤, 2005, 18(11): 667-669.
    [9]陈统一.周围神经损伤修复的进展及展望[J].中国修复重建外科杂志, 2005, 19(11): 851-852.
    [10]武继祥,吴宗耀.周围神经损伤的修复和治疗进展[J].中华物理医学与康复杂志, 2005, 27(6): 377-379.
    [11] Millesi,H. Nerve transplantation for reconstruction of peripheral nerves injured by the use of the microsurgical technic[J]. Minerva Chin, 1967, 22(17): 950-951.
    [12]侯春林.周围神经损伤修复进展[J].中华创伤杂志, 2005, 21(8): 561-563.
    [13]邵岩,顾立强.周围神经损伤与修复的解剖及组织学结局[J].中国临床康复, 2005, 9(21):165-167.
    [14]苏永宾.周围神经损伤临床修复技术概况[J].中国骨伤, 2004, 17(3): 189-190
    [15]陈亮,李晓光,徐群渊.周围神经的损伤与修复[J].解剖科学进展,2004, 10 (3): 235-238.
    [16] Matejcik,V. Surgical treatment of peripheral nerve injuries in upper extremities[J]. Acta Chin Plast, 2002, 44(3): 80-85.
    [17]王敏,杨志焕.周围神经损伤修复方法研究进展[J].创伤外科杂志,2002, 4 (1): 51-54.
    [18]秦煜,裴国献,吴岚晓.周围神经损伤修复模式应用基础的研究进展[J].中国临床康复,2002, 6(4): 572-573.
    [19]陈统一,张键.周围神经损伤与再生研究的回顾与展望[J].国外医学.骨科学分册,2004,25(5): 259-261.
    [20] McCallister WV, Cober SR, Norman A, Trumble TE. Using intact nerve to bridge peripheral nerve defects: an alternative to the use of nerve grafts[J]. .J.HandSurg [Am.], 2001, 26(2): 315-325.
    [21]刘志礼,舒勇,许永武.周围神经损伤端侧吻合的研究[J].实用临床医学, 2004, 5(1): 131-132.
    [22]张键,陈维嘉,张峰等.端侧缝合术修复周围神经损伤研究进展[J].国外医学.骨科学分册, 2004, 25(5): 274-277.
    [23]王敏,杨志焕.周围神经损伤端侧吻合法进展[J].临床骨科杂志. 2002, 5 (1): 71-73.
    [24] Viterbo F, Trindade JC, Hoshino K, et al. Latero-terminal neurorrhaphy without removal of the epineural sheath. Experimental study in rats[J]. Rev Paul Med, 1992,110(6):267-75.
    [25]陈爱民,侯春林,王诗波等.周围神经损伤的再手术治疗[J].中国矫形外科杂志, 2002, 9(2): 134-136.
    [26]杨恒文,伍亚民,沈于干.周围神经损伤后的修复与再生[J].国外医学.创伤与外科基本问题分册, 2000, 21(4): 195-197.
    [27]王艳,孟庆刚,孙立国.不同直径自体神经移植效果的比较研究[J].哈尔滨医科大学学报, 2005, 39(2):166-168.
    [28]周兴,钟世镇,陈志光.自体神经移植构建犬腹壁-膀胱反射弧的实验研究[J].中华神经医学杂志, 2005, 4(6): 572-574.
    [29] MacKinnon SE. Surgical management of peripheral nerve gap[J]. Clin Plast Surg, 1989, 16 : 587 - 603.
    [30]李世德,张明.兔胚胎脊髓移植与自体神经移植修复坐骨神经缺损的比较研究[J].中华创伤杂志, 2003, 19(9): 548-551.
    [31]宫云霞,王利,陈传煌等.神经外膜逆行剪开套接吻合周围神经损伤临床研究初步结果[J].实用手外科杂志, 2006, 20(2): 70-72.
    [32] Bain JR ,MacKinnon SE ,Hudson AR ,et al. The peripheral nerve allograft in the primate immunosuppressed with Cyclosporin A :ⅠHistologic and electrophysiologic assessment[J]. Plast Reconstr Surg, 1992, 90 (6):1036 - 1047.
    [33]戴传昌,王炜,曹谊林等.去细胞异体神经基膜管桥接神经缺损的实验研究[J].中华整形外科杂志, 2001, 17(6): 366-368.
    [34]吴敏,肖玉周,周建生.超低温冷冻及免疫抑制剂对异体神经移植的影响[J].解剖与临床. 2007, 12(1): 23-26.
    [35]郭义柱,卢世璧,王岩等.去细胞同种异体神经移植修复人体长段周围神经缺损[J].中国临床康复, 2005, 9(38): 26-27.
    [36]胡瑞斌,沈尊理.脱细胞同种异体神经移植的进展[J].实用手外科杂志, 2007, 21(1): 33-34.
    [37]邵智,蒋电明.同种异体神经移植体预处理方法研究进展[J].创伤外科杂志, 2006, 8(4): 377-379.
    [38]衷鸿宾,侯树勋,徐莹.人类去细胞同种异体神经移植物化学萃取方法的研究[J].中国临床康复, 2004, 8(17): 3402-3403.
    [39]衷鸿宾,侯树勋,徐莹.化学去细胞神经同种异体移植后近期感觉及运动传导功能的神经电生理观察[J].中国临床康复, 2004, 8(11): 2186-2187.
    [40]张军,许百男,周定标等.活性组织工程神经移植体桥接坐骨神经损伤:存活时间及功能恢复的量化评估[J].中国组织工程研究与临床康复, 2007, 11(16): 3018-3021.
    [41]孙晓红,佟晓杰,黄威.周围神经损伤与组织工程修复的研究进展[J].解剖科学进展, 2004, 10 (2) :140-143.
    [42]张鹏,林立新,唐胜建等.组织工程神经在修复周围神经缺损中的应用[J].中华创伤骨科杂志, 2004, 6(11): 1280-1282.
    [43]戴传昌,商庆新,王炜等.用组织工程方法桥接周围神经缺损的实验研究[J].中华外科杂志, 2000, 38(5): 388-390.
    [44]朱家恺.周围神经损伤的若干进展[J].中华创伤骨科杂志, 2004, 6(1): 51-54.
    [45]田德虎,米立新,赵峰.周围神经损伤的物理治疗[J].中国康复医学杂志, 2004,19(3):239-240.
    [46]任惠民,林奇.人体系统解剖学[M].第1版.北京:北京大学医学出版社,1992, 289-321 .
    [47]吕国蔚.医学神经生物学[M].第1版.北京:高等教育出版社,2000,13-21.
    [48]姜宗来.人体局部解剖学[M].第1版.上海:第二军医大学出版社,2001,261-269.
