逍遥散对慢性应激损伤大鼠海马神经细胞的影响及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的和意义
     大量临床及实验研究证实,慢性应激在疾病发生、发展过程中扮演重要角色,但慢性应激引起或诱发疾病的确切机制尚未完全明了,因而目前关于抗应激损伤的治疗措施也存在靶向不确定或单一、副作用明显等缺陷,大大限制了该类药物的临床应用。中药复方逍遥散由宋代太医局制定颁布,临床常用于治疗郁证相关疾病,近千年的临床实践证明其疏肝解郁、健脾和营之功效显著,现代实验研究也已证实,逍遥散能够改善或削除心理应激引起的学习记忆能力下降和抑郁、焦虑等症状,具有明确的镇静、镇痛、抗惊厥、抗焦虑及抗慢性抑郁作用。本研究即在总结以往慢性应激损伤机制、逍遥散抗应激损伤相关研究的基础上,提出逍遥散抗慢性应激损伤机制的假说,并围绕这一假说,以体外培养的大鼠海马神经细胞为模型,展开一系列相关实验研究,以期探明慢性应激损伤及逍遥散抗慢性应激损伤可能存在的某种中枢机制。
     研究方法
     以体外原代培养的Wistar乳鼠(新生24小时内)海马神经细胞为模型,以正常大鼠血清、慢性应激大鼠模型血清、逍遥散治疗血清以及谷氨酸(Glu)为干预因素,以N-甲基-D-天门冬氨酸受体(NR)非选择性抑制剂地佐环平(MK-801)为工具药,研究慢性应激状态下以及逍遥散治疗对大鼠海马神经细胞存活率、NR各亚其mRNA的表达、海马神经细胞内游离钙离子浓度、糖皮质激素受体蛋白表达的影响,探讨中药复方逍遥散抗慢性应激损伤的作用以及可能存在的中枢作用机制。
     1大鼠海马神经细胞体外原代培养与鉴定:无菌条件下急性分离新生24小时内的Wistar大鼠乳鼠海马组织,用胰蛋白酶消化与机械吹打相结合的方法分离海马神经细胞,以含血清的培养基种植、无血清饲养液维持饲养,神经微管相关蛋白-2(Map-2)鉴定神经元纯度。
     2慢性应激模型大鼠血清、逍遥散治疗血清的制备:实验动物随机分为3组:正常对照组(每天每只灌胃生理盐水2ml,不进行应激刺激)、慢性应激模型组(每天每只灌胃生理盐水2ml后,进行应激刺激)、逍遥散组(每天每只灌胃逍遥散水煎剂2ml/后,进行应激刺激),采用Cart的多相性应激模型并加以改进,应激源包括:足底电击(电压30V,电击频率0.1Hz,每次持续1s,共30次)、冰水游泳(4℃左右,5min)、禁水(24h)、禁食(24h)、束缚(4h),每天不定时随机安排一种应激刺激,避免相邻两天出现重复,避免形成规律性及造成大鼠适应性,连续21天。于末次给药1-2h后麻醉条件下腹主动脉采血,血液以3000rpm离心,分离血清,每组血清分别混合后于56℃水浴中灭活30min。置超净台内,无菌条件下以0.22μm滤器抽滤除菌,按1ml分装并标记,-20℃冰箱保存备用。
     3分组处理后Glu-NR-Ca2+-cAMP-iGR信号通路相关指标检测:细胞培养至第8d分为7组:(1)空白对照组(正常细胞,不做任何处理)、(2)正常血清对照组、(3)正常血清+Glu组、(4)模型血清+Glu组、(5)模型血清+Glu+MK801组、(6)逍遥散治疗血清+Glu组、(7)逍遥散治疗血清+Glu+MK801组。每组均先以制备的血清或和MK-801预处理20min,再加入Glu作用30min。以常规MTT法检测各组细胞存活情况;采用Taqme.n荧光探针定量PCR法测定各组Ct值,2-△△Ct相对定量法计算NR各亚基表达量相对值;在同一时间段内,通过激光共聚焦显微镜技术对模拟慢性应激微环境下以及逍遥散治疗血清干预后大鼠海马神经细胞内游离钙离子浓度进行检测;采用免疫印迹法检测慢性应激大鼠模型血清以及逍遥散治疗血清干预体外培养的海马神经细胞后,其胞内糖皮质激素受体(iGR)表达情况。
     研究结果
     1培养8天,神经元胞体清晰,结构完整,神经元纯度最高达到85.71%,平均为75.32%。
     2各组细胞存活率相当。第(3)组(正常血清+Glu组)与第(4)组(模型血清+Glu)细胞存活率相对较低,其余各组无统计学差异。
     3模型血清与谷氨酸模拟的慢性应激微环境下神经细胞存活率明显降低,海马神经细胞NR各亚基mRNA出现不同程度的表达上调,细胞内Ca2+浓度显著升高,iGR表达明显下调。
     4在拟慢性应激作用前对细胞进行MK-801预处理,即阻滞NR后,细胞存活率与空白对照组比较无统计学差异,NR2AmRNA、NR2BmRNA表达水平明显降低,但尚未达到正常水平,胞内Ca2+浓度虽有明显降低,但未能更显著地改善Ca2+内流增加的状况,也未能完全阻断iGR的表达下调。
     5逍遥散治疗血清干预后,细胞存活率有升高趋势,NR2AmRNA表达明显上调,NR2BmRNA表达水平较慢性应激组显著降低,而NR1mRNA表达无明显下降,神经细胞内Ca2+浓度显著降低,iGR的表达下调有所改善,但与空白组比较还存在差异。
     6 MK-801与逍遥散治疗血清共同作用后,细胞存活率与空白组比较无显著性差异,NR2AmRNA、NR2BmRNA表达量接近正常,Glu未能引发Ca2+内流增加,与空白对照组无统计学差异,其对抗iGR含量降低的作用倾向更加显著。研究结论
     1以新生24h内Wistar乳鼠为供体,采用含10%胎牛血清的DMEM/F12培养基种植,以Neurobasal配合B27进行无血清饲养的原代大鼠海马神经细胞培养法,无需阿糖胞苷纯化细胞,培养至第8d可以获得纯度最大值达到85.71%,平均为75.32%的神经元,能够满足纯度要求不太高,而细胞量较大的实验需要,是适合进行多种细胞水平研究的良好模型。
     2使用慢性应激动物模型血清加谷氨酸能够模拟慢性应激状态,可以导致NR过度激活从而出现细胞内钙超载,继而引起iGR合成减少,对海马神经元造成了类似于慢性应激损伤的病理结果。
     3逍遥散治疗血清能够纠正NR各亚基表达失衡的状态,促进机体恢复或保持NR2A与NR2B的正常比例,维持胞内钙稳态,对抗慢性应激导致的iGR表达下降,对维持海马神经细胞的稳定起到一定作用,从而发挥了保护神经元、对抗慢性应激损伤的作用。
     4 MK-801不能完全阻滞本实验模拟的慢性应激微环境引起的钙超载和iGR表达量下降,还存在通过Glu-NR以外其他信号转导通路的共同作用。与逍遥散治疗血清共同作用后,除MK-801抑制NR激活外,逍遥散治疗血清发挥了保持NR正常数量及活性,抑制Ca2+超载,维持胞内钙稳态,对抗iGR表达减少,从而保护神经元免受兴奋性毒性损伤的作用,这种保护性作用可能与其中某些有效成分阻滞了包括Glu-NR-Ca2+-iGR在内的多种信号通路有关。
     小结
     慢性应激大鼠模型血清与Glu共同作用能够模拟慢性应激状态,可以导致NR过度激活从而出现细胞内钙超载,继而引起iGR合成减少,对海马神经元造成了类似于慢性应激损伤的病理结果。逍遥散治疗血清能够纠正NR各亚基表达失衡的状态,促进机体恢复或保持NR2A与NR2B的正常比例,维持胞内钙稳态,对抗慢性应激导致的iGR表达下降,对维持海马神经细胞的稳定起到一定作用,在慢性应激条件下发挥了保护神经元、对抗慢性应激损伤的效应。MK-801工具药的使用使我们了解到逍遥散治疗血清可能从包括Glu-NR-Ca2+-cAMP-iGR的多种信号途径发挥这种抗慢性应激损伤作用。
Research purpose and sense
     Many clinical and experimental studies confirmed that chronic stress play an important role in occurrence and development of many diseases, but the exact mechanism has not yet been fully explained. Thus currently, the treatment measures of anti-stress have many defects, such as uncertain or a single target, obvious side effects, and so on that greatly limited the clinical application of these drugs. Xiao Yao San as a Chinese herbal formula is an official prescription promulgated in the Pharmacopoeia of the Imperial Medical Bureau in the Song Dynasty, and it has been commonly used in the treatment of depression related diseases until today. Nearly a thousand years of clinical practice proved that it has the effects of coursing the liver and resolving depression, fortifying the spleen and supplementing the blood. Modern clinical and experimental studies have confirmed that the mental stress-induced learning and memory decline, depression, anxiety and other symptoms can be improved or eliminated by treating with Xiao Yao San, it has exact effects of sedation, analgesia, anticonvulsant, anti-anxiety, and anti-depression. In this study, hypothesis on mechanism of anti-chronic stress of Xiao Yao San has been proposed on the basis of analysis based on related research. And around this hypothesis, a series of experiments was conducted to investigate the possible central mechanism of the anti-chronic stress of Xiao Yao San, in the process of that the cultured rat hippocampal neurons were used as model.
