东海黑潮温盐时空分布特征及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究区域为东海黑潮。东海黑潮作为影响我国东海的重要环流,从低纬地区传输大量的高温、高盐水至中纬度地区,引起区域热量的再分配,对我国近海热力动力环境有举足轻重的作用。
     利用美国国家海洋大气管理局(NOAA)2007年发布的全球海域多年月平均三维数据库(World Ocean Atlas 2005(WOA05)),美国国家地球物理学数据中心(NGDC)2006年发布二维海底数据地貌数据(GEODAS GridTranslator-Design-a-Grid),结合日本海洋科学与技术机构(JAMSYEC)2003年发布的1997-2002年东海地区月平均降水量资料,2003-2005年中国水利部长江水利委员会公布的《长江泥沙公报》中长江月平均径流量:研发计算机数值分析以及图形可视技术,分析东海黑湖内部高温区(热核)的时空变化,和表层盐度的年循环过程,探讨影响东海黑潮表层盐度分布的因素。得出:
     1.东海黑潮的内部存在明显的高温区。提取10%高温区定义为热核,不同深度不同月份,黑潮热核的变化存在着差异,表现为,从表层到250m水深,热核的分布区域由表层的靠近中轴线附近逐渐偏向黑潮的东部边缘;分布范围由表层占黑潮流幅的30%以上缩减到250m深度的10%左右;250m以下热核的分布范围和区域再没有明显的变化。热核除了位置范围的变化外,热核的温度随深度也有明显的变化:从表层到200m深度,从东海黑潮的入口到出口,同深度热核的温度呈下降的趋势,在200m深度以下呈上升的趋势。
     2.东海黑潮表层盐度存在明显的季节变化,12、1、2、3月份的表层盐度较一致,高于其它月份,最大值达34.8以上:6、7、8、9月份的表层盐度在一年最低,在34.4以下;4、5月份和10、11月份介于其中,为过度阶段。表层盐度在12个月的分布出现靠近黑潮的东边界一侧盐度高,靠近陆架一侧盐度低,高盐区在东海黑潮主段琉球群岛、奄美群岛以西。
     3.影响东海黑潮表层盐度的主要影响因素有:温度、降水和径流。其中,温度高,蒸发量大,表层盐度高,表层盐度与表层温度有正相关的关系;降水量大或是淡水注入量大,盐度值低,表层盐度与其呈负相关的关系。相关分析表明,11、12、1、2、月份,表层温、盐的高度正相关区域较大。靠近陆架一侧的表层盐度在冬、春、秋季受温度的影响较大。降水对东海黑潮表层盐度的影响为局部小范围,主要集中在1月和夏季的6、7、8月份,主要分布在25°N以南和30°N附近。长江冲淡水在夏季对东海黑潮表层盐度影响大于其它季节,夏季7月份表层盐度平均值在一年中最低,此时的长江月径流量也出现最大值,长江冲淡水与表层盐度呈现较好的负相关。
Kuroshio in the East China Sea is studied as an important impact on the East China Sea circulation. It transports a lot of energy, momentum from the low latitude to mid-latitudes and changes heat in the region. The Kuroshio in the East China Sea plays a necessary role in coastal environment. Using the World Ocean Atlas 2005 by NOAA published in 2007 and topography database in 2006 by NGDC, exploring three-dimensional techniques for oceanic data analysis and figure manifestation with Matlab computer program, research the change of Temperature Core of Kuroshio in the East China Sea. Using the gridded precipitation data of the Asian region by JAMSTEC published in 2003 and the runoff of Changjiang diluted water in different month during 2003-2005, find characteristic of salinity on surface in a year. That is the foundation for understanding heat transfer accurately. The main conclusions are:
     1. Kuroshio in the East China Sea is high-temperature, but higher temperature in its internal area. From surface to 250m depth, the distributing area of warm-core is moving from middle axes of ECS-Kuroshio current to the east border, the warm-core range is reducing from larger than 30% to about 10%. There is no distinct changing for warm-core area below 250m. From the entrance to the exit of ECS-Kuroshio, the warm-core temperature is decreasing with Kuroshio current at the same depth upper the depth of 200m, but the temperature is increasing below the depth of 200m.