    [49] BlakemoreWF. The case for a central nervous system (CNS) origin for the Schwann cells that remyelinate CNS axons following concurrent loss of oligodendrocytes and astrocytes[J]. Neuropathology &App lied Neurobiology, 2005, 31 (1) : 1 - 10.
    [50] Christine E. Schmidt , Jennie Baier Leach. NEURAL TISSUE ENGINEERING: Strategies for Repair and Regeneration[J]. Annu Rev. Biomed. Eng. 2003, 5:293–347
    [51] Lundborg G.A. 25- year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance[J]. J Hand Surg(Am) , 2000,25(3):391- 414.
    [52]赵立国,姚康德.神经导管修复周围神经损伤的研究进展[J].生物医学工程与临床, 2003, 7 (2): 120-123.
    [53]谢峰,李青峰,顾彬等.神经导管修复周围神经损伤的临床应用[J].整形再造外科杂志, 2004, 1(3): 144-146.
    [54]李青峰,徐靖宏,罗敏等.不同通透性壳聚糖生物复合导管修复周围神经缺损的实验研究[J].上海医学.200, 23(7):391-393.
    [55]匡勇,侯春林,苟三怀等.几丁糖管修复周围神经缺损的实验研究[J].中华创伤杂志,1998,12(2): 90-93.
    [56]朱庆棠,朱家恺,赖英荣等.去细胞组织工程化神经支架的制备与形态学研究[J].中华显微外科杂志,2004,27(1): 35-37.
    [57]王伟,范明,智小东等.神经支架复合体修复周围神经缺损[J].中国医学科学院学报, 2005, 27(6) : 688– 691.
    [58]孟浩,罗卓荆,冯林杰等.新型神经支架材料的构建及其与骨髓基质干细胞复合的实验研究[J].中国矫形外科杂志. 2007, 15(12): 933-934.
    [59]智晓东,王伟,梅晰凡等.组织工程神经支架修复周围神经缺损的应用与前景[J].中国临床康复, 2004,8(26):5622-5623.
    [60] Hench , L.L.,Polak,.M. Third-Generation Biomedical Materials[J]. Science, 2002, 295: 1014-1017.
    [61]张洁,李东,李健宁.膨体聚四氟乙烯用于组织工程支架材料的初步研究[J].中国美容医学,2003,(5): 456-457.
    [62]叶建荣.膨体聚四氟乙烯人造血管临床应用概述[J].国外医学.创伤与外科基本问题分册,1987,2: 84-87.
    [63] Gibson,K.L., Remson,L., Smith,A, Satterlee,N., et al. Comparison of nerve regeneration through different types of neural prostheses[J]. Microsurgery, 1991,12 (2): 80-85.
    [64] McCaig, C.D., Rajnicek, A.M.,Song, B., Zhao,M. Has electrical growth cone guidance found its potential[J]. Trends Neurosci , 2002 , 25(7): 354-359.
    [65] Wang Z., Roberge, C., Wan,Y.,Dao, et al. A biodegradable electrical bioconductor made of polypyrrole nanoparticle/poly(D,L-lactide) composite: A preliminary in vitro biostability study. Biomed[J]. Mater. Res, 2003 , 66A : 738-746.
    [66] Siwy, Z., Mycielska, M.E., Djamgoz, M.B. Eur. Statistical and fractal analyses of rat prostate cancer cell motility in a direct current electric field: comparison of strongly and weakly metastatic cells[J]. Biophys., 2003 , 32 : 12-21.
    [67] Heath, C.A., Rutkowski,G.E. The development of bioartificial nerve grafts for peripheral-nerve regeneration[J]. Trends Biotechnol. 1998 , 16(4):163-168.
    [68] Chen Jung Changa, Shan-hui Hsu.The effect of high outflow permeability in asymmetric poly(DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration[J]. Biomaterials, 2006 , 27: 1035-1042.
    [69] Park, Juyoung, Melhem, Murad, et al. Controlled drug releasing intravitreal implant usingbiodegradable PLGA. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED[J]. Advances in Bioengineering, 2003, 55: 11-12.
    [70] Brady JM, Cutright DE, Miller RA, Battistone GC. Resorption rate, route of elimination and ultrastructure of the implantsite of polylactic acid in the abdominal wall of the rat[J]. J Biomed Mater Res, 1973, 7:155-166.
    [71] Kitchell JP, Wise DL. Poly(lactic/glycolic acid) biodegradable drug-polymermatrix systems[J]. Methods Enzymol, 1985, 112: 436-448.
    [72] Wu XS. Synthesis and properties of biodegradable lactic/glycolic acid polymers. In: Wise et al., editors. Encyclopedic Handbook of Biomaterials and Bioengineering[J]. New York: Marcel Dekker, 1995, 1015-1054.
    [73] Bryan, D.J., Tang, J.B, Holway, A.H., et al. Enhanced Peripheral Nerve Regeneration Elicited by Cell-Mediated Events Delivered via a Bioresorbable PLGA Guide[J]. Reconstr. Microsurg, 2003 , 19 : 125-134.
    [74] Matsumoto, K.,Ohnishi, K., Sekine.T.,Ueda, etal. se of a Newly Developed Artificial Nerve Conduit to Assist Peripheral Nerve Regeneration Across a Long Gap in Dogs[J]. Original Articles. ASAIO, 2000, 46: 415-420.
    [75] Kanemaru, S., Nakamura,T., Omori, K., et al.. Recurrent laryngeal nerve regeneration by tissue engineering. Ann Otol[J]. Rhinol.Laryngol., 2003 , 112 : 492-498.
    [76] Rodriguez, F.J., Gomez, N., Perego, G., Navarro, X. Highly permeable polylactide- caprolactone nerve guides enhance peripheral nerve regeneration through long gaps[J]. Biomaterials, (1999), 20:1489-1500
    [77] Novikov, L.N., Novikova, L.N., et al. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury[J]. Biomaterials, 2002 , 23 : 3369-3376.
    [78] Rosen,J.M., Padilla, J.A., Nguyen, K.D., et al. Artificial nerve graft using glycolide trimethylene carbonate as a nerve conduit filled with collagen compared to sutured autograft in a rat model[J]. Rehabil. Res. Dev, 1992 , 29 : 1-12.
    [79] Koshimune, M., Takamatsu, K., Nakatsuka, H., et al. Creating bioabsorbable Schwann cell coated conduits through tissue engineering[J]. Biomed. Mater. Eng, 2003, 13 : 223-229.