     Research methods
     To establish a primary culture method of hippocampal neurons of new born rats, prepare serum of rats suffered with chronic stress, serum of chronic stress rats treated with Xiao Yao San, and the serum of normal control group, and use dizocilpine as a tool for drug, then treated each group with different factors according to the experimental design, and study the effects of the serum of chronic stress rat model and the serum treated with Xiao Yao San on the cell viability, expression of NMDA receptor subunits'mRNA, intracellular free Ca2+ concentration and the expression of intracellular glucocorticoid receptor (iGR) in the cultured hippocampal neurons of rats.
     1 Hippocampal neurons of newborn rats within 24 hours were isolated by the method of trypsin digestion combining with that of mechanical dispersion, which were planted with medium containing 10% fetal bovine serum, and maintained feeding with serum-free medium. Identification of neurons and its purity were conducted by neural microtubule-associated protein (Map-2).
     2 30 rats were randomly divided into 3 groups:Normal control group (saline 2ml/d, ig, not to be stimulated by stress), chronic stress model group (saline 2ml/d, ig, and 1 hour after, each to be stimulated by stress), chronic stress model treated with Xiao Yao San group (Xiao Yao San decoction 2ml/d, ig, and 1 hour after, each to be stimulated by stress). The multi-stress model by Cart was improved and used in this experiment. Stressors used in this experiment include electric shock through feet (30V,0. 1Hz, lsec stimuli and lsec interval each time,30times/d), ice water swimming (4℃or so,5min), prohibition cf water (24h), fasting (24h), binding (4h). Each stressor was assigned randomly everyday, the same stressor in adjacent days and regularity of the stimulaticn or adaptability of the rats must be avoided. Modeling was lasted for 21 days. Blood of each group were collected by artery puncture through abdominal aorta after administration in 1 to 2 hours on the last day of modeling, then separated serum by centrifugation at 3000 rpm, serum of each group were mixed respectively, and inactivated in water bath at 56℃for 30min, then filtrated bacteria by using filter of 0.22μm under sterile conditions. Packed serum of each group into lml per tube and marked clearly and then stored at-20℃in refrigerator.
     3 Hippocampal neurons were divided into 7 groups after cultured for 8 days: (1)control group (normal cells, no treatment), (2)normal serum control group, (3)normal serum+glutamate group, (4)chronic stress model serum+glutamate group, (5)chronic stress model serum+glutamate+MK-801 group, (6)Xiao Yao San treatment serum+glutamate group, (7)Xiao Yao San treatment serum+ glutamate+MK-801 group. Each group was pretreated with serum or together with MK-801 for 20min, then after that added glutamate for the following 30min. Cell viability of each group was detected by MTT assay. The methods of Taqman fluorescence probe real-time quantitative PCR and relative quantification were used to determine the expression of NMDAR subunits mRNA. Intracellular free Ca2+ concentration in cultured hippocampal neurons in the simulated micro-environment of chronic stress and after intervention with the serum treated with Xiao Yao San were detected by confocal laser microscope at the same period of time. The methods of Western blot and relative quantification was used to determine the protein expression of iGR in the cultured rat hippocampal nerve cells after being conducted by the serum of chronic stress rat model and the serum treated with Xiao Yao San.
     Results
     1 The structures of nerve cells were clear and integral, and the purity of the neurons is up to 85.71% after cultured for 8 days.
     2 Hippocampal neurons viability of the normal serum+glutamate group and the chronic stress model serum+glutamate group were relatively low, and there were no significant differences in other groups. Hippocampal neurons viability in each group was approximately the same, which can meet the needs of follow-up assay.
     3 Neurons viability was affected obviously, NR1, NR2A, NR2B mRNA were all increased in different degrees, concentration of free Ca2+ intracellular increased significantly, and the protein expression of iGR was decreased significantly when micro-environment of chronic stress simulated by glutamate and serum of rat model with chronic stress was effected on the cultured hippocampal neurons.