     2. We find that it has an obvious feature on surface salinity of Kuroshio in the East China Sea in different month. Firstly, salinity on surface is higher in January to March and December, and Max is 34.8. Salinity on surface is lower in June to September, and Min is 34.4.Then salinity in the rest of months between two dates. Secondly, salinity is the highest near the east side of the Kuroshio in the East China Sea where is close to Ryukyu Island. Finally, low-salt zone is near the northeastern Taiwan area in a year.
     3. Many factors affected the salinity on surface of Kuroshio in the East China Sea. Combined with previous studies and discussed the main reason of the salinity on surface of Kuroshio in the East China Sea. They are surface temperature, rain, Changjiang diluted water. Salinity on surface of Kuroshio in the East China Sea is mainly influenced by surface temperature near the shelf of contentious in November to February. Salinity on surface is impacted by precipitation in small-scale in January and summer, which mainly areas are the south of 25°N and near 30°N where ECS-Kuroshio flows into Tokara strait. Runoff of Changjiang diluted water in summer affect most to the salinity on surface of Kushiro in fan zone, the maximum runoff in July and the corresponding minimum salinity on surface of Kuroshio in fan zone in the East China Sea.
引文
[1] Atsuhiko I, Eiji F, Chang P, et al. Intrusion of Less Saline Shelf Water into the Kuroshio Subsurface Layer in the East China Sea [J]. Journal of Oceanography, 2004, 60(5):853-863.
    [2] Bao X, Gao G, Wu D, Study of Water transport through some main straits in the East China Sea and South China Sea [J]. Chin J Oceano Limno,2002,20(4):293-302.
    [3] Furuya K, Hayashi M, Yabushita Y, et al. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures [J]. Deep-Sea Research, 2003, 50: 367-387.
    [4] Guo B H, GE R F. Role of Kuroshio frontal eddy in exchange between shelf water and Kuroshio water in the East China Sea [J]. Acta Oceanologica Sinica, 1997, 16(1): 1-18.
    [5] Greatbatch, R.J. and A.Goulding. On the seasonal variation of transport through the Tokara Strait [J]. J. Oceanogr. Soc. Japan, 1997,46, 9-20.
    [6] Ichikawa H, Beardsley R C. Temporal and spatial variability of volume transport of the Kuroshio in the East China Sea [J]. Deep-Sea Res, 1993,40: 583-605.
    [7] Johns W E, Lee Tn, Zhang Dongxiao, et al. The Kuroshio East of Taiwan: Moored transport observations from the WOCE PCM-1 array [J]. J Phys Oceanogr, 2001, 31: 1031-1053.
    [8] LiuWei, LiuQinyu, JiaYinglai. The Kuroshio Transport East of Taiwan and the Sea Surface Height Anomaly from the Interior Ocean [J]. 2004, 3(2): 135-140.
    [9] Levitus S. Decadal and pentadal distribution of hydrographic stations at 1000m depth for the world ocean [J]. Progress in Oceanography, 1982, 20(2), 83-101.
    [10] Liu Y, Yuan Y. Variability of the Kuroshio in the East China Sea in 1993 and 1994[J].Acta Oceanologica Sinica 1999,18(1):17-36.
    
    [11] Mellor G.L. Users guide for a three-dimensional, primitive equation, numerical ocean model [Z]. Princeton University, 1996:40.
    
    [12] Miyazawa Y, Guo Xinyu, Yamagata Y. Roles of mesoscale eddies in the Kuroshio paths [J].J Phys Oceanogr, 2004, 34: 2203-2222.
    [13]Nishida,H.Description of the Kuroshio meander in 1975-1980-large meander of the Kuroshio in 1975-1980[J].Rep.Hydrogr.Res.,1982,17,181-207.
    [14]Nitani,H.Variation of the Kuroshio south of Japan[J].J.Oceanogr.Soc.Japan,1975,31:154-173.
    [15]Qiu B,Imasato N.A numerical study on the formation of the Kuroshio Counter Current and the Kuroshio Branch Current in the East China Sea[J].Continenal Shelf Research,1990,10(2):165-184.
    [16]Rahmstorf S.The thermohaline ocean circulation:a system with dangerous thresholds[J].Climatic Change,2000,46:247-256.
    [17]Wang Wei,Su jilan.A barotropic model of the Kuroshio system and eddy phenomena in the East China Sea[J].Acta Oceanologica Sinica,1987,6(supp.1):21-35.