    [80] Bender, M.D., Bennett,J.M., Waddell,R.L., et al. Multi-channeled biodegradable polymer/cultispher composite nerve guides[J]. Biomaterials, 2004(7/8) , 25 : 1269-1278.
    [81] Yueh-Sheng Chen, Ju-Ying Chang, Chun-Yuan Cheng, et al. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material[J]. Biomaterials, 2005, 26: 3911-3918.
    [82] Mohammad J ,Shenaq J ,Rabinovsky E , et al . Modulation of peripheralnerve regeneration :a tissue engineering approach. The role of amniontube nerve conduit across a 2centimeter nerve gap[J]. Plast ReconstrSurg ,2000 ,105 (2) :660-666.
    [83] Mligiliche N ,Endo K,Okamoto K, et al . Extracellular matrix of humanamnion manufactured into tubes as conduits for peripheral nerve regeneration [J]. J Biomed Mater Res ,2002 ,63 (5) :591-600.
    [84] Mohammad J ,Shenaq J ,Rabinovsky E , et al . Modulation of peripheralnerve regeneration : a tissue engineering approach. The role of amnion tube nerve conduit across a 1centimeter nerve gap[J].Plast Reconstr Surg ,2000 ,105 (2) :660-666.
    [85] Mligiliche N ,Endo K,Okamoto K, et al . Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration [J]. J Biomed Mater Res ,2002 ,63 (5) :591-600.
    [86]何清义,陈秉礼,王智彪,等.人羊膜细胞外基质与成纤维细胞体外培养的实验研究[J].中华整形外科杂志,2002 ,18 (4) :229-231.
    [87] Solomon A ,Wajngarten M,Alviano F , et al . Suppression of inflammatory and fibrotic responses in allergic inflammation by the amniotic membrane stromal matrix[J] . Clin Exp Allergy ,2005 ,35(7) :941-948.
    [88] Davis GE , Blaker SN , Engvall E , et al . Human amnion membrane serves as a substratum for growing axons in vitro and in vivo[J]. Science, 1987, 236 (4805): 1106-1109.
    [89]罗静聪,李秀群,杨志明,等.脱细胞羊膜的制备及其生物相容性[J].中国修复重建外科杂志,2004 ,18(2) :108-111.
    [90]韩克军,王者生,高景恒等.脱细胞细胞外基质及其预构建桥接物修复坐骨神经缺损的实验研究[J].中华神经外科杂志, 2005, 21(7): 435-438.
    [91] Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering[J]. Biomaterials, 2000, 21:2215-31.
    [92] Mligiliche N, Kitada M, Ide C. Grafting of detergent-denatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve[J]. Arch. Histol. Cytol. 2001, 64:29-36.
    [93]王昊,柏树令.骨脱细胞后的有机成分分析[J].中国修复重建外科杂志,2003,17(5): 422-424.
    [94]张建党,卢世璧,黄靖香,等.人关节软骨脱细胞基质的制备[J].中国矫形外科杂志,2005,13(4): 276-277.
    [95]侯彦伟,关英辉,戚基萍.软骨微粒脱细胞基质的制备及其特性[J].黑龙江医学. 2004, 28(8):588-589.
    [96]沈楠,金岩,张勇杰,等.去细胞周围神经移植物的制备及生物相容性评测[J].中国临床康复,2006, 10(21): 82-84.
    [97]郭树章,任先军,蒋涛.脱细胞脊髓天然支架的制备及形态学观察[J].中国矫形外科杂志,2007, 15(3): 226-228.
    [98] SondellM,Lundborg G, KanjeM. Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction[J]. Brain Res, 1998, 795 (1~2) : 44-54.
    [99] Hall SM. Regeneration in cellular and acellular autografts in the peripheral nervous system[J] . Neuropathol App l Neurobiol, 1986, 12(1) : 27-46.
    [100] Krekoski CA,NeubauerD, Zuo J, et al. Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan[J]. J Neurosci, 2001, 21 (16) : 6206-6213.
    [101]陈冠军,朱庆生,徐新智等.优化法去细胞大鼠神经同种异体移植修复坐骨神经缺损[J].中国矫形外科杂志,2007,15(7): 541-544.
    [102]孙明学,卢世璧,唐金树等.化学去细胞异体神经修复神经缺损长度的实验研究[J].中国矫形外科杂志.2006, 14(8): 603-606.
    [103]李跃军,陈绍宗,曲辉等.异种神经基膜管桥接周围神经缺损的初步研究[J].中国修复重建外科杂志,2002 ,16:161 -165.
    [104]王学宁,陈长志,杨岷等.新型脱细胞小口径异种移植血管的初步研究[J].上海交通大学学报(医学版). 2006, 26(8): 880-883.
    [105]刘咸罗,孙大宽,钱小星等.血管脱细胞细胞外基质制备的实验研究[J].中国现代普通外科进展, 2002, 5(1): 14-17.
    [106]王学宁,陈长志,杨岷等.脱细胞肝素处理犬颈动脉的异种移植研究[J].外科理论与实践, 2006, 11(3): 235-238.
    [107]范恒华,伍骥,张伯勋等.应用血管脱细胞方法构建人股动脉同种异体移植材料[J].中国组织工程研究与临床康复, 2007, 11(16): 3022-3025.
    [108]崔彬,刘迎龙,于存涛等.去细胞同种心脏瓣膜的再内皮细胞化[J].中国组织工程研究与临床康复, 2007, 11(23):4580-4582.
    [109]冯滨,刘迎龙,谢宁等.两种细胞洗涤剂制备脱细胞同种生物带瓣管道支架的研究[J].中国修复重建外科杂志, 2005, 19(4): 310-313.
    [110]徐鹏,蒋雄刚,杨华静等.聚乙二醇在猪组织工程瓣膜制备中的应用[J].中国组织工程研究与临床康复, 2007, 11(26): 5094-5096.
    [111]崔彬,刘迎龙,谢宁等.去细胞组织工程同种心脏瓣膜的生物学特征[J].中华胸心血管外科杂志, 2004, 20(3): 158-160.
    [112]罗晓婷,李舒梅,文道源等.新鲜制备及中长期保存的羊膜细胞外基质结构特征[J].中国临床康复, 2006,10(1):79-81.
    [113]傅洪滨,霍孟华,张云涛.鼠异体无细胞真皮基质(ADM)的制备和应用[J].中国烧伤创疡杂志, 2000,4: 19-21.
    [114]冯祥生,潘银根,谭家驹.异种(猪)脱细胞真皮与自体表皮复合移植研究[J].中华整形外科杂志, 2000, 16 (1): 40-42.
    [115]孙永华,李迟,王春元等.脱细胞异体真皮与自体薄皮片移植的研究与应用[J].中华整形烧伤外科杂志, 1998, 14: 370-373.