     4 When cultured hippocampal neurons were prepared with MK-801, viability of the cultured nerve cells could be improved markedly, NR2A and NR2B mRNA were significantly decreased, concentration of free Ca2+ intracellular in cultured rat hippocampal neurons was decreased, but MK-801 has failed to improve the situation of increased Ca2+ influx and the downregulation of iGR expression.
     5 Neurons viability showed a trend of increasing, the expression of NR2A mRNA was upregulated significantly but that of NR2B mRNA was downregulated and NR1mRNA expression was not significantly decreased, concentration of free Ca2+ intracellular hadn't increased significantly and chronic stress-induced downregulation of iGR could be against significantly though there still were differences between the group with control group. When serum of chronic stress treated with Xiao Yao San was effected on the neurons.
     6 When MK-801 and serum of chronic stress treated with Xiao Yao San were used together, hippocampal neurons viability and expression of NR2A and NR2B mRNA were closer to normal, and glutamate had failed to lead to Ca2+ overload, chronic stress-induced downregulation of iGR could be significant(?)y antagonized and there was no significant difference between the group with control group. Conclusion
     1 No need to strictly control the digestion time and used the Ara-C to purify cells, neurons with good condition and high purity were obtained.
     2 The state of chronic stess micro-environment could be simulated by using serum of chronic stress rat model together with glutamate on the cultured hippocampal neurons, which caused the similar pathological results with that of chronic stress.
     3 Imbalance state of NR subunits under chronic stress could be corrected, and the normal ratio of NR2A AND NR2B could be maintained by using serum of chronic stress treated with Xiao Yao San, and it had effects of inhibiting Ca2+ overload and antagonizing chronic stress-induced downregulation of iGR in hippocampal neurons.
     4 Ca2+ overload and downregulation of iGR induced by chronic stress could not be completely blocked by using MK-801, there might be some other signaling pathways other than that of Glu-NR that interacted in the processes. Besides the effect of inhibition the activation of NR caused by MK-801, serum of chronic stress treated with Xiao Yao San played a role in neurons stability maintenance, and protected neurons against injury induced by chronic stress when MK-801 and serum of chronic stress treated with Xiao Yao San were used together. It may work through a variety of signaling pathways including Glu-NR-Ca2+-iGR to maintain the steady-state of the neurons, and then to protect neurons from the neurotoxic effects of excitatory.
     Summary
     Micro-environment of chronic stress around neurons in vivo could be simulated by serum of chronic stress rats together with glutamate, which could cause excessive activation of NR and calcium overload intracellular, subsequently reduced synthesis of iGR, and ultimately led to damage of hippocampal neurons and pathological results similar to chronic stress. Xiao Yao San treatment serum could correct the imbalance state of the NR subunits mRNA expression, maintain the normal proportion of NR2A and NR2B and calcium homeostasis intracellular, and keep iGR from decreased expression caused by chronic stress. It played a role in maintaining stability of hippocampal nerve cells, and protected neurons against the effects of chronic stress. Application of MK-801 made it clear that Xiao Yao San may work through multiple signaling pathways including that of Glu-NR-Ca2+-cAMP-iGR.
引文
[1]刘建新,危玲,李花.《黄帝内经》所论情志致病原因之我见[J].中医研究,2004;17(6):10
    [2]何文彬.《内经》情志致病理论及对后世的影响[J].浙江中医学院学报,2000;24(5):18
    [3]孙广仁.中医基础理论[M].北京:中国中医药出版社,2002;225-226,229
    [4]孟昭兰.普通心理学[M].北京:北京大学出版社,1994;389
    [5]乔明琦,韩秀琴.情志概念与可能的定义[J].山东中医药大学学报,1997;21(4):258
    [6]金光亮.论情志与情志病因[J].中国医药学报,1997;12(3):9
    [7]武刚.情志学说研究思路探析[J].安徽中医学院学报,2001;20(4):4
    [8]叶奕乾.普通心理学[M].上海:化东师范大学出版社,2004;241,246-247,257-262
    [9]宋东眷.《金匮》有关情志病内容刍议[J].甘肃中医学院学报,1998;15(1):10
    [10]齐南.《景岳全书》论情志病证管窥[J].成都中医学院学报,1991;14(2):1
    [11]蒋小敏.《伤寒论》中情志病诊治特色分析[J].江西中医学院学报,2005;17(2):19
    [12]姜乾金.《医学心理学》[M].北京:人民卫生出版社,2005;206
    [13]张理义.《临床心理学》[M].北京:人民军医出版社,2003;125
    [14]邵郊.生理心理学[M].北京:人民教育出版社,1999;404
    [15]童园园.七情致病机理内涵探析[J].安徽中医学院学报,1996;15(2):4
    [16]McEwen BS. Stellar E. Stress and the individual. Mechanisms leading to disease[J]. Arch Intern Med.1993;153(18):2093-2101
    [17]戴琪,朱明.从朱丹溪君火与相火的关系论中医心理调节机制[J].北京中医药大学学报,2002;25(2):5-9
    [18]岳广欣,陈家旭,王竹风.中医心肝肾三脏在应激反应中的作用[J].辽宁中医杂志,2005;32(6):528-530
    [19]胡素敏.肝主疏泄与心理应激的理论探讨[J].江西中医药,2003;34(242):12-13
    [1]Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis[J].JAMA.1992; 267(9):1244-1252
    [2]何芙蓉,王慧聪,雷晓峰,等.慢性应激的神经内分泌研究进展[J].中国误诊学杂志,2002;2(4):525-527
    [3]杨权.下丘脑-垂体-肾上腺皮质轴应激反应的中枢控制[J].生理科学进展,2000;31(3):222-226
    [4]Evanglia.C, Constantine.T, George C. Endocrinology of the Stress Response[J]. Annual Review of Physiology,2005; 67:259-284