    [18]Yuan Y C,Liu C T,Pan Z Q,et al.The Kuroshio east off Taiwan and the currents east of Ryukyu Islands during October of 1995[J].Acta Oceanologica Sinica,1998,17(1):1-3.
    [19]Yasuda,I.,J.-H.Yoon and N.Suginohara.Dynamics of the Kuroshio large meander-Barotropic model[J].Oceanogr.Soc.Japan,1985,41:259-273.
    [20]Sugimoto,T.,S.Kimura and K.Miyaji.Meander of the Kuroshio front and current variability in the East China Sea[J].J.Oceanogr.Soc.Japan,1989 44:125-135.
    [21]鲍献文,林霄沛,吴德星等.东海陆架环流季节变化的模拟与分析[J].中国海洋大学学报.2005,35(3):349-356.
    [22]陈达熙.渤海黄海东海海洋图集,水文分册[M].北京:海洋出版社,1992,1-524.
    [23]陈红霞,袁业立,华峰等.东海黑潮主段环流结构研究[J].海洋科学进展.2006,24(2):137-145.
    [24]陈红霞,袁业立,华锋.东海黑潮主段G—PN断面的多核研究[J].海洋通报.2006,51(6):730-737.
    [25]陈大可,许建平,马继瑞,等.全球实时海洋观测网(Argo)与上层海洋结构、变异及预测研究[J].地球科学进展.2008(1):1-7.
    [26]丁宗信.黄东海秋季温盐度垂直分类及其逆转现象成因的初步分析[J].海洋科学.1994(2):47-52.
    [27]方之芳,J.M.Wallace.冬季大气环流对太平洋海冰和黑潮暖流海温的强迫作刚[J].大气科学.1996,20(5):541-547.
    [28]樊孝鹏,黄大吉,章本照.东海黑潮的气候态数值模拟[J].浙江大学学报:工学版.2006,40(5):916-921.
    [29]冯士筰,李凤岐,李少菁.海洋科学导论[M].北京:高等教育出版社,1999,435-482.
    [30]顾玉荷,孙湘平,胡敦欣.137°E经向断面温、盐度的年际变异[J].海洋学报.1999,21(6):8-17.
    [31]郭伟其,沙伟,沈红梅等.东海沿岸海水表层温度的变化特征及变化趋势[J].海洋学报.2005,27(5):1-8.
    [32]郭炳火,万邦君,汤毓祥.东海海洋锋的波动及演变特征[J].黄渤海海洋.1995,13(2):1-9.
    [33]郭炳火,汤毓祥,葛人峰等.台湾暖水和入侵陆架黑潮水的季节变化[J].海洋学报.2000,22(增):24-37.
    [34]郭炳火,熊学军,胡筱敏.黄、东海近岸水、陆架水及黑潮水的相互作用研究[J].海洋学报.2003,25(增):1-13.
    [35]候文峰,张爱军,张书东.渤、黄、东海温盐资料分布5年和10年的统计[J].海洋通报.1996,15(1):67-77.
    [36]黄浩升,孙湘平,袁业立.黑潮流域的环流数值研究[J].海洋学报.1996,18(5):134-139.
    [37]吕庆华.东海1999年夏、冬上层水团的温、盐分布及其与历史平均状况的比较[J].海洋学研究.2006,24(1):28-37.
    [38]刘兴泉,候一筠,尹宝树.东海沿岸海区垂直环流及其温盐结构动力过程研究Ⅰ.环流的基本特征[J].海洋与湖沼.2004,35(5):393-403.
    [39]刘兴泉,候一筠,尹宝树.东海沿岸海区垂直环流及其温盐结构动力过程研究Ⅱ.温盐结构[J].海洋与湖沼.2004.35(6):497-506.
    [40]刘兴泉.东海PN断面夏季温盐及化学要素的分布特征[J].海洋与湖沼.2001,32(2):204-212.
    [41]刘兴泉,尹宝树,侯一筠.长江口及其邻近海区环流和温、盐结构动力学研究Ⅱ.环流的基本特征[J].海洋与湖沼.2008,39(4):312-320.
    [42]刘兴泉,尹宝树,侯一筠.长江口及其邻近海区环流和温、盐结构动力学研究——Ⅰ.定解条件与研究方案[J].海洋与湖沼.2008,39(1):82-89.
    [43]刘宇.管玉平,林一骅.火洋热盐环流研究的一个焦点:北太平洋是否有深水形成[T]. 地球科学进展.2006,21(11):1185-1192.
