棉铃虫对超声波的生理生化反应及其听觉的分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫Helicoverpa armigera(H(u丨¨)ber),属于夜蛾科(Noctuidae),是我国乃至世界上的重要农业害虫。由于它具有寄主范围广、繁殖潜能大、种群能远距离迁移和对环境适应能力强等特点,条件适宜时常大面积爆发成灾,造成多种经济作物的严重损失。棉铃虫和其他夜蛾一样具有听器,位于后胸两侧,并且最佳调谐频率范围是15-30 kHz。当棉铃虫成虫飞翔时可以发出主频在20-40 kHz范围内的超声脉冲。为了详细地了解棉铃虫的听觉机理,为治理棉铃虫提供听觉方面相关的理论基础和依据。本文主要研究了棉铃虫对非蝙蝠特征的超声波生理生化反应以及棉铃虫侦测超声波的分子基础。主要结果如下:
     1.超声波对棉铃虫生殖及生长发育的影响
     无论是有或无超声波辐照的棉铃虫雌成虫在前4天的产卵数是逐渐增加的,而后的几天产卵量逐渐下降。暴露于超声波辐照下的棉铃虫雌成虫产卵集中在开始产卵的第3天至第6天,对照组的棉铃虫雌成虫产卵高峰要比前者延长一天。超声波辐照的棉铃虫雌成虫产卵量要高于对照组的,且达到了显著差异水平。测试组的棉铃虫雌成虫产卵量比对照组的增加了54.5%。对照组的棉铃虫雌成虫所产的卵孵化率为61.5%,而测试组的为67.6%,两者之间无显著差异。测试组的雌蛾具有1.43个精包,要多于对照组的1.28个。
     暴露于超声波辐照下的幼虫的生长情况和对照组幼虫的生长情况无显著差异。测试组的幼虫化蛹率要低于对照组的,前者为77.7%,而后者为92.2%,两者之间达到了显著差异水平。暴露于超声波辐照下的蛹羽化率要低于无超声波辐照蛹的羽化率,但是没有达到显著差异水平。
     2.超声波对棉铃虫乙酰胆碱酯酶(AChE)活性的影响
     长时间暴露于超声波影响下,棉铃虫的AChE活性异常升高。处理12 h测试组的棉铃虫AChE活性增长最大,达到了显著水平,是对照组活性的2.61倍。其次是处理6 h测试组的棉铃虫AChE活性增长,达到了显著水平,比对照组酶活增长了149%。处理时间最长的24 h测试组的棉铃虫AChE活性增长幅度很小,同对照组相比仅仅增长了16%。
     在短时间超声波刺激试验中,超声波对棉铃虫成虫的AChE活性影响显著。棉铃虫雌成虫在暴露于超声波20 min时,AChE活性变化最大,与对照组相比增长了74%,达到统计学显著水平。其他测试组的AChE活性变化不显著,仅在对照组AChE活性的86%-103%之间变动。与对棉铃虫成虫的影响不同的是,超声波对棉铃虫蛹的AChE活性主要起到抑制作用;当在30 min时棉铃虫蛹的AChE活性达到最低为0.085 U/mg prot,是对照组的56%,差异显著。其次在50 min时,棉铃虫蛹的AChE活性为0.0947 U/mg prot,是对照组的63%,差异显著。当超声波处理棉铃虫幼虫达20 min时,有一个显著的抑制作用,AChE活性仅为0.018 U/mg prot,是对照组活性的15%。然而在40 min和60 min时超声波又刺激棉铃虫幼虫AChE活性显著增强,分别为0.285 U/mg prot和0.2553 U/mg prot,是对照组活性的2.3倍和2.1倍。
     3.超声波对棉铃虫抗氧化酶活性的影响
     当棉铃虫长时间暴露于超声波辐照下,其超氧化物歧化酶(SOD)活性没有发生显著的变化。长时间暴露于超声波辐照下,棉铃虫雌成虫的过氧化氢酶(CAT)活性变化达到了显著水平。当棉铃虫雌成虫被超声波辐照6 h时CAT活性显著增加,是对照组的2.2倍。超声波辐照棉铃虫雌成虫12 h也使得CAT活性显著增加,比对照组增长了38.5%。经过24 h的超声波辐照,棉铃虫雌成虫CAT活性反而开始下降,并达到了统计学显著差异水平。长时间暴露于超声波辐照下,棉铃虫的过氧化物酶(POD)活性也发生了显著变化。超声波辐照6 h后,棉铃虫POD活性显著增加,为对照组的124.3%。棉铃虫经过超声波辐照12 h,POD活性同对照组相比有所增加,虽然增长幅度小于6 h超声波辐照,但仍然达到了极显著差异水平。经过24 h的超声波辐照,棉铃虫POD活性同CAT活性变化一样,反而开始下降,但没有达到了统计学显著差异水平。
     当短时间暴露于超声波辐照下,棉铃虫成虫、蛹和幼虫的SOD和CAT以及棉铃虫蛹短时间POD活性均没有发生显著变化。当棉铃虫雌成虫短时间暴露于超声波辐照下,其POD活性变化达到了显著差异水平。在超声波辐照20 min和40 min时,棉铃虫雌成虫POD活性达到波峰,其中40 min时棉铃虫雌成虫POD活性与对照组相比达到了极显著差异。短时间的超声波辐照对于棉铃虫幼虫的POD活性具有极显著的影响。除了10 min和60 min是略高于对照组外,其他处理时间长度的超声波辐照使棉铃虫幼虫的POD活性显著增强。
     4.棉铃虫Nanchung(Nan)基因全长cDNA克隆及序列分析
     利用RT-PCR和RACE的方法从棉铃虫中得到Nan基因全长cDNA序列。该序列蛋白编码区长1020 bp。由该序列推定的蛋白序列由339个氨基酸残基组成。利用DNAStar软件分析,推测蛋白的分子量39.191 kDa,等电点为6.76。对氨基酸序列进行疏水性分析,说明其氨基酸序列具有亲水性。对蛋白的二级结构进行预测,结果表明该蛋白的二级结构主要为α-螺旋结构。利用生物软件DNAStar分析以下无脊椎动物间的演化关系,结果发现:棉铃虫与家蚕的遗传距离最近,其次是膜翅目的意大利蜜蜂和丽蝇蛹集金小蜂、鞘翅目的赤拟谷盗、双翅目的黑腹果蝇、冈比亚按蚊、致倦库蚊和埃及伊蚊,最后是外群秀丽隐杆线虫。
     5.棉铃虫Inactive(Iav)基因部分cDNA克隆及序列分析
     利用RT-PCR和RACE的方法从棉铃虫中得到Iav基因部分cDNA序列。该序列蛋白编码区长1209 bp。由该序列推定的蛋白序列由402个氨基酸残基组成。利用DNAStar软件分析,推测蛋白的分子量45.132 kDa,等电点为6.65。对氨基酸序列进行疏水性分析,疏水性平均值为-1.75,说明其氨基酸序列具有亲水性。对蛋白的二级结构进行预测,结果表明该蛋白的二级结构主要为α-螺旋结构。利用生物软件DNAStar分析以下无脊椎动物间的演化关系,结果发现同Nan基因进化树类似:棉铃虫与家蚕的遗传距离最近,其次是蜜蜂,接着是蚊和果蝇,最后是外类群线虫。
The cotton bollworm,Helicoverpa armigera(H(u|¨)bner)(Lepidoptera:Noctuidae) is a videspread polyphagous pest using more than 60 crops as host plants and has high mobility and fecundity.Like other noctuid moths,H.armigera has tympanal ears on the lateroposterior edge of the metathoracic segment,which can detect the echolocation calls of insectivorous bats and have an auditory best frequency at 15-30 kHz with high sensitivity.The male and female of H.armigera are both able to produce ultrasonic signals in the range of 20-40 kHz while flying.In the present study,in order to know that the mechanism of H.armigera hearing,effects of ultrasound from a commercial device, LHC20,on fecundity of adults and development of larvae H.armigera were investigated in laboratory.And Changes in the activities of acetylcholinesterase(ACHE),superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD) were measured in H.armigera after ultrasound stress.And H.armigera Nan and Iav genes were cloned and sequenced. The major results are summarized as following:
     1.Physiological effects of ultrasound on H.armigera
     The number of eggs laid by females of H.armigera in the absence and presence of ultrasound increased gradually with adult age up to 4 days,and then decreased gradually over the next 6 days.Females exposed to ultrasound from the LHC20 device laid most of their eggs between the third and sixth day,whereas those in the control treatment did between the third and seventh day.Ultrasound from devices significantly increased the number of eggs laid by H.armigera.The number of eggs laid by females was increased by 54.5%when exposed to ultrasound from the LHC20 device,respectively,compared to the control treatment.Viability of eggs laid by females in the control treatment was 61.51%,but those exposed to ultrasound from the LHC20 device was 67.64%.However, this difference was not significant.Across all three tests,each female,on an average,had 1.43 spermatophores in the presence of ultrasound and 1.28 spermatophores in the absence of ultrasound.This difference was significant.