    [5]Dana L, Helmreich D B, Parfitt X Y. Relation Between the Hypothalamic-Pituitary-Thyroid (HPT) Axis and the Hypothalamic-Pituitary-Adrenal (HPA) Axis During Repeated Stress[J]. Neuroendocrinology,2005; 81:183-192
    [6]邹涛,姚树桥.慢性应激的心理生理中介机制[J].国外医学精神病学分册,2001;28(2):109-112
    [7]Herman J P, Cullinan W E. Neurocircuitry of stress central control of the hypothalamopituitary-adreno-cortical axis[J]. Trends Neurosci,1997; 20:78-84
    [8]Jacobson L, Sapolsky R. The role of hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis[J]. Endocr Rev,1991; 12:118-125
    [9]Seeman TE, Robbins RJ. Aging and hypothalamic-pituitary-adrenal response to challenge in humans[J]. Endocr Rev,1994; 15:235-242
    [10]Weidenfeld J, Feldman S. Glucocoticoid feedback regulation of adrenocortical responses to neural stimuli. Role of CRF-41 and corticoteroid type Ⅰ and type Ⅱ receptors[J]. Neuroendocrinlogy,1993; 58: 49-56
    [11]Brook S. Dexamethasone resistance among nonhuman primates associated with a selective decrease of Glucocoticoid receptors in the hippocampus and history of social instability[J]. Neuroendocrinlogy, 1994; 60:134-142
    [12]张岫竹,周继红,蒋建新.应激过程中糖皮质激素受体对促肾上腺皮质激素释放激素的调节作用[J].国外医学外科学分册,2002;29(5):261-264
    [13]Garcia Garcia L, Harbuz MS, Manzanares J, et al. RU-486 blocks stress-induced enhancement of proenkephalin gene expression in the paraventricular nucleus of rat hypothalamus[J]. Brain Res.1998; 786(1-2):215-218
    [14]Guardiola Diaz HM, Kolinke JS, Gates LH. et al. Negative glucorticoid regulation of cyclic adenosine 3',5'-monophosphate-stimulated corticotropin-releasing hormonereporter expression in AtT-20 cells. Mol Endocrinol,1996; 10(3):317-329
    [15]Malkoski SP, Handanos CM, Dorin RI, et al. Localization of a negative glucocorticoid response element of the human corticotropin releasing hormone gene[J]. Mol Cell Endocrinol.1997; 127(2): 189-199
    [16]McEwen BS. Stellar E. Stress and the individual. Mechanisms leading to disease[J]. Arch Intern Med.1993;53(18):2093-2101
    [17]McEwen BS. Protective and damaging effects of stress mediators[J]. N Engl J Med,1998; 338(3). 171-179
    [18]Imaki T, Nanhan JL, Rivier C, et al. Differential regulation of corticotrop in releasing factor mRNA in rat brain reactions by glucocorticoid and stress[J]. Neurosci,1991; 11(3):585-599
    [19]Lightman AL, Young WS. Corticotrop in releasing factor, vasopressin and pro-opiomelano-cortin mRNA response to stress and opiates in the rat[J]. Pyhsiol Lond,1988; 403:511-523
    [20]Magarinos A M, Verdugo J M, McEwen B S. Chronic stress alters synaptic terminal structure in hippocampus[J]. Proc Natl Acad Sci USA,1997; 94(25):14002-14008
    [21]Stein-Behrens B, Mattson M P, Chang I, et al. Stress exacerbates neuron loss and cytos'celetal pathology in the hippocampus[J]. Neurosci,1994; 14(9):5373-5380
    [22]McIntosh L J, Sapolsky R M. Glucocorticoids may enhance oxygen radical-mediated neurotoxicity. Neurotoxicology,1996; 17(3-4):873-882
    [23]Venero C, Borrell J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur J Neurosci,1999; 11(7):2465-2473
    [24]Elaine F, Walker, Donald Diforio. Schizophrenia:A Nerual Diathesis-Stress Model[J]. Psychological Review,1997; 104(4):667-685
    [25]Sapolsky RM. The importance of a well-groomed child[J]. Science,1997; 277(5332):1620-1621
    [26]Ni J, Ohta H, Matsumoto K, et al. Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats[J]. Brain. Res,1994; 653:231-236
    [27]Sopala M, Danysz W. Chronic cerebral hypoperfusion in the rat enhances age-related deficits in spatial memory[J]. Neural Transm,2001; 108:1445-1456
    [28]Sarti C, Pantom L, Bartolini L, et al. Cognitive impairment and chronic cerebral hypoperfu-sion: what can be learned from experimental models[J]. Neurol Sci,2002; 15:263-266
    [29]朱婉儿,胡长春,谢文婷,等.慢性应激对大鼠海马Akt/FKHRL1信号通路活性的影响[J].心理学报,2007;39(4):656-661
    [30]张红卫,侯安继,胡艳,等.慢性应激老年抑郁大鼠海马CA3区c-fos和caspase-3蛋白的表达[J].中华医学实践杂志,2007;6(9):769-771
    [31]Smith M A, Makino S, Kvetnansky R, et al. Stress and glucocorticoids affect the expression of brain derived neurotrophic factor and neurotrophin-3 mRNA in the hippocampus[J]. Neurosci,1995; 15(3): 1768-1777
    [32]Conrad CD, LeDoux JE, Magarinos AM, et al. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy [J]. Behav Neurosci,1999; 113:902-913
    [33]王亮,杨志华,弓景波,等.慢性应激大鼠海马的比较蛋白质组学研究[J].生物化学与生物物理进展,2008;35(3):290-296
    [34]]Efthimia Kitraki, Despoina Karandrea, Christos Kittas. Long-lasting effects on glucocorti-coid receptor gene expression in the rat brain[J]. Neuroendocrinolngy, Basel,1999; 69(5):331-340
    [35]Huizenga NA, De Herder WW, Koper JW. Decreased ligand affinity rather than glucocorticoid receptor down-regulation in patients with endogenous Cushing's syndrome[J]. Eur J Endocrinol,2000; 142(5):472-476
    [36]Tritos N, Kitraki E, Philippidis H, et al. Neurotransmitter modulation of glucocorticoid receptor mRNA levels in the rat hippocampus[J]. Neuroendoerinology,1999; 69(5):324