    [44]李海洋,王东晓,谢强.热带太平洋海面盐度年际变化的海洋同化数据分析[J].热带海洋学报.2003,19(增刊):97-107.
    [45]李凤岐,苏育嵩.海洋水团分析[M].青岛:青岛海洋大学出版社,2000,80-100.
    [46]李可,卢中发.夏、冬季东海水团的初步分析[A].黑潮调查研究论文集[C].北京:海洋出版社,1984,177-189.
    [47]李徽翡,赵保仁.夏季东中国海环流三维数值实验[J].海洋科学集刊.2003,45:45-57.
    [48]刘勇刚,袁耀初.1992年东海黑潮的变异[J].海洋学报.1998,20(6):1-11.
    [49]刘勇刚,袁耀初.1993和1994年东海黑潮的变异[J].海洋学报.1999,21(3):15-29.
    [50]刘增宏,许建平,朱伯康等.利用Argos资料研究2001-2004年期间西北太平洋海洋上层对热带气旋的响应[J].热带海洋学报.2006,25(1):1-8.
    [51]刘增宏,许建平,朱伯康.Argos漂流浮标的若干观测结果[J].热带海洋学报.2005,24(1):67-76.
    [52]刘增宏,许建平,朱伯康.Argos表层漂流浮标在黑潮区的若干观测结果[J].东海海洋.2004,22(4):1-9.
    [53]刘忠臣,陈义兰,丁继胜等.东海海底地形分区特征和成因研究[J].海洋科学进展.2003,21(2):160-173.
    [54]林葵,汤毓祥,郭炳火等.黄海、东海表、上层实测流分析[J].海洋学报.2002,24(2):9-19.
    [55]毛汉礼,任允武,万国铭.应用T-S关系定量地分析浅海水团的初步研究[J].海洋与湖沼.1964,1:1-22.
    [56]倪东鸿,孙照渤,陈海山等.冬季黑潮区域SSTA的时空演变及其与大气环流的关系[J].南京气象学院学报.2003,26(6):740-749.
    [57]浦泳修.夏季东海30°N断面的盐度分布类型[J].东海海洋.2002,20(1):1-13.
    [58]潘华盛.厄尔尼诺现象到赤道西太平洋、印度洋、黑潮之间海温变化的相互关系分析[J].海洋通报.1997,16(5):22-31.
    [59]乔方利,波边正孝,袁业立等.黄海和东海的环流数值模拟研究[J].水动力学研究与进展.1998,A辑,13(2):244-254.
    [60]任惠茹,康建成,王甜甜,等.东海黑潮热核的时空分布[J].海洋地质与第四纪地质.2008,28(5):77-84.
    [61]苏纪兰.21世纪初我国海洋科学的展望[J].海洋学研究.2006,24(1):1-5.
    [62]苏纪兰.中国近海的环流动力机制研究[J].海洋学报.2001,23(3):1-16.
    [63]孙亮,穆穆.温盐环流稳定性以及年代际变率的研究进展[J].海洋学报.2003,25(4):111-118.
    [64]孙湘平,修树孟.台湾东北海域冷水块的特征[J].黄渤海海洋.2002,20(1):1-9.
    [65]孙湘平,修树孟.台湾东北海域冷涡的分析[J].海洋通报.1997,16(2):1-9.
    [66]孙湘平.修树孟.台湾近海的温、盐垂直结构与t-s图解类型[J].黄渤海海洋.1996,11(4):10-21.
    [67]孙湘平.对马暖流“东海段”的流路与流速[J].黄渤海海洋.1995,13(1):1-9.
    [68]孙湘平.夏季对马暖流“东海段”的温-盐特征及1987年和1989年夏季的盐度差异[J].黄渤海海洋.1995,13(3):1-10.
    [69]孙湘平.对马暖流(表层)来源的探讨[J].海洋通报.1993,12(3):1-8.
    [70]孙湘平.东海黑潮表层流路(途径)的初步分析[A].黑潮调查研究论文集[C].北京:海洋出版社,1987,1-14.
    [71]孙湘平.黑潮第七次大弯曲[J].海洋通报.1990,9(6):1-7.
    [72]孙湘平.黑潮第六次大弯曲[J].黄渤海海洋.1989,7(4):1-10.