     The weight per larva in separate test containers with ultrasound was not significantly than the weight per larva in separate test containers without ultrasound.The larva of H. armigera in the absence and presence of ultrasound had the similar daily development pattern.The pupation rate in separate test containers with ultrasound was significantly than the pupation rate in separate test containers without ultrasound.The eclosion rate in plastic containers with ultrasound was not significantly than the eclosion rate in plastic containers without ultrasound.
     2.Effect of ultrasound on acetylcholinesterase activity in H.armigera
     The AChE activities were significantly elevated compared with the control,after exposure to ultrasound stress for 6 h or 12 h.The maximum AChE activity was 0.434 U/mg prot after 12 h ultrasound stress exposure,and was about 2.6-fold the control.The activity of AChE was only 0.291 U/mg prot after 24 h ultrasound stress exposure,a total increase of 16%.
     The results of the ultrasounds with different lengths of time have significant but different effects on acetylcholinesterase activities in different developmental stages of H. armigera.The enzyme activities were increased in 20 min ultrasound-stress groups in adults,and decreased in 30 and 50 min groups in pupa,whereas they were reduced in 20 min groups and enhanced in 40 and 60 min groups significantly in larvae.
     3.Effect of ultrasound on the activity of antioxidant enzymes in H.armigera
     The SOD activities did not change significantly compared with the control after ultrasound exposure for different lengths of time,and they were between 94%and 106% of the control value.The ultrasound stress induced change in CAT activity related to the different durations.The CAT activity increase significantly at 6 h and 12 h ultrasound stress exposure,and the activity of CAT was about 2.2- and 1.4-fold the control, respectively.However,the CAT activity was significantly declined under 24 h ultrasound stress exposure,and it was only 68%of the control value.The increase was statistically significant under 6 h and 12 h ultrasound stress exposure,and the activities of POD both were 1.2-fold the control value.No significant change in POD activity was observed at 24 h of ultrasound stress exposure,and the POD activity was 98%of the control value.
     In adult,the activities of SOD and CAT changed irregularly but not significantly compared with the control after ultrasound exposure.However,the SOD and CAT activities declined after ultrasound exposure in larvae,and the SOD activity increased after ultrasound exposure in pupae.A significant increase in POD activity in adult H. armigera was observed at 40 min ultrasound exposure.And the POD activity in larvae H. armigera increased significantly after 20 min,30 min,40 min,and 50 min ultrasound exposed,respectively.
     4.Cloning and sequence of cDNA of Nanchung gene from H.armigera
     The cDNA of Nan gene was cloned from black porgy ovary by means of reverse transcriptase and polymerase chain reaction(RT-PCR) and 5' and 3'-rapid amplification of cDNA ends(RACE) analyses.The cDNA is 1020 bp in length and encodes a putative protein of 339 amino acids(m.w.39.191 kD,pI 6.76).The comparison of Nan amino acid sequence with those of nearly of all the other known members of insects showed that Bombyx mori shared the highest identity with H.armigera.
     5.Cloning and sequence of cDNA of Inactive gene from H.armigera
     The cDNA of Iav gene was cloned from black porgy ovary by means of reverse transcriptase and polymerase chain reaction(RT-PCR) and 5' and 3'-rapid amplification of cDNA ends(RACE) analyses.The cDNA is 1209 bp in length and encodes a putative protein of 402 amino acids(m.w.45.132 kD,pI 6.65).The comparison of Nan amino acid sequence with those of nearly of all the other known members of insects showed that Bombyx mori shared the highest identity with H.armigera.
引文
1.程伟霞,柴玉鑫,王进军.四种杀虫剂对两种书虱谷胱甘肽-S转移酶和超氧化物歧化酶的影响.植物保护学报,2006,33(3):333-334.
    2.戴小枫,李世友,郭予元.棉铃虫自然种群生命表研究.植物保护学报,1991,18(3):199-206.
    3.段波,徐天乐.TRP通道与信号转导.生物物理学报,2005,21(4):245-260.
    4.冯从经,戴华国,武淑文.褐飞虱高温条件下应激反应及体内保护酶系活性的研究.应用生态学报,2001,12(3):409-413.
    5.高希武,周序国,王荣京,郑炳宗.棉铃虫乙酰胆碱酯酶(AChE)的体躯分布及部分纯化.昆虫学报(增刊),1998,41:19-25.
    6.郭予元.棉铃虫的研究.北京:中国农业出版社.1998,1-407.
    7.贾美群,蒋小青.诊断性超声对仔鼠学习记忆及海马组织乙酰胆碱酯酶活性的影响.现代医学,2006,34(2):103-106.
    8.靖湘峰.夜行性昆虫的趋光行为及黑光灯对棉铃虫体内酶系的影响.[硕士学位论文].武汉:华中农业大学,2004.