    [37]Chautard T, Boudouresque F, Guillaume V, et al. Effect of excitatory amino acid on the hypothalamo-pituitary-adrenal axis in the rat during the stress-hyporesponsive period[J]. Neuroendocrinology,1993; 57(1):70-78
    [38]陆建华,黎海蒂,高京生,等.应激时NMDA受体活性变化对HPA轴兴奋性的影响研究进展.西南国防医药,2002;12(4):367-370
    [39]Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science, 1992; 258:597-603
    [40]陆建华,黎海蒂,高京生.烫伤大鼠海马N-甲基-D-天冬氨酸受体亚型基因表达的变化[J].中华烧伤杂志,2002;18(3):180-182
    [41]熊丽,章军建.慢性应激导致认知功能障碍机制的研究现状[J].中国行为医学科学,2007; 16(7):671-672
    [42]Hyman SE. Brain neurocircuitry of anxiety and fear:Implications for clinical research and practice[J]. Biol Psychiatry,1998; 44(12):1201-1236
    [43]LeDoux J. Fear and the brain:Where have we been, and where arewe going[J]? Biol Psychiatry, 1998; 44(12):1229-1238
    [44]Davis M. Are different parts of the extended amygdale involved in fear versus anxiety [J]? Biol Psychiatry,1998; 44(12):1239-1247
    [45]Goldstein LE, Rasmusson AM, Bunney BS, et al. Role of the amygdale in the coordination of behavioral, Neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat[J]. Neuroscience,1996; 16:4787-4798
    [46]Cullinan W E. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress[J]. Comp Neurol,1996; 368(1):88-99
    [1]罗和春,钱瑞琴,赵学英,等.丹栀逍遥散治疗抑郁症的临床疗效观察[J].中国中西医结合杂志,2006;26(3):212-214
    [2]陈晓天,史欣德.逍遥散在精神神经系统疾病中的应用概况[J].江苏中医药,2007;39(6):66-67
    [3]张园园,郑梅.逍遥散的临床应用概况.云南中医中药杂志[J],2008;29(9):66-67
    [4]聂有智,王春勇.逍遥散临床应用进展[J].山东中医药大学学报,2005;29(4):327-329
    [5]金周汉,李静.逍遥散治疗消化系统疾病的进展[J].中国中医药现代远程教育,2007;5(8):8-9
    [6]张利耀,郭永红.逍遥散在妇科临床的应用[J].基层医学论坛,2007;11(8):724-725
    [7]修春,宓穗卿,王宁生.逍遥散的药理研究进展[J].中国药房,2007;18(9):702-703
    [8]徐志伟.逍遥散调治神经症的临床疗效观察[J].现代中医,1999;2:17
    [9]徐志伟.逍遥散对心因性反应患者认知学习记忆功能的影响[J].现代中西医结合杂志,2000;4(3):21-24
    [10]唐兴荣.逍遥散加味治疗慢性疲劳综合症12例[J].新中医,2000;32(5):46-47
    [11]嵇波,陈家旭,鲁兆麟,等.逍遥散对人体神经内分泌免疫系统的影响[J].北京中医药大学学报,2003;26(6):68-71
    [12]徐志伟,敖海清,王文竹,等.逍遥散对慢性心理应激大鼠空间学习记忆能力的影响[J].中国行为医学科学,2004;13(5):484-485
    [13]金若敏,黄莉,周婉,等.中药逍遥片改善正常或脾虚小鼠肠运动相关功能[J].中国临床康复,2003;7(24):316
    [14]熊静悦,曾南,张崇燕,等.逍遥散对CUMS模型大鼠行为学及脑内单胺类神经递质的影响[J].现代生物医学进展,2007;7(11):1635-1639
    [15]吴振宇,张云,肖健,等.阻断交感神经及加味逍遥丸对心理应激小鼠免疫功能的影响[J].中国行为医学科学,2006;15(1):7
    [16]顿颖,郝一彤,冯前进,等.逍遥丸对实验动物拘束水浸应激损伤的保护作用[J].中国实验方剂学杂志,1999;5(6):33
    [17]訾晓梅,刘青云.逍遥口服液药效学研究[J].安徽中医学院学报,2000;19(6):39
    [18]王凯,陈万群,陈古荣.逍遥合剂与功能主治有关的主要药效学研究[J].重庆中草药研究,2003;47(1):43
    [19]黄莉,金若敏,胡月红,等.逍遥片保肝作用的实验研究[J].中成药,2003;25(6):473
    [20]瞿礼萍,周桢昊,曾南,等.逍遥散及其拆方对行为绝望模型小鼠的影响[J].时珍国医国药,2008;19(1):38-39
    [21]王静怡,石玉珺,查鹏洲,等.逍遥散的药理研究[J].中国医院药学杂志,2002;22(8):489
    [22]于琦,金光亮.三种复方对慢性应激肝郁模型大鼠海马5-HT1A受体基因表达的影响[J].北京中医药,2008;27(1):57-59
    [23]徐志伟,王文竹,苏俊芳,等.逍遥散和丹栀逍遥散抗焦虑作用的实验研究[J].广州中医药大学学报,2006;23(4):330-331
    [24]敖海清.逍遥散抗心理应激损伤学习记忆神经机制的初步研究[J].广州中医药大学2004届博士学位论文,2004:6.
    [25]Mao Haiyan, Ye Lin, Ye Xiangrong. Changes of CNS neurotransmitters of liver depression syndrome rats [J]. Fujian Journal of TCM,2002; 33(2):17-18
    [26]Wu Chunfu, Li Fengli, Liu Wen, et al. Effect of Xiao Yao San on the levels of monoamine. neurotransmitters in rat brain [J]. Pharmacology and Clinics of Chinese Materia Medica,1993; 9(2):8-11
    [27]高萧枫,秦雪梅,王明军.逍遥散和柴胡对慢性束缚应激肝郁模型大鼠脑内单胺类神经递质的影响[J].中药药理与临床,2005;21(2):6
    [28]李玉娟,罗和春,钱瑞琴,等.丹栀逍遥散对抑郁症患者神经免疫内分泌系统的影响[J].中国中西医结合杂志,2007;27(3):197-200
    [29]陈家旭,杨建新,赵歆,等.慢性束缚应激大鼠中枢糖皮质激素受体变化及中药复方的影响[J].中国应用生理学杂志,2005;21(4):402-406
    [30]徐志伟,敖海清,王文竹,等.逍遥散对应激大鼠海马CA3区突触体结构可塑性的影响[J].中国行为医学科学,2006;15(2):102-106
    [31]敖海清,徐志伟,王文竹,等.逍遥散对应激大鼠海马突触体内PKC活性及Ca2+浓度的影响[J].山东中医杂志,2006;25(2):112-114
    [32赵益业.肝郁证的免疫学探讨[J].山东中医药大学学报,1997;21(1):28
    [33]钱瑞琴,张春英,杨宇.疏肝中药对应激小鼠免疫功能影响的对比研究[J].中成药,2000;22(9):649
    [34]余浚龙.逍遥散对慢性应激大鼠的免疫调节作用[J].广州医药,2004;35(6):56
    [35]丰胜利,张学智,刘庚信.肝郁证免疫学变化及丹栀逍遥散保护作用的实验研究[J].中国中医基础医学杂志,2005;11(11):821-822
    [36]周淑芳,刘燕.逍遥丸对兔肠平滑肌作用的研究[J].河北中医,2006;28(2):144
    [37]赵景湘.逍遥丸对缺血性脑血管病恢复期患者脂蛋白/载脂蛋白及血液流变学指标的影响[J].中医杂志,2003;44(7):510
    [38]宋雨婷,王玉江,周正顺,等.逍遥散的抑瘤作用研究[J].长春中医药大学学报,2006;22(2):62-6328
    [1]孙广仁.中医基础理论[M].北京:中国中医药出版社,2002;225-226,229
    [2]赵春妮,罗永彬.浅谈中医情志疗法[J].国医论坛,2005;20(2):15-17
    [3]徐斌,王效道,刘士林.心身医学[M].北京:中国科学技术出版社,2003:3
    [4]李海宏,张永平.从中医对心身疾病的药物治疗看中医情志观[J].新疆中医药,2004;22(2):4-5
    [5]闫蕾.浅述中医情志理论与心身疾病的治疗[J].湖南中医杂志,2007;23(5):85
    [6]刘瑶,魏铁力.浅析情志病经验十方[J].同济大学学报(医学版),2006;27(1):95-96
    [7]陆明霞.浅谈疏肝理气法的研究与应用[J].针灸临床杂志,2000;16(9):51
    [8]马红青,聂道芳,董晓夫,等.鬼穴治疗精神情志病的机理探微[J].针灸临床杂志,2007;23(8):59-60
    [9]黄泳.胡珍香针灸治疗精神情志病经验[J].中医函授通迅,1994;13(3):28
    [10]徐浩岚,游向宇,张介平.论传统中医心理疗法的情志观[J].泸州医学院学报,2004;27(6):569
    [11]申鹏飞,申东原.《内经》关于心身疾病的论述[J].辽宁中医杂志,2004;31(1):19
    [12]吴红玲.中医情志疗法探析[J].中医药学刊,2005;23(10):1863-1864
    [13]李炜弘,王米渠,李世通,等.恐怒等情志发病的音乐心理治疗古案6例[J].现代中西医结合杂志,2006;15(18):2444
    [14]徐永.情志失调与非药物疗法——以情治情和音乐调节[J].养生大世界:B版,2009;(3):9
    [15]胡文颖.情志养生与疾病预防[J].家庭健康,2009;(5):50
    [1]Jacobson L, Sapolsky R. The role of hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis[J]. Endoer Rev,1991; 12:118-125
    [2]潘永英,彭书峻,赵一凡,等.大鼠海马神经元的原代无血清培养及鉴定[J].实用医学杂志,2006;22(7):758-759
    [3]梁传栋,赵文清,李文玲,等.新生大鼠皮质神经元的体外原代培养及鉴定[J].解放军医学杂志,2008;33(7):906
