基于MODIS的黄海海雾研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海雾是我国近海、特别是黄海常见的天气现象。有海雾时,水汽凝结产生大量雾滴悬浮在海面上空,使海面能见度降低,对人类海上活动产生重要影响。由于海上观测记录稀少,卫星遥感技术正在成为海雾监测的重要途径。本文基于MODIS卫星数据,运用卫星遥感基本理论,通过多样本采样,发现海雾在MODIS可见光、近、中、远红外通道上的光谱特性与晴空海表、中高云等存在差异。在光谱分析的基础上,确定了雾区信息遥感检测的方法。在雾区检测的基础上,根据白天雾区可见光反照率,对雾顶高度、液态水路径、有效半径和雾区能见度等特征量进行了反演。对2007年5月4日一次黄海海雾过程的进行了海雾特征量反演,并用沿海观测站的探空数据以及船舶资料,对卫星资料反演的雾顶高度和能见度进行了验证,分析表明反演结果与实际情况比较符合。
     用上述雾区反演方法给出了2006和2007两年的黄海海雾相对频率图,结果表明,黄海的海雾发生频率要远高于渤海的海雾发生频率;黄海海雾发生频率存在由南向北逐渐增多的趋势,北纬34度以北的海区海雾较多。6月黄海的多雾中心在黄海北部西朝鲜湾海域、山东半岛南部以及远离海岸的黄海中部海域;7月黄海多雾中心位于白翎岛以南江华湾和北纬36-37度山东半岛以东的黄海海面。多雾中心七月较六月更加偏北。
Sea fog is unusual weather phenomenon in China's coast, especially around the Yellow Sea. When there is sea fog, a large amount of condensed water vapor droplet suspended over the sea, that reduce the visibility, and have an important impact to human activities on the sea. As a result of the scarcity of marine observation, satellite remote sensing technology to monitor the sea fog is becoming an important way.
     Retrieval of the sea fog at Yellow sea in 4th May 2007 which is based on the EOS/MODIS data is presented. According to this calculation, the optical thickness, liquid water path, effective radius, height of fog top, and visibility are obtained. The sounding observations from stations and ship are matched up to this calculation.
     The sea fog map of Yellow Sea in 2006-2007 shows that the Yellow Sea fog frequency is much higher than Bohai sea fog frequency; an increase trend from south to north has been found in Yellow Sea sea fog frequency map; The sea fog high frequency regions are meanly in North Yellow Sea. In June centers of sea fog high frequency are located in West Gulf of Korea, South of Shandong Peninsula and Central Yellow Sea area. But in July centers are located in Ganghwa Bay and the sea area next to Shandong Peninsula.
引文
鲍献文,王鑫,孙立潭,2005:卫星遥感全天候监测海雾技术与应用,高技术通讯,15(1), 101-106.
    陈林,牛生杰,仲凌志,2006:MODIS监测雾的方法及分析,南京气象学院学报,29(4),448-454.
    陈伟,袁志康,周红妹,卢晓姗,2004:GMS25红外图像上夜间雾的分离实验,气象科学,24(2),193-198.
    陈伟,周红妹,袁志康,2003:基于气象卫星分形纹理的云雾分离研究,自然灾害学报,12(2), 133-139.
    陈谓民,2003:卫星气象学,北京:气象出版社.
    邓军,白洁,刘建文等,2006:基于MODIS多通道资料的白天雾监测,气象科技,34(2), 188-193.
    EOS/MODIS微机接收处理系统软件用户手册。北京:星地通卫星应用系统工程技术有限责任公司,2004.
    傅刚,王菁茜,张美根,郭敬天,郭明克,郭可彩,2004:一次黄海海雾事件的观测与数值模拟研究,中国海洋大学学报,34(5),720-726.
    黄健,2008:海雾的天气气候特征与边界层观测研究,中国海洋大学博士论文,6-7.
    纪瑞鹏,代付,班显秀,2004:NOAA/AVHRR图像资料在大雾灾害监测中的应用,防灾减灾工程学报,24(2),149-152.
    井传才,1980:青岛近海海雾的初步探讨,气象,65(6),6-8.
    居为民,孙涵,张忠义,1997:卫星遥感资料在沪宁高速公路大雾监测中的初步应用,遥感信息,1997(3),25-27.