    9.贾毅.声波刺激对菊花根系生长影响的实验研究.[硕士学位论文].重庆:重庆大学,2002.
    10.李军,赵惠燕,赵学达.不同强度紫外线对蚜虫生态学特征及有关酶活性的影响.西北农林科技大学学报(自然科学版),2005,33(4):61-64.
    11.梁之安.听觉感受和辨别的神经机制.上海:上海科技教育出版社.1999,6-7.
    12.刘缠民.不同温度对黄粉虫幼虫存活率和保护酶系的影响.西北林学院学报,2006,21(1):107-109.
    13.马悦颖,李沧海,霍海如,姜廷良.瞬时感受器电位V亚家族离子通道-温度感受器.医学分子生物学杂志,2007,4(1):174-177.
    14.任晓霞.棉铃虫Helicoverpa armigera(H(u|¨)ber)对有机磷杀虫剂靶标抗性机制的研究.[博士学位论文].南京:南京农业大学,2002.
    15.任晓霞,韩召军,王萌长.对久效磷抗性棉铃虫品系的选育及其乙酰胆碱酯酶的研究.南京农业大学学报,2001,24(1):47-50.
    16.孙建和,李兴启,胡吟燕.强脉冲噪声暴露豚鼠耳蜗传出神经乙酰胆碱酯酶(AChE)活性的定量分析.中国体视学与图像分析,2006,11(2):100-104.
    17.王峰.粘虫体内保护酶系统活力的研究(鳞翅目:夜蛾科).[硕士学位论文]. 西安:陕西师范大学,2001.
    18.王厚振,华尧楠,牟吉元.棉铃虫预测预报与综合治理.北京:中国农业出版社.1999,22-46.
    19.王秀娟.声波刺激对菊花遗传物质影响的实验研究,[硕士学位论文].重庆:重庆大学,2002.
    20.魏洪义,杜家伟.拟除虫菊酯类杀虫剂对棉铃虫雌蛾化学通讯系统的影响.植物保护学报,2006,33(3):298-302.
    21.薛耀泉,张志涛,殷柏涛,吴祥兴,陈伟,丁红建,戴小枫,傅强.棉铃虫、粘虫蛾超声信号的采集与分析.自然科学进展,1995,5(5):622-626.
    22.杨亦桦,郑央萍,林燕,吴益东.棉铃虫对辛硫磷的抗性遗传方式.南京农业大学学报,2007,30(2):65-67.
    23.张文俊.稻水象甲Lissorhoptrus oryzophilus Kuschel种群数量扩张机制的研究.[博士学位论文].杭州:浙江大学,2007.
    24.张友军,王光锋,吴青君,徐宝云,柏连阳,朱国仁,张文吉.多杀菌素对不同发育阶段甜菜夜蛾的毒力及其体内超氧化物歧化酶、过氧化氢酶和过氧化物酶的影响.农药学学报,2003,5(3):31-38.
    25.邹芳萍.超声波刺激对绞股蓝生长影响的初步研究.[硕士学位论文].西安:陕西师范大学,2006.
    26.朱蓓薇,张彧,噪声对动物生理机能的影响.环境保护,2000,10:43-45.
    27.Abdollahi M,Ranjbar A,Shadnia S,Nikfar S,Rezaie A.Pesticides and oxidative stress:a review.Med.Sci.Monit.,2004,10(6):141-147.
    28.Acharya L,Fenton M B.Bat attacks and moth defensive behaviour around street lights.Can.J.Zool.,1999,77:27-33.
    29.Acharya L,McNeil J N.Predation risk and mating behavior:the responses of moths to bat-like ultrasound.Behav.Ecol.,1998,9:552-558.
    30.Adams M D,Celniker S E,Holt R A,Evans C A,Gocavne J D,Amanatides P G,Scherer S E,Li P W,Hoskins R A,Galle R F,georqu R A,Lewis S E,Richards S,Ashburner M,Henderson S N,Sutton G G,Wortman J R,Yandell M D,Zhang Q,Chen L X,et al.The genome sequence of Drosophila melanogaster.Science,2000,287:2185-2195.
    31.Adams W B.Intensity characteristics of the noctuid acoustic receptor.J.Gen.Physiol.,1971,58:562-579.
    32.Adams W B.Mechanical tuning of the acoustic receptor of Prodenia Eridania (Cramer)(Noctuidae).J.Exp.Biol.,1972,57:297-304.
    33. Agee H R, Webb J C. Ultrasound for control of bollworms on cotton. J. Econ. Entomoi, 1969, 62: 1322-1326.
    34. Ahmad S. Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. Syst. Ecol., 1992, 20: 269-296.
    35. Ahmad S, Pardini R S. Mechanisms for regulation of oxygen toxicity in phytophagus insects. Free Rad. Biol. Med, 1990, 8: 401-413.
    36. Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R. A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem., 1995, 270: 8730-8738.
    37. Alcock J, Bailey W J. Acoustical communication and the mating system of the Australian whistling moth Hecatesia exultans (Noctuidae: Agaristinae). J. Zool. Lond, 1995, 237: 337-352.
    38. Alcock J, Gwynne D T, Dadour I R. Acoustic signaling, territoriality and mating in whistling moths, Hecatesia thyridion (Agaristidae). J. Insect Behav., 1989, 2: 27-37.
    39. Alonso N, Coro F. Thoracic auditory interneuron with binaural summation by inhibition in a noctuid moth. Naturwissenschaften, 1986, 73: 40-41.
    40. Appleyard M E. Secreted acetylcholinesterase: non-classical aspects of a classical enzyme. Trends Neurosci., 1992, 15: 485-490.
    41. Ashburner M, Misra S, Roote J, Lewis S E, Blazej R, Davis T, Doyle C, Galle R, George R, Harris N, Hartzell G, Harvey D, Hong L, Houston K, Hoskins R, Johnson G, Martin C, Moshrefi A, Palazzolo M, Reese M G, et al., An exploration of the sequence of a 2.9-Mb reqion of the genome of Drosophila melanogaster. the Adh region. Genetics, 1999, 153: 179-219.
    42. Aucoin R R, Philogene B J R, Arnason J T. Antioxidant enzymes as biochemical defenses against phototoxin induced oxidative stress in three species of herbivorous Lepidoptera. Arch. Insect Biochem. Physiol., 1991, 16: 139-152.
    43. Baker J D, Esenwa V, KerNan M. Uncoordinated is a novel protein required for the organization and function of ciliogenic centrioles. Mol. Biol. Cell, 2001, 12(Suppl): 447a.
    44. Barata C, Lekumberri I, Vial-Escale M, Prat N, Porte C. Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregate river basin (NE Spain). Aquat. Toxicol., 2005, 74: 3-19.
    45. Barbehenn R V, Bumgarner S L, Roosen E F, Martin M M. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. J. Insect Physiol, 2001,47: 349-357.
    46. Barber J R, Conner W E. Tiger moth responses to a simulated bat attack: timing and duty cycle. J. Exp. Biol, 2006, 209: 2637-2650.