    [4]王英,车宇,苗建亭,等.新生大鼠海马神经元原代培养方法的研究[J].细胞与分子免疫学杂志,2003;19(2):197-199
    [5]赵秀鹤,迟兆富,尚伟,等.新生大鼠海马神经元的体外原代培养[J].基础医学与临床,2007;27(3):329-332
    [6]Brewer G J, Torricelli J R, Evege E K, et al. Optimized suivival of hippocampal nerrons in B27-supplemented neuronbasal, a new serum-free medium combination[J]. J Neurosci Res,1993; 35(5):567-576
    [1]陆慧晶.血清药理学研究中的若干问题探讨[J].基层中药杂志,2000;14(3):51-53
    [2]姚海燕,施桂兰,王任烨,等.慢性应激大鼠模型的应用与改进[J].中国药理通迅,2006;23(4):59-60
    [3]富文俊.逍遥散对慢性应激损伤大鼠HPA轴负反馈功能及GR、NR亚型调节机制的研究[D].广州:广州中医药大学,2009:37
    [4]王力倩,李仪奎,符胜光,等.血清药理学方法研究探讨[J].中药药理与临床,1997;13(3):29-31
    [5]王宁生.关于血清药理学的若干思考[J].中国新药与临床药理,1999;10(5):263-266
    [6]吴健宇,李仪奎,符胜光.补阳还五汤保护自由基损伤血管内皮细胞的血清药理实验方法的建立[J].中药药理与临床,1999;15(1):45
    [7]蒙一纯.中药血清药理学应用研究展望[J].北京中医药大学报,1999;22(4):42
    [1]Mosmann T. Rapid colorimetric assay for cellular growth and survival [J].J Immuno Methods,1983; 65(1):55-63
    [2]苏允爱,司天海.神经递质谷氨酸及其抗精神病药物研究进展[J].中国临床药理学杂志,2004;20(3):224-227
    [3]李爱林.谷氨酸的兴奋性毒性与脑创伤[J].国外医学神经病学神经外科学分册,2005;32(3):231-234
    [1]Wu H, Li H, Guo J, et al. N-methyl-D-aspartate receptors mediate diphosphorylation of extracellular signal-regulated kinases through Src family tyrosine kinases and Ca2+/calmodulin-dependent protein kinase II in rat hippocampus after cerebral ischemia[J]. Neuroscience Bulletin,2007; 23(2):107-112
    [2]Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits:diversity, development and disease[J]. Curr Op Neurobiol,2001; 11 (3):327-335
    [3]Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels[J]. Pharmacol Rev, 1999;51(1):7-61
    [4]Jin DH, Jung YW, Ko BH, et al. Immunoblot analyses on the differential distribution of NR2A and NR2B subunits in the adult rat brain[J]. Mol Cells,1997; (7):749-754
    [5]Becker J, Li Z, Noe CR. Molecular and pharmacological characterization of recombinant rat/mice N-methyl-D-aspartate receptor subtypes in the yeast Saccharomyces cerevisiae[J]. Eur J Biochem,1998; 256:427-435
    [6]Hrabetova S, Serrano P, Blace N, et al. Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction[J]. J Neurosci,2000; 21(12):81
    [7]Bauer EP, Schafe GE, LeDoux JE. NMDA receptors and L-type voltage-gated calcium channels contribute go long-term potentiation and different components of fear memory formation in the lateral amygdale[J]. J Neurosci,2002; 22(12):5239-5249
    [8]Goelel D J, Poosch M S. NMDA Receptor Subunit Gene Expression in the Rat Brain:a Quantitative Analysis of Endogenous mRNALevels of NRlcom, NR2A, NR2B, NR2C, NR2D and NR3A[J]. Mol Brain Res,1999; 69(2):164-174
    [9]Kumar A, ZouL, Yuan X, et al. N-methyl-D-aspartate Receptors:Transient Loss of NR1/NR2A/NR2B Subunits After Traumatic Brain Injury in a Rodent Model[J]. J Neurosci Res,2002; 67(6):781-786
    [10]Bi H, Sze C I. N-methyl-D-aspartate Receptor Subunit NR2A and NR2B Messenger RNA Levels are Altered in the Hippocampus and Entorhinal Cortex in Alzheimer's Disease[J]. J Neurolsci,2002; 200(1-2):11-18
    [11]Narita M, Aoki T, Suzuki T. Molecular evidence for the involvement of NR2B subunit containingN-methyl-D-aspartate receptors in the development of morphine-induced place preference[J].Neuroscience,2000; 101(3):601
    [12]Doubell, Mannion R J, Woolf G J. The dorsal horn:State-dependent sensory processing, plasticity and the generation of pain[M]. Textbook of Pain, London:Churchill Livingstone,1999; 165-181
    [13]Suzuki Y, Takagi Y, Nakamura R, et al. Ability of NMDA and non-NMDA receptor antagonists to inhibit cerebral ischemia damage in aged rats[J]. Bain Res,2003; 964(1):116
    [14]Mishra OP, Delivoria Papadopoulos M. Mechanism of the hypoxic injury to the developing brain[J]. Brain Res Bull,1999; 48(3):233-238
    [15]lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders[J]. New Eng J Med,1994; 330(9):613
    [16]Cratty MS, Birkle DL. N-methyl-D-aspartate(NMDA) mediated corticotrophin releasing factor(COF) felease in cultured rat amygdal neurons[J]. Peptides.1999; 20(1):93-100
    [17]McCann SM. The nitric oxide hypothesis of brain aging[J]. AExp Gerontol.1997; 32(4-5):431
    [18]Givalois L, Arancibis S, Tapia Arancibia L. Concomitant changes in CRH mRNA levels in rat hippocampus and hypothalamus following immobilization stress[J]. Brain Res Mol Brain Res,2000; 74(1):166
    [19]Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain:microdistribution and differention occupation[J]. Endocrinology,1985; 177(6):2505-2511
    [20]Dingledine R, McBain CJ. Excitatory amino acids transmitters. Basic Neurochemistry [M]. New York:Raven Press,1994:367-387
    [21]徐铁军,樊红彬,张凤真,等.NMDA受体亚单位NR1、 NR2A和NR2B在大鼠海马的免疫组 织化学表达[J].解剖学杂志,2002;25(2):128-133
    [22]Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function[J]. Science,1992; 258:597-603
    [23]Winer J, Jung CK, Shackel I,et al. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro[J].Anal Biochem,1999; 270(1):41-49
    [24]Popoli M, Gennarelli M, Racagni G. Modulation of synaptic plasticity by stress and antidepressants [J]. Bipolar Disorders,2002; 4(3):166-182