    [116] Burkej F, Yannas I V, Quinbyw C, et al. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury[J]. Ann Surg, 1981, 194(4) : 413-428.
    [117]顾扬,章庆国.猪皮脱细胞真皮基质制备方法的改良及其临床应用[J].东南大学学报(医学版), 2003, 22 (4): 239-241.
    [118]姜笃银,陈璧.免疫组化方法检测猪和人皮肤通用抗原标志[J].感染炎症修复, 2002, 3(2): 20-23.
    [119]张继,归来,梅劲等.小型猪皮瓣模型的影像解剖学研究[J].中国临床解剖学杂志, 2007, 25(5): 502-506.
    [120] cooper ml, andree c, hansbrough j F, et al. Direct comparison of a cultured composite skin substitute containing human keratinocytes to an epidermal sheet graft containing human keratinocytes on athymic mice[J]. Invest Dermatol, 1993, 101(6): 811-819.
    [121]陈俊颖,胡俊西,魏泓.人与巴马香猪皮肤的比较生物学研究[J].中国比较医学杂志, 2006, 16(5): 288-290.
    [122] Takami Y,Matsuda T,Yoshitakem, et al. Dispase detergent treated dermal matrix as a dermal substitute[J] . Burns ,1996, 22(3): 182-190.
    [123] Asher RA, Morgenstern DA, Moon LD, et al. Chondroitin sulphate proteoglycans: inhibitory components of the glial scar[J]. Prog. Brain Res, 2001, 132: 611-619.
    [124]徐鑫,王静.甲壳质和壳聚糖的开发及应用[J].哈尔滨工业大学学报, 2002, 34(1): 95-101.
    [125]陈建,左武松.壳聚糖的应用研究综述[J].淮北煤炭师范学院学报,2004, 25(2): 42– 461.
    [126]吕朋,李入方,夏兰.壳聚糖在医药保健中的应用[J].中国海洋药物杂志, 2001, 6: 831-383.
    [127]蔡学文,周贺福.低聚壳聚糖的制备及应用[J].唐山学院学报,2003, 16(2) :4- 5.
    [128]綦秀芬,刘桂菊,李恩泽.甲壳质及其衍生物在医药方面的应用[J].齐鲁医学杂志, 2002, 17(4): 364 - 366.
    [129]朱孔营,渠荣遴,李方.低分子量壳聚糖制备与应用研究进展[J].高分子通报, 2006 , (2) :41– 45.
    [130]杜昱光,张铭俊,张虎等.海洋寡糖工程药物—壳寡糖制备分离新工艺及其抗癌活性研究[J].中国微生态学杂志,2001, 13(1): 5-7.
    [131]杜昱光,白雪芳,虞星炬等.寡聚糖类物质生理活性的研究[J].中国生化药物杂志, 1997, 18(5): 268-271.
    [132] Xie Y, Zhou NJ, Gong YF, et al. Thimmune response induced by H pylori vaccine with chitosan as adjuvant and its relation to immune protection[J]. World J Gastroenterol, 2007, 13 (10): 1547-1553.
    [133]孙涛,周冬香,朱颖娜等.羧甲基壳聚糖的降解及其抗氧化性能的研究[J].食品科学, 2007, 28(1): 54- 57.
    [134]邢荣娥,刘松,于华华等.不同分子量壳聚糖和壳聚糖硫酸酯的抗氧化活性[J].应用化学, 2005, 22(9): 958- 961.
    [135]柳红,刘莹.壳寡糖对人结肠癌LoVo细胞株生长的影响[J].徐州医学院学报, 2002, 22(2): 148 -150.
    [136]南伟,孙爱兰.壳聚糖及低聚壳聚糖在日用化妆品中的应用[J].化工进展, 2003, 22(12) :1304-1307.
    [137]魏新林,夏文水.甲壳低聚糖的生理活性研究进展[J].中国药理学通报, 2003, 19(6):614-617.
    [138]王远红,于广利,林洪等.低分子甲壳氨基其衍生物抑制不饱和脂肪酸的氧化作用[J].青岛海洋大学学报, 1999, 29(4): 633-635.
    [139]黄俊明,吴丽明,陈瑞仪.甲壳素和壳聚糖对小鼠免疫调节的研究[J].广东卫生防疫, 1999, 25(1): 426-427.
    [140]徐桂云,崔庆荣.甲壳低聚糖清除羟自由基性能的研究[J].东轻工业学院学报, 2001, 15(6): 39-41.
    [141]褚佩英,章叶静,李健,孔繁智.壳聚糖在医药研究中应用的最新进展[J].中草药, 2001, 32 (3): 274-275.
    [142] Takashi Mori, Masahiro Okumura, et al. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro[J]. Biomaterial, 1997, 18: 947 -951.
    [143]尹承慧,侯春林,徐皓等.羧甲基壳聚糖/环丙沙星植入缓释微球防治局部感染的实验研究[J].第二军医大学学报, 2005, 26(1): 72-74.
    [144]刘明河,吴清华.甲壳低聚糖抑菌性能鉴定[J].生物技术, 2005, 36(3): 36-38.
    [145]邓婧,符大勇,宋文斌等.壳聚糖对几种口腔常见致病菌的体外抑制作用[J].上海口腔医学, 2005, 14 (1) : 74-76.
    [146]丁恒生,王亚娜,宗爱萍等.龙虾壳聚糖抗皮肤浅表真菌的实验研究[J].检验医学与临床, 2007, 4 (1): 13-14.
    [147] Quan Gan, Tao Wang, Colette Cochrane and Paul Mc Carron. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery[J]. Colloids and Surfaces B: Biointerfaces, 2005, 44(223): 65-73.
    [148]辛嘉英,李冬.高分子药物缓释用壳聚糖微球的制备[J].天然产物研究与开发, 1996 , 8(3): 92-95.
    [149]孙纳,徐顺清,孙汉清等.壳聚糖脱氧核糖核酸纳米球的制备及其相关特性研究[J].医药导报, 2005, 24 (2): 97-99.
    [150] Lin HR, Kuo CJ, Yang CY et al. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives[J]. J Biomed Mater Res, 2002, 63: 271–279.
    [151]舒晓正,朱康杰.壳聚糖-海藻酸钠微囊对蛋白质控制释放的研究[J].功能高分子学报, 1999, 12(4): 423-426 .
    [152] Olga Borges, Gerrit Borchard, J .Coos Verhoef, et al. Pharmaceutical Nanotechnology Preparation of coated nanoparticles for a new mucosal vaccine delivery system[J]. International Journal of Pharmaceutics, 2005, 299(122): 155-166.