    47. Barber J R, Conner W E. Acoustic mimicry in a predator-prey interaction. Proc. Natl. Acad. Sci. USA, 2007, 104: 9331-9334.
    48. Barrio R, de Celis J F, Bolshakov S, Kafatos F C. Identification of regulatory regions driving the expression of the Drosophila spalt complex at different developmental stages. Dev. Biol., 1999, 215: 33-47.
    49. Bennet A L. On the mechanism of ultrasound production in Galleria mellonella (L.) (Lepidoptera: Pyralidae)..J. Ent. Soc. S. Afr, 1989, 52: 317-323.
    50. Blackburn L. Good vibrations. J. Exp. Biol., 2007,210:0.
    51. Boekhoff-Falk G. Hearing in Drosophila: development of Johnston's organ and emerging parallels to vertebrate ear development. Developmental Dynamics, 2005, 232: 550-558.
    52. Bohne B, Harding G W. Degeneration in the cochlea after noise damage: primary versus secondary events. Am. J. Otol, 2000, 21: 505-509.
    53. Boyan G, Williams L, Fullard J. Organization of the auditory pathway in the thoracic ganglia of noctuid moths. J. Comp. Neurol., 1990, 295: 248-267.
    54. Brandt L. S E, Greenfield M D. Condition-dependent traits and the capture of genetic variance in male advertisement song. J. Evolution. Biol., 2004, 17: 821-828.
    55. Brandt L S E, Ludwar B C, Greenfield M D. Co-occurrence of preference functions and acceptance thresholds in female choice: mate discrimination in the lesser wax moth. Ethology, 2005, 111: 609-625.
    56. Brown S G, Boettner G H, Yack J E. Clicking caterpillars: acoustic aposematism in Antheraea polyphemus and other Bombycoidea. J. Exp. Biol., 2007, 210: 993-1005.
    57. Buck A, Archangelo L, Dixkens C, Kohlhase J. Molecular cloning, chromosomal localization, and expression of the murine SALL1 ortholog Sall1. Cytogent. Cell Genet., 2000, 89: 150-153.
    58. Caldwell J C, Eberl D F. Towards a molecular understanding of Drosophila hearing. J. Neurobiol, 2002, 53: 172-189.
    59. Cardone B, Fullard J H. Auditory characteristics and sexual dimorphism in the gypsy moth. Physiol. Entomol, 1988, 13: 9-14.
    60. Cerny K. Untersuchungen zur Okophysiologie der Gattung Setina Schrank (Lepidoptera: Arctiidae). (Ph D dissertation). Innsbruck: Universitat Innsbruck. 1990.
    61. Chalfie M, Au M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science, 1989, 243: 1027-1033.
    62. Chan Y-M, Jan Y-N. Conservation of neurogenic genes and mechanisms. Curr. Opin. Neurobioi, 1999, 9: 582-588.
    63. Chen B, Huang J, Wang J, Huang L. Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum. Colloids and Surfaces B: Biointerfaces, 2008, 61: 88-92.
    64. Chung Y D, Zhu J, Han Y-G, KerNan M J. nompA encodes a PNS-specific, ZP domain protein required to connect mechano sensory dendrites to sensory structures. Neuron, 2001,29: 415-428.
    65. Colber H, Smith T, Bargmann C. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci., 1997, 17: 8259-8369.
    66. Collins R, Jang Y, Reinhold K, Greenfield M D. Quantitative genetics of ultrasonic advertisement signalling in the lesser waxmoth Achroia grisella (Lepidoptera: Pyralidae). Heredity, 1999, 83: 644-651.
    67. Conner W E. 'Un chant D'appel amoureux': acoustic communication in moths. J. Exp. Biol, 1999, 202: 1711-1723.
    68. Coro F, Perez M. Intensity coding by auditory receptors in Empyreuma pugione (Lepidoptera, Ctenuchidae). J. Comp. Physiol. A, 1984, 154: 287-296.
    69. Danielson-Francois A M, Kelly J K, Greenfield M D. Genotype X environment interaction for male attractiveness in an acoustic moth: evidence for plasticity and canalization. J. Evolution. Biol, 2006, 19: 532-542.
    70. Dawson J W, Kutsch W, Robertson R M. Auditory-evoked evasive manoeuvres in free-flying locusts and moths. J. Comp. Physiol. A, 2004, 190: 69-84.
    71. Damien C, Chantal V H, Pirouz S, Zerimech F H, Laurence J, Jean M H. Cellular impact of metal trace elements in terricolous lichen Diploschistes muscoorum (Scop.) R. Sant: Identification of oxidative stress biomarkers. Water, Air, and Soil Pollution, 2004, 152: 55-69.
    72. Depledge M H, Fossi M C. The role of biomarkers in environmental assessment (2) Invertebrates. Ecotoxicology, 1994, 3: 161-172.
    73. Demple B. Radical ideas: genetic responses to oxidativestress. Clin. Exp. Pharmacol. Physiol, 1999. 26: 64-68.
    74. Dong P D S, Todi S V, Eberl D F, Boekhoff-Falk G. Drosophila spaltlspalt-related muntants exhibit townes-brocks' syndrome phenotypes. Proc. Natl. Acad. Sci. USA, 2003, 100: 10293-10298.
    75. Dowries G B, Granato M. Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. Dev. Biol, 2004, 270:232-245.
    76. Dringen R, Hamprecht B. Involvement of glutathione perocidase and catlase in the disposal of exogenous hydrogen peroxide in culture astroglial cells. Brain Res., 1997, 759: 67-75.
    77. Eaton J L. Lepidopteran anatomy. New York: Wiley Interscience Press, 1987. 229-237.
    78. Eberl D F. Feeling the vibes: chordotonal mechanisms in insect hearing. Curr. Opin. Neurobiol., 1999, 9: 389-393.
    79. Eberl D F, Hardy R W, KerNan M. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci., 2000, 20: 5981-5988.
    80. Elliott S L, Cullen C F, Wrobel N, KerNan M J, Ohkura H. EB1 is essential during Drosophila development and plays a crucial role in the integrity of chordotonal mechanosensory organs. Mol. Biol. Cell, 2005, 16: 891-901.
    81. Elstob P R, Brodu V, Gould A P. spalt-dependent switching between two cell fates that are induced by the Drosophila EGF receptor. Development, 2001, 128: 723-732.
    82. Engel J E, Wu C-F. Altered mechanoreceptor response in Drosophila bang-sensitive muntans. J. Comp. Physiol. A, 1994, 175: 267-278.
    83. Ernest S, Rauch G-J, Haffter P, Geisler R, Petit C, Nicolson T. Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum. Mol.Genet, 2000, 9: 2189-2196.
    84. Farrel E R, Tosh G, Church E, Munsterberg A E. Cloning and expression of CSAL2, a new member of the spalt gene family in chick. Meck Dev, 2001, 102: 227-230.
    85. Fergestad T, Bostwick B, Ganetzky B. Metabolic disruption in Drosophila bang-sensitive seizure mutants. Genetics, 2006, 173: 1357-1364.