    [25]富文俊.逍遥散对慢性应激损伤大鼠HPA轴负反馈功能及GR、NR亚型调节机制的研究[D].广州:广州中医药大学,2009:52-61
    [26]Tovar KR,Sproufske KL.NMDAR-mediated synaptic currents in neurons from mice lacking the NR2B subunit[J]. Neurophysiology,2000; 83:616-620
    [27]Monyer H, Burnashev N, Laurie DJ, et al.Developmental and regional expression in the rat brain and functional properties of four NMDA receptors[J]. Neuron,1994; 12(3):529-540
    [28]Tang YP, Shimizu E, Dube GR, et al. Genetic enhancement of learning and memory in mice[J]. Nature,1999; 401:63-69
    [29]Khan AM, Curras MC, Dao J, et al. Lateral hypothalamic NMDA receptor subunits NR2A and/or NR2B mediate eating:immunochemical/behavioral evidence[J]. Am J Physiol,1999; 276:880-891
    [30]Hisatsune C, Umemori H, Mishina M, et al. Phosphorylation-dependent interaction of the N-methyl-D-aspartate receptor epsilon 2 subunit with phosphatidylinositol 3-kinase[J]. Genes to Cells,1999; 4:657-666
    [31]Loftis JM, Janowsky A. The N-methyl-D-aspartate receptor subunit NR2B:localization, functional properties, regulation, and clinical implications[J]. Pharmacol Ther,2003; 97(1):55-85
    [32]Petrenko AB, Yamakura T, Baba H, et al. The role of N-methyl-D-aspartate (NMDA) receptors in pairxa review[J]. Anesth Analg,2003; 97(4):1108-1116
    [33]Guo W, Zou S, Guan Y, et al.Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia[J].J Neurosci,2002; 22:6208-6217
    [34]Moon IS. Relative extent of tyrosine phosphorylation of the NR2A and NR2B subunits in the rat forebrain postsynaptic density fraction[J]. Mol Cells,2003; 16:28-33
    [35]Laube B, Hirai H, Sturgess M, et al. Molecular determinants of agonist discrimination by NMDA receptor subunits:analysis of the glutamate binding site on the NR2B subunit[J]. Neuron,1997; 18: 493-503
    [36]袁维秀,杨红菊,张宏.N-甲基-D-天冬氨酸-2B受体功能的研究进展[J].国外医学药学分册,2004;31(3):146-149
    [37]Chen J, Nagayama T, Jin K, et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia[J]. J Neurosci,1998; 18:4914-4928
    [38]Adams JM, Cory S. The Bel-2 protein family:arbiters of cell survival[J]. Science,1998; 281: 1322-1326
    [39]Lu J, Goula D, Sousa N, et al. Inotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors[J]. Neuroscience,2003; 121 (1):123-131
    [40]Chazot P, Stephenson F A. Molecular Dissection of Native Mammalian Forebrain NMDA Receptors CONT2aining the NR1 C2 exon:Direct Demonstration of NMDA Receptors Comprising NR1, NR2A,and NR2B Subunits within the Same Complex[J]. J Neurochem,1997; 69(5):2138-2144
    [41]Luo J, Wang Y H, Yasuda R P, et al. The Majority of N-methyl-D-aspartate Receptor Complexes in Adult Rat Cerebral Cortex CONT2ain at Least Three Different Subunits (NR1/NR2A/NR2B)[J]. Mol Pharmacol,1997;51(1):79-86
    [42]Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways[J]. Nat Neurosci,2002; 5:405-414
    [43]Hardingham GE, Bading H. Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated[J]. Biochim Biophys Acta,2002; 1600:148-153
    [44]王恒林,王卓强,李去峰,等.N-甲基-D-天冬氨酸受体介导的脑损伤及脑保护研究进展[J].临床麻醉学杂志,2004;20(4):253-254
    [1]Cratty MS, Birkle DL. N-methyl-D-aspartate(NMDA) mediated corticotropin releasing factor(COF) felease in cultured rat amygdal neurons[J]. Peptides,1999; 20(1):93-100
    [2]Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegeneration disease[J]. TIPS,1990; 11 (2):379
    [3]Li N, Yin L, Su Z L. Laser Scanning Confocal Microtechnique[M]. Beijing:Renmin Military Medical Publishing House,1997; 61-64
    [4]Li N, Wang F X, Zhou C X. Applied Technology of Fluorescence Probes[M]. Beijing:Military Medical Scientific Publishing House,1998; 99-100
    [5]Johnson EM JR, Koike T, Franklin J. A "calcium set-point hypothesis" of neuronal dependence on neurotrophic factor[J].Exp Neurol,1992; 115:163-166
    [6]Hwang J Y, Kim Y H, Ahn Y H, et al. N-Methyl-D-aspartate receptor blockade induces neuronal apoptosis in cortical culture[J]. Exp Neurol,1999; 159(1):124-130
    [7]Hyrc K, Handran S D, Rothman SM,et al. Ionized intracellular calcium concentration predicts excitotoxic neuronal death:observations with low-affinity flurescent calcium indicators[J]. J Neurosci, 1997; 17:6669-6677
    [8]Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy:the calcium hypothesis of the induction and maintainance of epilepsy[J]. Pharmacol Ther,2005; 105(3):229
    [9]Dolmetsch R E, Lewis R S, Goodnows C C, et al. Differential activation of transcription factors induced by Ca2+ response amplitude and duration[J]. Nature,1997; 386:855-858
    [10]Limbrick J, Churn SB, Sombati S, et al. Inability to restore resting intracellular calcium levels as an early indicator of delayed neuronal cell death[J]. Brain Res,1995; 690(2):145-156
    [11]Hidalgo C, Nunez MT. Calcium, iron and neuronal function[J]. IUBMB Life,2007; 59(4-5): 280-285
    [12]Michaelis M L, Foster C T, Jayawickreme C J. Regulation of calcium level in brain tissue from adult and aged rats[J]. Mech Aging Dev,1992; 62:291
    [13]Mitani A, Andou Y, Kataoka K. Selective vulnerability of hippocampal CA1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil:brain microdialysis study [J]. Neuroscience,1992; 48(2):307-313