    [153] Gilligan C A.口服疫苗:设计和传送[J].国外医学:药学分册, 1992 , 19 (3) :160-162.
    [154]卢凤琦,曹宗顺,赵焰.壳聚糖-海藻酸盐微囊对药物的缓解作用[J].中国医药工业杂志, 1996, 27 (6): 247-249.
    [155]钱俊青,马月珍.壳聚糖为基质的左氧氟沙星缓释微球制备[J].浙江工业大学, 2004, 32 (1): 20-22.
    [156]陈煜,窦桂芳,罗运军等.甲壳素和壳聚糖在伤口敷料中的应用[J].高分子通报, 2005(2): 94-100
    [157]黄治林,姜广建,郭万厚等.明胶/壳聚糖创面敷料对新鲜创面收缩性的影响[J].中国临床康复, 2005, 9(30): 93-95.
    [158]黄治林,姜广建,孟令军等.明胶/壳聚糖创伤敷料的生物安全性评价[J].第四军医大学学报, 2005, 26 (16):1505-1509.
    [159]苏秀榕,李太武,曾名勇.用壳聚糖制备可吸收性手术缝合线的研究[J].辽宁师范大学学报(自然科学版) , 1996, 19 (4): 321- 329.
    [160]姚子昂,韩宝芹,刘万顺等.不同分子量壳聚糖膜性质的研究[J].中国生物医学工程学报,2002, 21(3): 256– 262.
    [161]张伟.几丁质及其衍生物促进创面愈合的作用[J].中国矫形外科杂志, 2000, 7(3): 2771.
    [162]苟三怀,侯春林,王东荣等.几丁质桥接周围神经缺损的实验研究及临床应用[J].中华骨科杂志, 1996,16(3):148-150.
    [163] Ruben Y. Kannan, Henryk J. Salacinski, Peter E.M. Butler, et al. Artificial nerve conduits in peripheral repair. Biotechnol[J]. Appl. Biochem, 2005, 41: 193-200.
    [164]高晓玲,廖映.从海藻中提取海藻酸钠条件的研究[J].四川教育学院学报, 1999, 15(7) : 104 - 105.
    [165] Nagasawa N , Mitomo H, Yoshii F, et al. Radiation - induced degradation of sodium alginate[J]. Polymer Degradetion and Stability. 2000, 69(3): 279 - 285.
    [166]张善明,刘强,张善垒.从海带中提取高粘度海藻酸钠[J].食品加工, 2002, 23(3) :86 - 87.
    [167]王孝华,聂明,王虹.海藻酸钠提取的新研究[J].食品工业科技, 2005, 26(11):146 -148.
    [168]侯振建,刘婉乔.从马尾藻中提取高粘度海藻酸钠[J].食品科学, 1997, 18(9): 47 - 48.
    [169]马成浩,彭奇均,于丽娟.海藻酸钠生产工艺降解情况研究[J].中国食品添加剂, 2004(2):17 - 19.
    [170]马萍,孙淑英,刘东春等.海藻酸钠理化参数的测定[J].中国海洋药物, 2003, 75 (3): 56 - 62.
    [171]蒋新国,王俊,朱芳海等.海藻酸钠的分子量与缓释作用[J].药学学报, 1994, 29 (4): 306 - 310.
    [172]杨志清.海藻酸钠在经纱上浆中的应用[J].现代纺织技术, 2002, 10(4): 21 - 22.
    [173]樊李红,杜予民,唐汝培等.海藻酸钠/水性聚氨酯共混膜的结构表征和性能测试[J].分析科学学报, 2002, 18(6): 441 - 444.
    [174]谢平.海藻酸及其盐的食用和药用价值[J].开封医专学报, 1997,16(4): 28 - 31.
    [175]李艳,牟德华,侯建革等.带肉果汁中稳定剂的研究与应用[J].河北省科学院学报, 1997(1): 41 - 48.
    [176] Hagen A, Skjak B G, Dornish M. Pharmacokinetics of sodium alginate in mice[J] . European Journal of Pharmaceutical Sciences ,1996,4 ( Supplement 1) :100-106.
    [177]陈玺,唐在明.海藻酸钠在医学上的应用[J].中西医讯, 1998(26) :95 - 98.
    [178] Shapiro L.用于细胞培养和移植的新型海藻酸盐海绵体[J].国外医学生物医学工程册, 1998, 21(2) :124-125.
    [179] Akih Iko K,Minako K, Atsush Iw, et al. Effect of Ca2+ alginate gel dissolution on release of dextran with different molecular weights[J]. J Controlled Release, 1999, 58 (1): 21 - 28.
    [180]蒋新国,何继红,奚念朱.海藻酸钠和脱乙酰壳多糖混合骨架片剂的缓释特征性研究[J].中国药学杂志, 1994, 29 ( 10 ) :610 - 612.
    [181]李沙,李馨儒,侯新朴.海藻酸钠-壳聚糖微囊的制备及载药性质的研究[J].中华临床医药, 2002, 14 (3): 1 - 3.
    [182] Chandy T, Moorad Ian Dl, Rao Ghr, et al. Chitosan /polyethylene glycolalgiate microcap sules for oral delivery of hirudin[J]. J Appl Polym Sci, 1998, 70 (9) : 2143 - 2153.
    [183] Hara M, M Iyake J. Calcium alginate gel entrapped liposomes[J]. M ater Sci Eng, 2001, 17 (1): 101 - 105.
    [184] Rajaonar Ivonym. Development of a new drug carrier made from alginate[J]. J Pharm Sci, 1993, 82 (9): 912 - 917.
    [185] Wayne R, Gombotz, Siow Fongwee. Protein release from alginate matrices[J]. Adv D rug Deliv Rev, 1998, 31 ( 1) : 267 -285.
    [186] Nokhodch Ia, Ta Ilor A. In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices[J]. Farm aco, 2004, 59(8): 999 - 1004.
    [187] Tapia C, Escobar Z, Costa E, et al. Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems[J]. Eur J Pharm Biopharm, 2004, 57 (1): 65-75.
    [188] Jun Watanabe, Satoshi Iwamoto, Sosaku Ichikawa. Entrapment of some compounds into biocompatible nano sized particles and their releasing properties[J]. Colloids and Surfaces B: Biointerfaces, 2005, 42(2): 141-146.
    [189] Ana Grenha, Bego.na Seijo and Carmen Remu.nán2López. Microencapsulated chitosan nanoparticles for lung protein delivery[J]. European Journal of Pharmaceutical Sciences, 2005, 25(425): 427-437.