    86. Ferre J, van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol, 2002, 47: 501-533.
    87. Fletcher L E, Yack J E, Fitzgerald T D, Hoy R R. Vibrational communication in the cherry leaf roller caterpillar Caloptilia serotinella (Gracillarioidea: Gracillariidae). J. Insect Behav., 2006, 19: 1-18.
    88. Fridovich I. The biology of oxygen radicals. Science, 1978, 201: 875-879.
    89. Fritzsch B, Beisel K W. Evolution of the nervous system: evolution and development of the vertebrate ear. Brain Res. Bull, 2001, 55: 711-721.
    90. Fritzsch B, Beisel K W. Keeping sensory cells and evolving neurons to connect them to the brain: molecular conservation and novelties in vertebrate ear development. Brain Behav. Evol, 2004, 64: 182-197.
    91. Fritzsch B, Beisel K W, Bermingham N. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. Neuroreport, 2000, 11: R35-R44.
    92. Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene specific oligonucleotide primer. Proc. Nat. Acad. Sci. USA, 1988, 85: 8998-9002.
    93. Fullard J H. Predator and prey: life and death struggles. Bat, 1991, 9: 5-7.
    94. Fullard J H. The neuroethology of sound production in tiger moths (Lepidoptera, Arctiidae) I. Rhythmicity and central control. J. Comp. Physiol. A, 1992, 170: 575-588.
    95. Fullard J H. Auditory changes in noctuid moths endemic to a bat-free habitat. J. Evolution. Biol, 1994, 7: 435-445.
    96. Fullard J H. The evolution of hearing in moths: the ears of Oenosandra boisduvalii (Noctuoidea: Oenosandridae). Aust. J. Zool, 2006, 54: 51-56.
    97. Fullard J H, Dawson J W, Jacobs D S. Auditory encoding during the last moment of a moth's life. J. Exp. Biol, 2003, 206: 281-294.
    98. Fullard J H, Dawson J W, Otero L D, Surlykke A. Bat-deafness in day-flying moths (Lepidoptera, Notodontidae, Dioptinae). J. Comp. Physiol. A, 1997, 181: 477-483.
    99. Fullard J H, Forrest E, Surlykke A. Intensity responses of the single auditory receptor of Notodontid moths: a test of the peripheral interaction hypothesis in moth ears. J. Exp. Biol., 1998, 201: 3419-3424.
    100. Fullard J H, Muma K E, Dawson J W. Quantifying an anti-bat flight response by eared moths. Can. J. Zool, 2003. 81: 395-399.
    101. Fullard J F, Ratcliffe J M, Christie C G. Acoustic feature recognition in the dogbane tiger moth, Cycnia tenera. J. Exp. Biol, 2007, 210: 2481-2488.
    102. Fullard J F, Ratcliffe J M, Jacobs D S. Ignoring the irrerevant: auditory tolerance of audible but innocuous sounds in the bat-detecting ears of moths. Naturwissenschaften, 2007. 95: 241-245.
    103. Fullard J H, Ratcliffe J M, Soutar A R. Extinction of the acoustic startle response in moths endemic to a bat-free habitat. J. Evolution. Biol, 2004, 17: 856-861.
    104. Fullard J H, Ratcliffe J M, ter Hofstede H. Neural evolution in the bat-free habitat of Tahiti: partial regression in an anti-predator auditory system. Biol Lett, 2007, 3: 26-28.
    105. Fullard J H, Simmons J A. Saillant P A. Jamming bat echo location: the dogbane tiger moth Cycnia tenera times its clicks to the terminal attack calls of the big brown bat Eptesicus fuscus. J. Exp. Biol, 1994, 194: 285-298.
    106. Fullard J H, Yack J E. The evolutionary biology of insect hearing. Tree, 1993, 8: 248-252.
    107. Ganetzky B, Wu C F. Indirect suppression involving behavioral mutants with altered nerveexcitability in Drosophila melanogaster. Genetics, 1982, 100: 597-614.
    108. Gao X W, Zhou X G, Zhen B Z. A comparison of sensitivity to inhibitor among acetylcholinesterase (AChE) molecular forms of resistant and susceptible strains in Helicoverpa armigera. Entomol Sin., 2001, 8(1): 49-54.
    109. Gibson F, Walsh J, Mburu P, Varela A, Brown K A, Antonio M, Beisel K W, Steel K P, Brown S D M. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature, 1995, 374: 62-64.
    110. Gopfert M C, Jorg T A, Nadrowski B, Kamikouchi A. Specification of auditory sensitivity by Drosophila TRP channels. Nat. Neurosci., 2006, 9: 999-1000.
    111. Gopfert M C, Surlykke A, Wasserthal L T. Tympanal and atympanal 'mouth-ears' in hawkmoths ( Sphingidae ). P. Roy. Soc. B, 2002, 269: 89-95.
    112. Gopfert M C, Wasserthal L T. Hearing with the mouthparts: behavioural responses and the structural basis of ultrasound perception in acherontiine hawkmoths. J. Exp. Biol, 1999a, 202: 909-918.
    113. Gopfert M C, Wasserthal L T. Auditory sensory cells in hawkmoths: identification, physiology and structure. J. Exp. Biol, 1999b, 202: 1579-1587.
    114. Gong Z, Son W, Chaung Y D, Kim J, Shin D W, McClung C A, Lee Y, Lee H W, Chang D J, Kaang B K, Cho H, Oh U, Hirsh J, KerNan M J, Kim C. Two interdependent TRPV channel subunits, Inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci, 2004, 24: 9059-9066.
    115. Greenfield M D, Baker M. Bat avoidance in non-aerial insects: the silence response of signaling males in an acoustic moth. Ethology, 2003,109: 427-442.
    116. Greig E I, Greenfield M D. Sexual selection and predator avoidance in an acoustic moth: discriminating females take fewer risks. Behaviour, 2004, 141: 799-815.
    117. Gunning R V, Moores G D, Devonshire A L. Insensitive Acetylcholinesterase and Resistance to Thiodicarb in Australian Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Pestic. Biochem. Phys., 1996, 55: 21-28.
    118. Gupta B P, Rodrigues V. Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes Cells, 1997, 2: 225-233.
    119. Gunthorpe M J, Benham C D, Randall A, Davis J B. The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol. Sci., 2002, 23: 183-191.
    120. Han Y-G, KerNan M J. KerNan M J. NOMPB, the Drosophila homolog of an intraflagellar transport (IFT) protein, is required for differentiation of ciliated sensory neurons but not for spermatogenesis. Mol. Biol. Cell, 2001, 12(Suppl): 445a.
    121. Hassan B A, Bellen H J. Doing the Math: is the mouse a good model system for fly development? Genes. Dev., 2000, 14: 1852-1865.