    [14]Fineman I, Hovda D A, Smith M. Concussive brain injury is associated with a prolonged accumulation of calcium:a 45Ca autoradiographic study[J]. Brain Res,1993; 624(1-2):94-102
    [15]Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways[J]. Nat Neurosci,2002; 5:405-414
    [16]Hardingham GE, Bading H. Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated[J]. Biochim Biophys Acta,2002; 1600:148-153
    [17]Thompon S M, Wong R K. Development of calcium current subtypes in isolated rat hippocampal pyramidal cells[J]. J Physiol,1991; 439:671-689
    [18]贝伟剑,李楚源,王德勤,等.脑心清及其黄酮成分对海马神经元L型钙通道电流的影响[J].广东药学院学报, 2009;25(3):304-309
    [1]Jacobson L, Sapolsky R. The role of hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis[J]. Endoer Rev,1991; 12:118-125
    [2]Seeman TE, Robbins RJ. Aging and hypothalamic-pituitary-adrenal response to challenge in humans[J]. Endocr Rev,1994; 15:235-242
    [3]Weidenfeld J, Feldman S. Glucocorticoid feedback regulation of adrenocortical responses to neural stimuli. Role of CRF-41 and corticoteroid type I and type II receptors[J]. Neuroendocrinlogy,1993; 58:49-56
    [4]Brooke S. Dexamethasone resistance among nonhuman primates associated with a selective decrease of Glucocoticoid receptors in the hippocampus and a history of social instability[J]. Neuroencocrinlogy, 1994; 60:134-142
    [5]De Kloet E R, Vreugdenhil E, Oitzl M S, et al. Brain corticosteroid receptor balance in health and disease[J]. Endocr Rev,1998; 19(3):269-301
    [6]Karanth S, Linthorst AC, Stalla GK, et al. Hypothalamic-pituitary-adrenocotical axis changes in a transgenic mouse with impaired glucocorticoid receptor function[J]. Endocrinology 1997; 138(8): 3476-3485
    [7]Malkoski SP, Handanos CM, Dorin RI, et al. Localization of a negative glucocorticoid response element of the human corticotropin releasing hormone gene[J]. Mol Cell Endocrinol.1997; 127(2): 189-199
    [8]Guardiola-Diaz HM, Kolinske JS, Gates LH, Seasholtz AF. Negative glucorticoid regulation of cyclic adenosine 3',5'-mono-phophate-stimulated corticotropin-releasing hormone-reporter expression in AtT-20 cells. Mol Endocrinol 1996; 10(3):317-329
    [9]Mitani A, Andou Y, Kataoka K. Selective vulnerability of hippocampal CA1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil:brain microdialysis study [J]. Neuroscience,1992; 48(2):307-313
    [10]Tritos N, Kitraki E, PhiliP Pidis H, et al. Neurotransmitter modulation of glucocorticoid receptor mRNA levels in the rat hippocampus[J]. Neuroendocrinology,1999; 69(5):324
    [11]Seckl RT, Olsson J. Glucocorticoid hypersecretion and the age-impaired hippocampus:clause or effect? [J]. Endcrinology,1995; 145:201
    [12]Lupien SJ, McEwen BS. The acute effects of corticosteroids on cognition:integration of animal and human model studies[J]. Brain Res Rev,1997; 24:1-27
    [13]E Ronald DK, Onno CM, Emo V, et al. The Yin and Yang of Nuclear receptors:symposium on nuclear receptors in brain[J]. Trend in Endocri Metab,2000; 11(6):245-248
    [14]Joels M, De Kloet ER. Mineralocorticoid and glucocorticoid receptors in the brain:implications for ion permeability and transmitter systems[J]. Endocr Rev,1998; 19:269-301
    [15]De Kloet ER, Van Acker SA, Sibug RM. Brain mineralocorticoid receptors and centrally regulated functions[J]. Kidney Int,2000; 57:1329-1336
    [16]Huizenga NA, De Herder WW, Koper JW, et al. Decreased ligand affinity rather than glucocorticoid receptor down-regulation in patients with endogenous Cushing's syndrome. Eur J Endocrinol,2000; 142(5):472-476
    [17]Cratty MS, BirkleD. N-methyl-D-aspartate(NMDA) mediated corticotropin releasing factor(COF) felease in cultured rat amygdal neurons[J]. Peptides,1999; 20(1):93-100
    [18]McCann SM. The nitric oxide hypothesis of brain aging[J]. AExp Gerontol.1997,32(4-5):431.
    [19]Givalois L, Arancibis S, Tapia Arancibia L. Concomitant changes in CRH mRNA levels in rat hippocampus and hypothalamus following immobilization stress[J]. Brain Res Mol Brain Res,2000; 74(1):166
    [20]陆建华,黎海蒂,高京生,等.应激时NMDA受体活性变化对HPA轴兴奋性的影响研究进展.西南国防医药,2002;12(4):367-370
    [21]Gottlicher M, Heck S & Herrlich P. Transcriptional cross-talk, the second mode of steroid hormone receptor action. Journal of Molecular Medicine 1998; 76 (7):480-489
    [22]Laflamme N, Bardenet N, Rivest S. Corticotropin-Releasing Factor and Glucocorticoid Receptor (GR) Gene Expression in the Paraventricular Nucleus of Immune-Challenged Transgenic Mice Expressing Type II GR Antisense Ribonucleic Acid[J]. J Mol Neurosci,1997; 8(3):165-179
    [23]Yau J L, Noble J, Seckl J R. Acute restraint stress increases 5-HT7 receptor mRNA expression in the rat hippocampus[J]. Neurosci Lett,2001; 309:141-144
    [24]Lopez J F, Akil H, Watson SJ. Role of biological and psychological factors in early development and their impact on adult life[J]. Neural circuits mediating stress[J]. Biol Psychiatry,1999; 46: 1461-1471

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700