    [190]刘娅,孙建军,李雪胜等.载药体—藻酸钠凝胶对脉鼠听泡的组织学影响[J].听力学及言语疾病杂志, 2004, 12(4): 247 - 249.
    [191]黄永波,卫小春,李鹏翠等.海藻酸钠载体培养成年免软骨细胞的生物学性状研究[J].中国矫形外科杂志, 2004, 12(1/ 2): 63 - 65.
    [192] Whitworth, I.H., Brown, R. A., Dore, C., Green, C. J., Terenghi[J], G. Hand Surg. [Br], 1995 , 20: 429-436.
    [193] Blacher, S., Maquet, V., Schils, F., et al. Image analysis of the axonal ingrowth into poly(D,L-lactide) porous scaffolds in relation to the 3-D porous structure[J]. Biomaterials, 2003, 24 : 1033-1040.
    [194]李晓光,杨朝阳,蔡青等.应用人工神经修复周围神经损伤的研究[J].自然科学进展, 2003, 13 (5): 541-543.
    [195]李君荣,唐艳林,端礼荣. NGF对大鼠胚胎脊髓神经细胞分化和增殖作用[J].现代预防医学, 2007, 4(7)1282-1283.
    [196] Flynn, L., Dalton, P.D., Shoichet, M.S. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering[J]. Biomaterials, 2003, 24 : 4265-4272.
    [197] Satriano,C., Carnazza, S., Guglielmino, S., Marletta, G. Nucl. Surface free energy and cellattachment onto ion-beam irradiated polymer surfaces[J]. Instrum. Methods Phys. Res. Sect.B, 2003, 208 : 287-293.
    [198] Lee, J. H., Khang, G., Lee,J.W , et al. Interaction of Different Types of Cells on Polymer Surfaces with Wettability Gradient[J]. Colloid Interface Sci. 1998, 205 : 323-330.
    [199] Maskery, S. M., Buettner, H. M., Shinbrot,T. Growth cone pathfinding: a competition between deterministic and stochastic events[J]. BMC Neurosci, 2004, 5 : 22-29.
    [200] Jansen, K., van der Werff,J.F., van Wachem, P. B., et al. A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat[J]. Biomaterials , 2004 , 25: 483-489.
    [201] Itoh, S., Yamaguchi, I Suzuki, M., et al. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo[J]. Brain Res, 2003, 993: 111-123.
    [202] Bellamkonda, R., Ranieri,J.P. , Aebischer,P. Laminin oligopeptide derivatized agarose gels allow three-dimensional neurite extension in vitro[J]. Neurosci.Res, 1995 , 41: 501-509.
    [203] Massia , S.P., Hubbell , J.A. Ann.N.Y. Covalently attached GRGD on polymer surfaces promotes biospecific adhesion of mammalian cells[J]. Acad. Sci . 1990 , 589: 261-270.
    [204] Shin, H., Jo, S. , Mikes, A.G. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer[J]. Biomed. Mater Res, 2002 , 61: 169-179.
    [205] Rajagopal, K. , Sitaramam, V. V.. Biology of the inner space: voids in biopolymers[J]. Theor. Biol, 1998 , 195: 245-271.
    [206] Mann, B. K., Gobin,A.S., Tsai,A.T, et al. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering[J]. Biomaterials. 2001, 22 : 3045-3051.
    [207] Mosahebi, A., Simon, M., Wiberg, M. , Terenghi, G. A novel use of alginate hydrogel as Schwann cell matrix[J]. Tissue Eng . 2001, 7 : 525-534.
    [208] Mosahebi, A., Wiberg, M. , Terenghi, G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits[J]. Tissue Eng . 2003, 9:209-218.
    [209] Mosahebi, A., Fuller, P., Wiberg, M. , Terenghi, G. Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration[J]. Exp. Neurol. 2002 , 173 : 213-223.
    [210] Peng, H. B., Yang, J. F., Dai,Z., Lee, et al. Differential Effects of Neurotrophins and Schwann Cell-Derived Signals on Neuronal Survival/Growth and Synaptogenesis[J]. Neurosci. 2003 , 23 : 5050-5060.
    [211] Hadlock,T., Elisseeff,J., Langer, R., et al. Arch. A Tissue-Engineered Conduit for PeripheralNerve Repair. Otolaryngol[J]. Head Neck Surg. 1998, 124 : 1081-1086.
    [212] Wang , G. L., Lin, W., Yang , Z. M., et al. Experimental study on the adhesion, migration and three-dimensional growth of Schwann cells on absorbable biological materials[J]. Chin J Traumatol. 2003, 6(4): 209-212.
    [213] Pego, A. P., Vleggeert-Lankamp, C. L., Deenen, M., etal. Adhesion and growth of human Schwann cells on trimethylene carbonate (co)polymers[J]. Biomed. Mater. Res , 2003, 67A : 876-885.
    [214] Chafik D,Bear D,Bui P,et al. Optimization Schwann cell adhesion in response to shear stress in an intro model for peripheral nerve tissue engineering[J]. Tissue Eng. 2003, 9 (2): 233-241.
    [215] Bledi, Y., Domb, A. J. , Linial, M. Culturing neuronal cells on surfaces coated by a novel polyethyleneimine-based polymer[J]. Brain Res Protoc. 2000, 5:282-289.
    [216] Kapur, T.A. , Shoichet, M.S. Chemically-bound nerve growth factor for neural tissue engineering applications[J]. J Biomater Sci Polym Ed. 2003, 14: 383-394.
    [217] Guenard.V., Kleitman,N., Morrissey,T.K., et al. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration[J]. Neurosci. 1992 , 12 , 3310-3320.
    [218] Woerly,S., Plant,G.W. , Harvey, A.R. Neural tissue engineering: from polymer to biohybrid organs[J]. Biomaterials. 1996, 17(3): 301-310.
    [219] Baguneid, M., Murray, D., Salacinski, H.J., et al. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes[J]. Biotechnol. Appl.Biochem. 2004, 39 : 151-157
    [220] Terry W. Hudson, Scott Zawko, Curt Deister, et al. Optimized Acellular Nerve Graft Is Immunologically Tolerated and Supports Regeneration[J]. TISSUE ENGINEERING. 2004,10(11/12): 1641-1651.
    [221] Terry W. Hudson, Stephen Y. Liu, Christine E. Schmidt. Engineering an Improved Acellular Nerve Graft via Optimized Chemical Processing[J]. TISSUE ENGINEERING, 2004, 10(9/10): 1346-1358.
    [222] Lawson GM, Glasby MA. Peripheral nerve reconstruction using freezethawed muscle grafts: a comparison with group fascicular nerve grafts in a large animal model[J]. J. R. Coll. Surg. Edinb. 1998, 43: 295-302.