    122. Hasson T. Unconventional myosins, the basis for deafness in mouse and man. Am. J. Hum. Genet., 1997, 61: 801-805.
    123. Haycraft C J, Swoboda P, Taulman P D, Thomas J H, Yoder B K. The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development, 2001, 128: 1493-1505.
    124. Hay-Roe M M, Mankin R W. Wing-click sounds of Heliconius cydno alithea (Nymphalidae: Heliconiinae) butterflies. J. Insect Behav, 2004, 17: 329-335.
    125. Heckel D G, Bryson P K, Brown T M. Linkage analysis of insecticide-resistant acetylcholinesterase in Heliothis virescens. J. Hered, 1998, 89: 71-78.
    126. Heller K-G., Krahe R. Sound production and hearing in the pyralid moth Symmoracma minoralis. J. Exp. Biol, 1994, 187: 101-111.
    127. Hermes-Lima M, Zenteno-Savin T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp. Biochem. Phys. C, 2002,133:537-556.
    128. Hintze-Podufl C, Hermanni G. The development of the tympanic organs of wax moth species and their inverted scolopidia (Lepidoptera: Pyralidae: Galleriinae). Entomal Gen, 1996,20: 195-201.
    129. Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443: 931-949.
    130. Hosoi H, Imaizumi S, Sakaguchi T, Tonoike M, Murata K. Activation of the auditory cortex by ultrasound. Lancet, 1998, 351: 496-497.
    131. Hoy R R, Robert D. Tympanal hearing in insects. Annu. Rev. Entomol, 1996, 41: 433-450.
    132. Hristov N I, Conner W E. Sound strategy: acoustic aposematism in the bat-tiger moth arms race. Naturwissenschaften, 2005, 92: 164-169.
    133. Huang F, Subramanyam B. Behavioral and reproductive effects of ultrasound on the Indian meal moth, Plodia interpunctella. Entomol. Exp. Appl., 2004, 113: 157-164.
    134. Huang F. Subramanyam B, Taylor R. Ultrasound affects spermatophore tansfer, laval numbers, and larval weight of Plodia interpunctella (Hübner). J. Stored Prod. Res., 2003, 39: 413-422.
    135. Jang Y, Collins R D, Greenfield M D. Variation and repeatability of ultrasonic sexual advertisement signals in Achroia grisella (Lepidoptera: Pyralidae). J. Inssect Behav., 1997, 10: 87-98.
    136. Jang Y, Greenfield M D. Ultrasonic communication and sexual selection in wax moths: female choice based on energy and asynchrony of male signals. Anim. Behav., 1996,51:1095-1106.
    137. Jang Y, Greenfield M D. Quantitative genetics of female choice in an ultrasonic pyralid moth, Achroia grisella: variation and evolvability of preference along multiple dimensions of the male advertisement signal. Heredity, 2000, 84: 73-80.
    138. Jarman A P, Ahmed I. The specificity of proneural genes in determining Drosophila sense organ identity. Mech. Dev., 1998, 76: 117-125.
    139. Jarman A P, Grau Y, Jan L Y, Jan Y N. atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell, 1993, 73: 1307-1321.
    140. Jarman A P, Sun Y, Jan L Y, Jan Y N. Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development, 1995,121:2019-2030.
    141. Jia F U, Greenfield M D, Collins R D. Ultrasonic signal competition among male wax moths. J. Insect Behav., 2001, 14: 19-33.
    142. Joanisse D R, Storey K B. Oxidative Stress and Antioxidants in overwintering larvae of cold-hardy goldenrod gall insects. J. Exp. Biol, 1996,199: 1483-1491.
    143. Joanisse D R, Storey K B. Oxidative Stress and Antioxidants in Stress and Recovery of Cold-hardy Insects. Insect Biochem. Molec. Biol, 1998, 28(1): 23-30.
    144. Jones G, Barabas A, Elliott W, Parsons S. Female greater wax moths reduce sexual display behavior in relation to the potential risk of predation by echo locating bats. Behav. Ecol, 2001, 13: 375-380.
    145. Jones G, Waters D A. Moth hearing in response to bat echolocation calls manipulated independently in time and frequency. P. Roy. Soc. B, 2000, 267: 1627-1632.
    146. Judd B H, Shen M W, Kaufman T C. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics, 1972, 71: 139-156.
    147. KerNan M, Cowan D, Zuker C. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron, 1994, 12:1195-1206.
    148. Kim J, Chung Y D, Park D Y, Choi S, Shin D W, Soh H, Lee H W, Son W, Yim J, Park C S, KerNan M J, Kim C. A TRPV family ion channel required for hearing in Drosophila. Nature, 2003, 424: 81-84.
    149. Kjellberg A S. Behavioral and psychophysiological effects of noise. Scand. J. Work Environ. Health., 1990, 16: 29-38.
    150. Kohlhase J, Hausmann S, Stojmenovic G, Dixkens C, Bink K, Schulz-Schaeffer W, Altmann M, Engel W. SALL3, a new member of the human spalt-like gene family, maps to 18q23. Genomics, 1999, 62: 216-222.
    151.Kohlhase J,Schuh R,Dowe G,K(u|¨)hnlein R P,J(a|¨)ckle H,Schroeder B,Schulz-Schaeffer W,Kretzschmar H A,K(o|¨)hler A,M(u|¨)ller U,Raab-Vetter M,Burkhardt E,Engel W,Stick R.Isolation,characterization,and organ-specific expression of two novel human zinc finger genes related to the Drosophila gene spalt.Genomics,1996,38:291-298.
    152.K(u|¨)hnlein R P,Bronner G,Taubert H,Schuh R.Regulation of Drosophila spalt gene expression.Mech.Dev.,1997,66:107-118.
    153.Kuebler D,Zhang H,Ren X,Tanouye M A.Genetic suppression of seizure susceptibility in Drosophila.J.Neurophysiol.,2001,86:1211-1225.
    154.Lapshin D N,Fyodorova M V.The functions of the B-cell in the tympanic organs of nocturnal moths(Lepidoptera,Noctuoidea).Sensornye Systemy,2000,14:148-155.(In Russian)
    155.Lechtenberg R.Acoustic response of the B-cell in noctuid moths,J.Insect Physiol.,1971,17:2395-2408.
    156.Lee J,Wu C F.Electroconvulsive seizure behavior in Drosophila:analysis of the physiological repertoire underlying a stereotyped action pattern in bang-sensitive mutants,J.Neurosci.,2002,22:11065-11079.
    157.Lewis F P,Fullard J H.Neurometamorphosis of the ear in the gypsy moth,Lymantria dispar,and its homologue in the earless forest tent caterpillar moth,Malacosoma disstria.J.Neurobiol.,1996,31:245-262.
    158.Lewis F P,Fullard J H,Morrill S B.Auditory influences on the flight behaviour of moths in a Nearctic site.Ⅱ.Flight times,heights,and erraticism.Can.J.Zool.,1993,71:1562-1568.
    159.Li F,Han Z J.Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid,Aphis gossypii Glover.Insect Biochem.Mol.Biol.,2004,34:397-405.