    李亚春,孙涵,李湘阁,2001:用GMS-5气象卫星资料遥感监测白天雾的研究,南京气象学院院报,24(3),343-349.
    李亚春,孙涵,徐萌,2003:计盒维数法在云雾遥感监测中的应用研究,科技通报,19(1),29-31.
    李亚春,孙涵,徐萌,2000:气象卫星在雾的遥感监测中的应用与存在的问题,遥感技术与应用,15(4),223-227.
    李子华,2001:中国近四十年来雾的研究,气象学报,59(5),616-625.
    梁卫芳,侯忠新,2001:青岛大雾的特征与预报,山东气象,21(2),12.
    廖国男,1985:大气辐射学导论(第一版),北京:气象出版社.
    Liou K. N.,2004:大气辐射导论(第二版),郭彩丽,等译,北京:气象出版社.
    刘健,许健民,方宗义,1999:利用NOAA卫星的AVHRR资料试分析云和雾顶部粒子的尺度特征,应用气象学报,10(1),28-33.
    刘玉洁,杨忠东,2001:MODIS遥感信息处理原理与算法,北京:科学出版社.
    马慧云,李德仁,刘良明等,2007:基于AVHRR、MODIS和MVRIS数据的辐射雾变化检测与分析,武汉大学学报(信息科学版),32(4),297-300.
    马慧云,李德仁,刘良明等,2005:基于MODIS卫星数据的平流雾检测研究,武汉大学学报信息版,30(2),143-145.
    钱峻屏,黄菲,崔祖强等,2004:基于MODIS的海上能见度遥感光谱特征分析与统计反演,海洋科学进展,22(增刊),58-64.
    钱峻屏,黄菲,王国复等,2006:基于MODIS资料反演海上能见度的经验模型,中国海洋大学学报(自然科学版),36(3),355-360.
    盛裴轩,毛节泰,李建国等,1985:大气物理学,北京:气象出版社.
    孙安健,黄朝迎,张福春,1985:海雾概论,北京:气象出版社.
    孙涵,2003:低云大雾气象卫星遥感自动识别模型与分离方法研究,南京气象学院博士论文.
    孙涵,孙照渤,李亚春,2004:雾的气象卫星遥感光谱特征.南京气象学院学报,27(3),289-301.
    孙景群,1985:能见度与相对湿度的关系,气象学报,43(2),230-234.
    
    王彬华,1983:海雾,北京:海洋出版社. 王丕诰,刘宗义,张开斗,2005:应用卫星气象学。青岛:中国海洋大学出版社,79-84.
    王鑫,2004:黄海海雾形成的气候特征及能见度分析。中国海洋大学硕士论文.
    吴晓京,陈云浩,李三妹,2005:应用MODIS数据对新疆北部大雾地面能见度和微物理参数的反演,遥感学报,9(6),688-696.
    吴晓京,风云2C卫星大雾检测产品,风云2C卫星业务产品手册,68-71.
    吴晓京,张苏平,周文艳,2008:大雾消散卫星遥感临近预报及消散型分类—我国中东部案例,自然灾害学报,17(6),1-5.
    张力民,石春娥,杨军,2002:雾的数值模拟研究,北京:气象出版社.
    张苏平,鲍献文,2008:近十年我国海雾研究进展,中国海洋大学学报,38(3),359-366.
    中国气象局国家气象中心,1995:中国内海及毗邻海域海洋气候图集,北京:气象出版社.
    周红妹,谈建国,葛伟强等,2003:NOAA卫星云雾自动检测和修复方法,自然灾害学报,12(3),41-47.
    Ackerman, S. A., 1996: Global satellite observations of negative brightness temperature difference between 11 and 6.7μm. J. Atmos. Sci., 53, 2803-2812.
    Ackerman, S. A., 1997: Remote sensing aerosols from satellite infrared observations. J. Geophys. Res., 102, 17069-17079.
    Ackerman, S. A., W. L. Smith and H. E. Revercomb, 1990: The 27-28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8-12 micron window. Mon. Wea. Rev.,118, 2377-2388.