    [223] Liu XL, Arai T, Sondell M, et al. Use of chemically extracted muscle grafts to repair extended nerve defects in rats[J]. Scand. J. Plast. Reconstr.Surg. Hand Surg. 2001, 35: 337-345.
    [224] Fansa H, Schneider W, Wolf G, Keilhoff G. Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts[J]. Transplantation, 2002, 74: 381-387.
    [225] Mligiliche N, Kitada M, Ide C. Grafting of detergent-denatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve[J]. Arch. Histol. Cytol, 2001, 64:29-36.
    [226] Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering[J]. Biomaterials, 2000, 21: 2215-2231.
    [227] Costantino PD, Wolpoe ME, Govindaraj S, et al. Human dural replacement with acellular dermis: clinical results and a review of the literature[J]. Head Neck, 2000, 22: 765-771.
    [228] Klaus Kallenbach, Rainer G. Leyh, Elena Lefik et al. Guided tissue regeneration: porcine matrix does not transmit PERV[J]. Biomaterials, 2004, 25: 3613-3620.
    [229] Rutishauser U. Adhesion molecules of the nervous system. Curr[J]. Opin. Neurobiol, 1993, 3: 709-715.
    [230] Grimpe B, Silver J. The extracellular matrix in axon regeneration[J]. Prog. Brain Res, 2002, 137:333-349.
    [231] Bovolenta P, Fernaud-Espinosa I. Nervous system proteoglycans as modulators of neurite outgrowth. Prog[J]. Neurobiol, 2000, 61:113-132.
    [232] Molander H, Olsson Y, Engkvist O, et al. Regeneration of peripheral nerve through a polyglactin tube[J]. Muscle Nerve, 1982, 5: 54-57.
    [233] Nyilas E, Chiu TH, Sidman RL, Henry EW, et al. 1983. Peripheral nerve repair with bioresorbable prosthesis[J]. Trans. Am. Soc. Artif. Intern. Organs, 1983, 29:307-313.
    [234] Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance[J]. J. Hand Surg. [Am.], 2000, 25: 391-414.
    [235] Yin Q, Kemp GJ, Frostick SP. Neurotrophins, neurones and peripheral nerve regeneration[J]. J. Hand Surg. [Br.], 1998, 23: 433-437.
    [236] Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord[J]. Nature, 2000, 403: 312-316.
    [237] Romero MI, Rangappa N, Garry MG, Smith GM. Functional regeneration of chronically injured sensory afferentsinto adult spinal cord after neurotrophin gene therapy[J]. J. Neurosci, 2001, 21:8408-8416.
    [238] Priestley JV, Ramer MS, King VR, McMahon SB, Brown RA. Stimulating regeneration in the damaged spinal cord[J]. J. Physiol. Paris, 2002, 96:123-133.
    [239] Fine EG, Decosterd I, Papaloizos M, et al. GDNF and NGF released by synthetic guidancechannels support sciatic nerve regeneration across a long gap[J]. Eur. J. Neurosci, 2002,15: 589-601.
    [240] Bloch J, Fine EG, Bouche N, Zurn AD, Aebischer P. Nerve growth factorand neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root[J]. Exp. Neurol, 2001, 172: 425-432.
    [241] Sterne GD, Brown RA, Green CJ, Terenghi G. 1997. Neurotrophin-3 delivered locally via fibronectin mats enhances peripheral nerve regeneration[J]. Eur. J. Neurosci, 1997, 9:1388-1396.
    [242] Cao X, Shoichet MS. Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders[J]. Biomaterials, 1999, 20:329-339.
    [243] Maysinger D, Krieglstein K, Filipovic-Grcic J, et al. Microencapsulated ciliary neurotrophic factor: physical properties and biological activities[J]. Exp. Neurol, 1996, 138: 177-188.
    [244]沈彬,段宏,陈坚等. bFGF缓释微球的制备及其促雪旺细胞分裂增殖的初步研究[J].生物医学工程学杂志, 2005, 22 (4): 719-724.
    [245] Stoll G, Griffin JW, Li CY, Trapp BD. Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation[J]. J. Neurocytol, 1989, 18:671–683.
    [246] Chaudhry V, Glass JD, Griffin JW. Wallerian degeneration in peripheral nerve disease[J]. Neurol. Clin, 1992, 10:613-627.
    [247] Williams LR, Longo FM, Powell HC, Lundborg G, Varon S. Spatialtemporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay[J]. J. Comp. Neurol, 1983, 218: 460-470.
    [248] Fields RD, Ellisman MH. Axons regenerated through silicone tube splices. I. Conduction properties[J]. Exp. Neurol, 1986, 92: 48-60.
    [249]王树森,胡蕴玉,罗卓荆等. Schwann细胞与硫酸肝素-胶原蛋白支架材料的复合[J].神经解剖学杂志, 2005, 21(2) :175-179.
    [250]黄小辉,金岩,张勇杰等.组织工程神经中雪旺细胞的形态[J].第四军医大学学报, 2004, 25(7): 600-602.
    [251] Lawson GM, Glasby MA. Peripheral nerve reconstruction using freezethawed muscle grafts: a comparison with group fascicular nerve grafts in a large animal model[J]. J. R. Coll. Surg. Edinb, 1998, 43:295-302.
    [252]徐润,梁庆华.明胶的生产及应用技术M].北京:中国轻工业出版社, 2000. 250.
    [253]帅兴华,王少强,宋增峰等.明胶应用性能的研究[J].皮革化工, 2007, .24: 320-323.
    [254]关林波,但卫华,曾睿等.明胶及其在生物材料中的应用[J].材料导报, 2006, 20(Ⅶ):380-383.
    [255] Dam Ink O, Dijk St ra P J, Luyn V, et al. Gluataraldehyde as a crosslinking agent for collagen based biomaterials[J]. J Mater Sci Mat Med, 1995, 6: 460-467.
    [256] Kim S, Nimni M E , Yang Z , et al. Chitosan/ gelatin based films crosslinked by proanthocyanidin[J]. J Biomed Mater Search Part B Appl Biomater, 2005, 75 (2): 442-446.
    [257] Young S C, Sung R H, Young M L, et al . Study on gelatin contain artificial skin: I. Preparation and characteristics of noverl gelatin-alginate sponge[J]. Biomaterials, 1999, 20: 409-413.
    [258] Hou X, et al. Surface of gelatin modified poly (L-lactic acid) film[J]. Chinese J Polym Sci, 2003, 21 (3): 277-279.
    [259] Zeng H, Tan Z A, J ian X , et al. Preparation of chitosan/ gelatin composite fibers and their biodegradability[J]. Key Eng Mater, 2003, 249: 437-439.