    [73]王凡,赵永平,冯志纲等.1998年春夏南海温盐结构及其变化特征[J].海洋学报.2001,23(5):1-13.
    [74]王甜甜,康建成,李卫江等.台湾东北海域冷涡-上升流系统冬、夏季温度三维结构[J].热带海洋学报.2008,27(6):1-13.
    [75]翁学传,张启龙,杨玉玲等.东海黑潮热输送及其与黄淮平原区汛期降水的关系[J].海洋与湖沼.1996,27(3):237-246.
    [76]王凯,冯士莋,施心慧.渤、黄、东海夏季环流的三维斜压模型[J].海洋与湖沼.2001,32(5):551-559.
    [77]吴立新,刘秦玉等.北太平洋副热带环流变异及其对我国近海动力环境的影响[J].地球科学进展.2007,22(12):1224-1230.
    [78]袁耀初,管秉贤.中国近海及其附近海域若干涡旋研究综述Ⅱ.东海和琉球群岛以东海域[J].海洋学报.2007,29(2):1-17.
    [79]袁耀初,杨成浩,王彰贵.2000年东海黑潮和琉球群岛以东海流的变异Ⅰ.东海黑潮及其附近中尺度涡的变异[J].海洋学报.2006,28(3):1-13.
    [80]袁耀初,杨成浩,王彰贵.2000年东海黑潮和琉球群岛以东海流的变异Ⅰ.东海黑潮及其附近中尺度涡的变异[J].海洋学报.2006,28(2):1-13.
    [81]袁耀初,刘勇刚,周明煜等.1999年6月黄海南部与东海北部的环流[J].海洋学报.2002,24(增刊):20-30.
    [82]袁耀初,苏纪兰.1995年以来我国对黑潮及琉球海流的研究[J].科学通报.2000,45(22):2353-2356.
    [83]于非,张志欣,兰健等.南黄海春季水温分布特征的分析[J].海洋科学进展.2005,23(3):281-288.
    [84]于非,臧家业,郭炳火等.黑潮水入侵东海陆架及陆架环流的若干现象[J].海洋科学进展.2002,20(3):21-29.
    [85]朱建荣,丁平兴,朱首贤.黄海、东海夏季环流的数值模拟[J].海洋学报.2002,24(增):124-133.
    [86]周天军,王绍武,张学洪.大洋温盐环流与气候变率的关系研究[J].地球科学进展.2000,15(3):654-660.
    [87]周天军,王绍武.大洋温盐环流的稳定性及变率模拟研究进展[J].地球科学进展.1998,13(4):334-343.
    [88]钟鹤翔,谢志仁,崔树红等.黄、东海海面地形在1993年-2001年间的变化探讨[J].测绘学报.2006,35(1):9-13.
    [89]张启龙,翁学传,程明华.华北地区汛期降水与热带西太平洋暖池和黑潮的关系[J].高原气象.1999,18(4):575-584.
    [90]张蕴斐,张占海,吴辉碇等.黑潮环流的数值模拟[J].海洋学报.2003,25(3):120-128.
    [91]张绪东,张国友,佟凯等.黑潮源区海域水团分析[J].海洋通报.2004,23(1):15-21.
    [92]赵永平.黑潮海域海洋异常加热对后期北半球大气环流影响的分析[J].海洋与湖沼.1996,27(3):246-251.
    [93]赵永平,G.A.McBean.黑潮海域海洋异常加热与北半球大气环流的相互作用[J].海洋与湖沼.1995,26(4):384-390.
    [94]孙湘平.中国近海区域海洋[M].北京,海洋出版社.2008:228-248.
    [1]Earth Observation Data and Analysis Product[EB/OL].Houston,JAMSTEC,[2008-8-20].http://www.Asian Gridded Precipitation-Earth Observation Data and Analysis Product.html.
    [2]National Oceanographic Data Center.Houston[EB/OL],Tex:NOAA Satellite and Information Service,[2007-3-15].http://www.nodc.noaa.gov/OC5/WOA05/woa05data.html.
    [3]Marine Geophysics.Houston[EB/OL],Tex:National Geophysical Data Center(NGDC),[2007-7-25]http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html.
    [4]中国2003-2005年河流泥沙公报.水利部长江水利委员会,[2008-7-15].http://www.chinawater.net.cn/cwsnet/gazette/nisha/2005/index.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700