    Ackerman, S. A., W. L. Smith, A. D. Collard, X. L. Ma, H. E. Revercomb and R. O. Knuteson, 1995: Cirrus cloud properties derived from high-spectral resolution infrared spectrometry during FIRE II, Part II: Aircraft HIS results. Jour. Atmos. Sci, 52, 4246-4263.
    Allam R., 1987: The detection of fog from satellites. In Proceedings of a Workshop on Satellite and Radar Imagery Interpretation, 495-505.
    Bendix J., 2001: A 10-years fog climatology of Germany and the Alpine region based on satellite data - preliminary results. CONFERENCE ON FOG AND FOG COLLECTION, 357-360.
    Bendix J., 2002: A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas. Atmospheric Research, 64: 3-18.
    Bendix J., 1995: Determination of fog horizontal visibility by means of NOAA-AVHRR, Vol.3, 1847-1849.
    Bendix J., M Bachmann, 1991: A method for detection of fog using AVHRR imagery of NOAA satellites suitable for operational purposes (in German). Meteor. Rundsch., 43: 169-178.
    Bendix J., Cermak J. Thies B. 2004: New perspectives in the remote sensing of fog and low stratus—Terra/Aqua-MODIS and MSG, Proceeding 3 International Conference on Fog, Fog Collection and Dew, 11-15, Cape Town ZA.
    Bendix J., Matthias Bachmann, 1991: Operational detection of fog in the Alpine region by means of Advanced Very High Resolution Radiometer (AVHRR) imagery of NOAA-Satellites, Proc.5th AVHRR Data User’s Meeting, Norway, 25-28, June 1991.
    Bendix J., T. Boris, and C. Jan, 2005: Ground fog detection from space based in MODIS daytime data– a feasibility study. Wea. Forecasting, 20: 989-1005.
    Bendix J., Thies B., Cermark J. Fog detection with Terra-Modis and MDG-SEVIRI. Proceedings of the 2003 Meteorological Satellite Conference, Darmstadt, 427-435.
    Ben-Dor, E., 1994: A precaution regarding cirrus cloud detection from airborne imaging spectrometer data using the 1.38μm water vapor band. Remote Sens. Environ., 50, 346-350.
    De’Entremont R. R., 1986: Low-and midlevel cloud analysis using nighttime multispectral imagery. J. Clim. Appl. Meteor, 25: 1853-1869.
    Duynkerke, Peter G., 1991: Radiation Fog: A Comparison of Model Simulation with Detailed Observations. Monthly Weather Review, 119, 324-341.
    Eldridge, R. G., 1971: The Relationship Between Visibility and Liquid Water Content in fog. Journal of the atmospheric sciences, 28: 1173-1186.
    Ellrod G. P., 1995: Advances in the detection and analysis of fog at night using GOES multi-spectral infrared imagery. Weather Forecasting, 10(3),606-619.
    Eyre J. R., Brownscombe J. L., Allam R. J., 1984: Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery [J]. Meteorology Magazine, (113), 266-271.
    Gao, B. C., A. F. H. Goetz, and W. J. Wiscombe, 1993: Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 micron water vapor band. Geophys. Res. Lett., 20, 301-304.
    Gao, B. C., and A. F. H. Goetz, 1991: Cloud area determination from AVIRIS data using water vapor channels near 1μm. J. Geophys. Res., 96, 2857-2864.
    Greenwald T. J., S. A. Cheristopher., 2000: The GOES I-M imagers: New tools for studying microphysical properties of boundary layer stratiform clouds. Bulletin of the American Meteorological Society, 81: 2607-2620.
    Guls I, J. Bendix., 1996: Fog detection and fog mapping using low cost Meteosat-WEFAX transmission. Meteorological Applications, 3: 179-187.
    Hunt G. E., 1973: Radiative properties of terrestrial clouds at visible and infrared thermal window wavelengths. Q. J. R. Meteorol Soc, 99: 346-369.
    Ippolito, L. J., Propagation Effects Handbook for Satellite System Design. NASA Reference Publication, 1989.
    Kawamoto K., Nakajima T., Nakajima T. Y., 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14: 2054-2068.
    Karlsson K. G., 1989: Development of an operational cloud classication model. International Journal of Remote Sensing, 10: 687-693.
    Koschmieder, H., 1924: Theories der horizontalen Sichtweite. Beilr Phys. Atmos., 12: 33-53.