    [260] Fan L H, Du Y M, Huang R H, et al . Preparation and characterization of alginate/ gelatin blend fibers[J]. J Appl Polym Sci, 2005, 96 (5) : 1625-1628.
    [261]崔俊锋,尹玉姬,张福江等.明胶基生物材料在组织工程中的应用[J].国外医学生物医学工程分册, 2004, 1 (27): 1-3.
    [262] Kang H W, et al. Fabrication of prorous gelatin scaffolds for tissue engineering[J]. Biomaterials. 2005, 20: 1339-1342.
    [263] Mao J S, et al. The properties of chitosan gelatin membranes and scaffolds modified with hyaluronic acid by different methods[J]. Biomaterials, 2003, 24: 1621-1625.
    [264] Rhee S H, Suet sugu Y, Tanaka J, et al. Biomimetic configurational arrays of hydroxyapatite nanocrystals on bioorganics[J]. Biomaterials, 2001, 22: 2843-2847.
    [265] Kikuchi M, et al. A study of induction of nerve regeneration using bioabsorbable tubes[J]. Biomaterials, 2001, 22: 1705-1708.
    [266]张德兴,何忠杰等.伤口止血材料研究进展[J].中国急救医学, 2005 , 25 (5):353-355.
    [267]陆扬.明胶微球的研究进展[J].明胶科学与技术, 2006, 26.(2): 57-68.
    [268]徐绪国,阎天堂等.明胶在缓释药物中的应用[J].明胶科学与技术, 1996 ,16 (4) :194.
    [269]张瑶.缓释微球制剂的研究进展[J].医药导报, 2004, 23(11)843-844.
    [270]任海霞,朱家壁,汤钥.微球制剂的应用研究进展[J].药学进展, 2007, 31(2): 59-63.
    [271] Tonnesen Hh, Karlsen J. Alginate in drug delivery systems[J]. Drug Dev Ind Pharm. 2002, 28 (6): 621-630.
    [272] Akih Iko K, Minako K, Atsush Iw, et al. Effect of Ca2+ alginate gel dissolution on release of dextral with differentmolec ularweights[J]. J Controlled Release, 1999, 58 (1): 21-28.
    [273] Tabata, Y.; Ikada, Y. Synthesis of gelatin microspheres containing interferon[J]. Pharm. Res.1989, 6: 422-427.
    [274]颜秋平,李富荣,汤顺清等.阿霉素磁性海藻酸钠纳米微球的制备与性能[J].材料科学与工程学报,20007,25(5): 746-749.
    [275] Shantha K L ,Rao K P. Drug release behavior of polyurethane microspheres[J]. Journal of Applied Polymer Science , 1993 , 50 :1863-1865
    [276] Jabbari E , Khakpour M. Morphology of and release behavior from porous polyurethane microspheres[J]. Biomaterials , 2000 ,21 :2073-2076.
    [277]唐昌伟,张志斌,邱凯等.新型聚氨酯微球制备及其药物释放规律的研究[J].聚氨酯工业, 2004, 19(5): 15-18.
    [278]王心静,王巍.黎立等.口服利福平海藻酸钠微球的制备[J].医药导报,2007, 26(12): 1486-1488.
    [279] Ruben Y. Kannan, Henryk J. Salacinski, Peter E.M. Butler and Alexander M.Seifalian. Artificial nerve conduits inperipheral-nerve repair[J]. Biotechnol. Appl. Biochem. (2005) 41, 193-200.
    [280]蔡晴,贝建中,王身国等.乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究[J].功能高分子学报,2000, 13(3): 249-254.
    [281]石桂欣,王身国,贝建中.聚乳酸与聚乳酸-羟基乙酸多孔细胞支架的制备及孔隙的表征[J].功能高分子学报. 2001, 14(1): 7-11.
    [282]余斌,高成杰,全大萍,卢泽俭.低热高压法制作PLGA支架的降解及生物力学研究[J].第一军医大学学报, 2003, 23(5):416-420
    [283] Hiromitsu Yamamoto, Yoshio Kuno, Shohei Sugimoto, et al. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and of the intercellular tight junctions[J]. Journal of Controlled Release ,2005 (102): 373–381.
    [284]罗丙红,全大萍,廖凯荣,卢泽俭. PLGA组织工程支架的构建及降解行为研究[J].中山大学学报(自然科学版) [J], 2003,42(2): 46-50.
    [285]唐智荣,黄虹,饶炬,程树军.聚羟基丙酸乙酸膜的降解[J].华东理工大学学报, 2002, 28(4): 383-385.
    [286] Jalil R, Nixon JR. Biodegradable poly (lactic acid) and poly (lactide-co-glycolide) microcapsules: problems associated withpreparative techniques and release properties[J]. J Microencapsulation, 1990, 7:297-325.
    [287] Haiyan Li, Jiang Chang. pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA[J]. CompositesScience and Technology, 2005, 65: 2226-2232.
    [288]沈心亮,苏彩霞,史中信等. ELISA对毒理实验动物血清中神经生长因子抗体动态的研究[J].兰州大学学报(自然科学版),2000, 36(3): 158-160.
    [289]吴学诗,夏勇,张美英.表皮生长因子ELISA检测方法的建立及其在肿瘤临床的初步应用[J].国外医学临床生物化学与检验学分册,2005, 26(12): 869-871.
    [290]罗萍,邹全明.定量检测人表皮生长因子试剂盒的研制及应用[J].中华检验医学杂志,2005, 28(9): 932-934.
    [291]安全,李校堃,赵文等.碱性成纤维细胞生长因子生物活性的ELISA检测[J].中国药科大学学报, 2005, 36 (5):457– 460.
    [292]向军俭,徐晓鹏,王宏等.碱性成纤维细胞生长因子单克隆抗体ELISA微量检测技术[J].中国免疫学杂志,2006,22(4):337-340.
    [293]杨晓芳,奚廷斐.生物材料生物相容性评价研究进展[J].生物医学工程学杂志, 2001, 18 (1): 123-128.
    [294]奚廷斐,2003年医疗器械生物学评价标准进展[J].中国医疗器械信息,2003,9(6): 28029.
    [295]奚廷斐. 2005年国际标准组织医疗器械生物学评价标委会(ISO/TC 194)年会简介[J].中国医疗器械信息, 2006, 12(1): 70-72.
    [296]奚廷斐.医疗器械生物学评价[J].中国医疗器械信息,1999, 5 (3) :4.
    [297]戴建国.生物材料生物相容性的分子生物学研究进展[J].国外医学生物医学工程分册.2004, 27(6): 360-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700