    160.Li L,Liu X,Guo Y,Ma E.Activity of the enzymes of the antioxidative system in cadmium-treated Oxya chinensis(Orthoptera acridoidae).Environ.Toxicol.Phar.,2005,20:412-416.
    161.Li X,Berenbaum M R,Schuler M A.Cytochrome P450 and actin genes expressed in Helicoverpa Zea and Helicoverpa armigera:paralogy/orthology indentification,gene conversion and evolution.Insect Biochem.Mol.Biol.,2002,32:311-320.
    162.Liedtke W,Choe Y,Marti-Renom M A,Bell A M,Denis C S,Sali A,Hudspeth A J,Friedman J M,Heller S.Vanilloid receptor-related osmotically activated channel(VR-OAC),a candidate vertebrate osmoreceptor.Cell,2000,103:525-535.
    163.Lu B Z.The insect 'ear',its molecular basis and evolution.J.Genet.Molec.Biol.,2004,15:82-87.
    164.Manikandan S,Devi R S.Antioxidant property of α-asarone against noise-stress-induced changes in different regions of rat brain.Pharmacol.Res.,2005,52:467-474.
    165.Manikandan S,Padma M K,Srikumar R,Parthasarathy N J,Muthuvel A,Devi R S.Effects of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration and free radical-inbalance in hippocampus and medial prefrontal cortex.Neurosci.Lett.,2006,399:17-22.
    166.Mason A C,Faure P A.The physiology of insect auditory afferents.Microsc.Res.Techniq.,2004,63:338-350.
    167.Melanson S W,Yun C H,Pezzementi M L,Pezzementi L.Characterization of acetylcholinesterase activity from Drosophila melanogaster.Comp Biochem Physiol C,1985,81:87-96.
    168.Muma K E,Fullard J H.Persistence and regression of hearing in the exclusively diurnal moths,Trichodezia albovittata(Geometridae) and Lycomorpha pholus (Arctiidae).Ecol.Entomol.,2004,29:718-726.
    169.Milius S.Butterfly ears suggest a bat influence.Sci.News,2000,157:54.
    170.Miller L A.Arctiid moth clicks can degrade the accuracy of range difference discrimination in echolocating big brown bats,Eptesicus fuscus.J.Comp.Physiol.A,1991,168:571-579.
    171.Miller L A,Surlykke A.How some insects detect and avoid being eaten by bats:tactics and countertactics of prey and predator.Bioscience,2001,51:570-581.
    172.Mittapalli O,Neal J J,Shukle R H.Antioxidant defense response in a galling insect.Proc.Natl.Acad.Sci.USA,2007,104:1889-1894.
    173.Nakano R,Ishikawa Y,Tatsuki S,Surlykke A,Skals N,Takanashi T.Ultrasonic courtship song in the Asian corn borer moth,Ostrinia furnacalis.Naturwissenschaften,2006,93:292-296.
    174.Nath B S,Kumar R P S.Toxic impact of organophosphorus insecticides on acetylcholinesterase activity in the silkworm,Bombyx mori L..Ecotoxicol.Environ.Saf,1999,42:157-162.
    175. Nemoto H. Mechanism of resurgence of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Jpn. Agr. Res. Q., 1993, 27(1): 27-32.
    176. Nene V, Wortman J R, Lawson D, Haas B. Kodira C, Tu Z J, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov E M, Lobo N F, Campbell K S, Brown S E, Bonaldo M F, Zhu J, Sinkins S P, Hogenkamp D G, Amedeo P, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science, 2007, 316: 1718-1723.
    177. Niwa N, Hiromi Y, Okabe M. A conserved developmental program for sensory organ formation in Drosophila melanogaster. Nat. Genet., 2004, 36: 293-297.
    178. Norman A P, Jones G. Size, peripheral auditory tuning and target strength in noctuid moths. Physiol. Entomol, 2000, 25: 346-353.
    179. Ott T, Kaestner K H, Monaghan A P, Schütz G. The mouse homolog of the region specific homeotic gene spalt of Drosophila is expressed in the developing nervous system and in mesoderm-derived structures. Mech. Dew, 1996,56:117-128.
    180. Pavey C R, Burwell C J. Cohabitation and predation by insectivorous bats on eared moths in subterranean roosts. J. Zool, 2005,265: 141-146.
    181. Payne R S, Roeder K D, Wallman J. Directional sensitivity of the ears of noctuid moths. J. Exp. Biol, 1966. 44: 17-31.
    182. Pazour G J, Dickert B L, Vucica Y, Seeley E S, Rosenbaum J L, Witman G B, Cole D G. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J. Cell Biol, 2000,151:709-718.
    183. Pedersen S F, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium, 2005, 38: 233-252.
    184. Petit C. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genom. Hum. Genet, 2001, 2: 271-279.
    185. Portilla N, Coro F, Otazo A, Perez M, Alonso N. Mating behavior and auditory information flow in an aretiid moth. Naturwissenschaften, 1987, 74: 503-505.
    186. Prakash S, Caldwell J C, Eberl D F, Clandinin T R. Myosin VIIA defects, which underlie the Usher 1B Syndrome in humans, lead to deafness in Drosophila. Curr. Biol, 2005, 15: 862-868.
    187. Raghavanpillai R, Bobbi L H, Duraiswamy N, Bianca M C. Rapid PCR-based method to directional pull out longer cDNA fragment from cDNA libraries. Biotechniques, 1995, 18: 37-38.
    188. Ratcliffe J M, Fullard J H. The adaptive function of tiger moth clicks againt echolocating bats: an experimental and synthetic approach. J. Exp. Biol, 2005, 208: 4689-4698.
    189. Roeder K D. Auditory system of noctuid moths. Science, 1966,212: 94-102.
    190. Roeder K D. Techniques developed in the course of studies of the acoustic systems of moths. Medford: Tufts University Press, 1973. 1-29.
    191. Roeder K D. Nerve cells and insect behavior (revised edition). Cambridge: Harvard University Press, 1998. 35-98.
    192. Rodriguez R L, Greenfield M D. Genetic variance and phenotypic plasticity in a component of female mate choice in an ultrasonic moth. Evolution, 2003, 57: 1304-1313.
    193. Rodriguez R L, Greenfield M D. Behavioural context regulates dual function of ultrasonic hearing in lesser waxmoths: bat avoidance and pair formation. Physiol. Entomol, 2004, 29: 159-168.
    194. Rodriguez R L, Schul J, Cocroft R B, Greenfield M D. The contribution of tympanic transmission to fine temporal signal evaluation in an ultrasonic moth. The J. Exp. Biol, 2005, 208: 4159-4165.
    195. Rosenberry T L. Acetyltransferase. Adv. Enzymol, 1975, 43: 103-218.
    196. Royden C S, Pirrotta V, Jan L Y. The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell, 1987, 51: 165-173.
    197. Rusten T E, Cantera R, Urban J, Technau G, Kafatos F C, Barrio R. Spalt modifies EGFR-mediated induction of chordotonal precursors in the embryonic PNS of Drosophila promoting the development of oenocytes. Development, 2001,128:711-722.