    Lee T. E., F. J. Turk, K. Richardson., 1997: Stratus and fog products using GOES-8-9 3.9μm data. Weather and Forecasting, 12: 664-677.
    Liou K. N., 1973: A numerical experiment on Chandrasekharos discrete-ordinate method for radiative transfer: Applications to cloudy and hazy atmospheres. J. Atmos. Sci., 30, 1303-1326.
    Minnis Patrick, 1992: Stratocumulus Cloud Propreties Derived from Simultaneous Satellite and Island-based instrumentation during FIRE. Journal of Applied Meteorology, 31: 317-339.
    Myoung-Hwan AHN, Eun-Ha SOHN, Byong-Jun Hwang., 2003: A new algorithm for sea fog/stratus detection using GMS-5 IR data. Adv. Atmo. Sci., 20(6): 899-913.
    Nakajima T., M. D. King., 1990: Detection of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 47(15): 1878-1893.
    Neumann, J. and H. Flohn, 1988: Great historical events that were significantly affected by the weather: Part 8, Germany’s War on the Soviet Union, 1941-45. II. Some Important Weather Forecast, 1942-45. Bulletin of the American Meteorological Society, Vol.69, No.7, 730-735.
    Putsay M., J. Kerenyi, I. Szenyan, et al., 2001: Nighttime fog and low cloud detection in NOAA-16 AVHRR images and validation with ground observed SYNOP data and radar measurements. In Proceedings of the 2001 EUMETSAT Meteorological Satellite Conference EUM P33, 365-373, EUMETSAT, Antalya, Turkey.
    Reudenbach C., J. Bendix., 1998: Experiments with a straightforward model for the spatial forecast of fog/low stratus clearance based on multi-source data, Meteorological Applications. 5: 205-216.
    Schemenauer, Robert S. and Pilar Cereceda, 1992: The quality of fog water collected for domestic and agriculture use in Chile. Journal of Applied Meteorology, Vol.31, No.3, 275-290.
    Stephens G. L., 1978: Radiation profiles in extended water clouds: I Theory. J. Atmosph. Science, 35: 2111-2123.
    Stephens G. L., 1978: Radiation profiles in extended water clouds: II Parameterization Schemes. J. Atmosph. Science, 35: 2123-2132.
    Stephens G. L., 1978: Radiation profiles in extended water clouds: III Observation. J. Atmosph. Science, 35: 2123-2132.
    Stephens, et al, 1984: A shortwave parameterization revised to improve cloud absorption. J. Atmos. Sci. 41: 687–690.
    Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8-12μm data. J. Appl. Meteor., 33, 212-229.
    Thomas F. L., Turk F. J. and Richardson K., 1997: Stratus and fog products using Goes 8.9-3.9μm data. Weather and Forecasting, 12(3), 664-677.
    Turk J., Vivekanadan J., Lee T., et al., 1998: Derivation and applications of near-infrared cloud reflections from GOES-8 and GOES-9. J. Appl. Meteorology, 37: 819-831.
    Turner J., Allam R. J., Maine D. R., 1986: A case study of the detection of fog at night using channels 3 and 4 on the Advanced Very High Resolution Radiometer (AVHRR). Meteorol. Mag., 115: 285-297.
    Turner, R. and Tony Hurst, 2001: Factors influencing volcanic ash dispersal from the 1995 and 1996 eruptions of Mount Ruapehu, New Zealand. Journal of Applied Meteorology, Vol.40, No.1, 56-59.
    Underwood S. J., G. P. Ellrod, A. L. Kuhnert., 2004: A multiplecase analysis of nocturnal radiation-fog development in the Central Valley of California utilizing the GOES nighttime fog product, Journal of Applied Meteorology, 43: 297-311.
    Wanner H., S. Kunz., 1983: Klimtologie der Nebel– und Kaltluftkorper im Schweizerischen Alpenvorland mit Hilfe von Wettersatellitenbildern. Archives for Meteorology, Geophysics, and Bioclimatology, B33: 31-56.
    Wylie, D. P., and W. P. Menzel, 1989: Two years of cloud cover statistics using VAS. J. Climate Appl. Meteor., 2, 380-392.
    Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 1972-1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700