    198. Rydell J, Kaerma S, Hedelin H, Skals N. Evasive response to ultrasound by the crepuscular butterfly Manataria maculata. Naturwissenschaften, 2003, 90: 80-83.
    199. Rydell J, Lancaster W C. Flight and thermoregulation in moths were shaped by predation from bats. Oikos, 2000, 88: 13-18.
    200. Rydell J, Skals N, Surlykke A, Svensson M. Hearing and bat defence in geometrid winter moths. P. Roy. Soc. B, 1997, 264: 83-88.
    201. Samson J, Sheeladevi R, Ravindran R, Senthilvelan M. Effect of noise stress on free radical scavenging enzymes in brain. Environ. Toxicol. Phar., 2005, 20: 142-148.
    202. Samson J, Sheeladevi R, Ravindran R, Senthilvelan M. Biogenic amine changes in brain regions and attenuating action of Ocimum sanctumin noise exposure. Pharmacology, Biochemistry and Behavior, 2006, 83: 67-75.
    203. Samson J, Sheeladevi R, Ravindran R, Senthilvelan M. Stress response in rat brain after different durations of noise exposure. Neuroscience Research, 2007, 57: 143-147.
    204. Sanderford M V, Conner W E. Courtship sounds of the polka-dot wasp moth, Syntomeida epilais. Naturwissenschaften, 1990, 77: 345-347.
    205. Sanderford M V, Conner W E. Acoustic courtship communication in Syntomeida epilais Wlk. (Lepidoptera: Arctiidae, Ctenuchinae). J. Insect Behav., 1995, 8: 19-31.
    206. Sanderford M V, Coro F, Conner W E. Courtship behavior in Empyreuma sffinis Roths. (Lepidoptera, Arctiidae, Ctenuchinae): acoustic signals and tympanic organ response. Naturwissenschaften, 1998, 85: 82-87.
    207. Schaefer B C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Analytical. Biochemistry, 1995, 227: 255-273.
    208. Schulze W, Schul J. Ultrasound avoidance behaviour in the bushcricket Tettigonia viridissima (Orthoptera: Tettigoniidae). J. Exp. Biol, 2001, 733-740.
    209. Sears K E, Behringer R R, Rasweiler IV J J, Niswander L A. Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc. Natl. Acad. Sci. USA 2006, 103: 6581-6586.
    210. Sembulingam K, Sembulingam P, Namasivayam A. Effect of acute noise stress on acetylcholinesterase activity in discrete areas of rat brain. Ind J Med Sci, 2003, 57(11): 487-492.
    211. Shah Z H, O'Dell K M, Miller S C, An X, Jacobs H T. Metazoan nuclear genes for mitoribosomal protein S12. Gene, 1997, 204: 55-62.
    212. Shannon M P, Kaufman T C, Shen M W, Judd B H. Lethality patterns and morphology of selected lethal and semi-lethal mutations in the zeste-white region of Drosophila melanogaster. Genetics, 1972, 72: 615-638.
    213. Sies H. Biochemistry of oxidative stress. Angew. Chem.Int. Ed. Engl, 1986, 25: 1058-1071.
    214. Skals N, Plepys D, El-Sayed A M, Lofstedt C, Surlykke A. Quantitative analysis of the effects of ultrasound from an odor sprayer on moth flight behavior. J. Chem. Ecol., 2003, 29: 71-82.
    215. Skals N, Plepys D, Lofstedt C. Foraging and mate-finding in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae) under the risk of predation. Oikos, 2003, 102: 351-357.
    216. Skals N, Surlykke A. Sound production by abdominal tymbal organs in two moth species: the green silver-line and the scarce silver-line (Noctuoidea: Nolidae: Chloephorinae). J. Exp. Biol, 1999, 202: 2937-2949.
    217. Skals N, Surlykke A. Hearing and evasive behaviour in the greater wax moth, Galleria mellonella (Pyralidae). Physiol. Entomol, 2000, 25: 354-362.
    218. Spangler H G. Moth hearing, defense, and communication. Annu. Rev. Entomol, 1988,33:59-81.
    219. Srinivas R, Udikeri S S, Jayalakshmi S K, Sreeramulu K. Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comp. Biochem. Phys. C, 2004, 137: 261-269.
    220. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant T D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol., 2000, 2: 695-702.
    221. Surlykke A. Hearing in Notodontid moths: a tympanic organ with a single auditory neurone. J. Exp. Biol., 1984, 113: 323-335.
    222. Surlykke A, Filskov M. Hearing in geometrid moths. Naturwissenschaften, 1997, 84: 356-359.
    223. Surlykke A, Filskov M., Fullard J H, Forrest E. Auditory relationships to size in noctuid moths: bigger is better. Naturwissenschaften. 1999, 86: 238-241.
    224. Surlykke A, Gogala M. Stridulation and hearing in the noctuid moth Thecophorafovea (Tr.). J. Comp. Physiol. A., 1986, 159: 267-273.
    225. Surlykke A, Larsen ON, Michelsen A. Temporal coding in the auditory receptor of the moth ear. J. Comp. Physiol A., 1988, 162: 367-374.
    226. Surlykke A, Miller L A. The influence of arctiid moth clicks on bat echo location: jamming or warning? J. Comp. Physiol. A, 1985, 156: 831-843.
    227. Surlykke A, Yack J E, Spence A J, Hasenfuss I. Hearing in hooktip moths (Drepanidae: Lepidoptera). J. Exp. Biol, 2003, 206: 2653-2663.
    228. Suzuki M, Mizuno A, Kodaira K, Imai M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem., 2003, 278: 22664-22668.
    229. Svensson A M, Rydell J. Mercury vapour lamps interfere with the bat defence of tympanate moths (Operophtera spp; Geometridae). Anim. Behav., 1998, 55: 223-226.
    230. Svensson A M, Lofstedt C, Skals N. The odour makes the difference: male moths attracted by sex pheromones ignore the threat by predatory bats. Oikos, 2004, 104:91-97.
    231. Svensson G P, Skals N, Lofstedt C. Disruption of the odour-mediated mating behaviour of Plodia interpunctella using high-frequency sound. Entomol. Exp. Appl, 2003, 106:187-192.
    232. Swihart S L. hearing in butterflies (nymphalidae: Heliconius, Ageronia). J. Insect PhysioL, 1967, 13: 467-476.
    233. Tabuchi K, Suzuki M, Mizuno A, Hara A. Hearing impairment in TRPV4 knockout mice. Neurosci. Lett., 2005, 382: 304-308.
    234. Takacs S, Mistal C, Gries G. Communication ecology of webbing clothes moth: attractiveness and characterization of male-produced sonic aggregation signals. J. Appl. Entomol., 2003, 127: 127-133.
    235. Tang F, Yue Y D, Hua R M. The role of phosphotase and acetylcholinesterase in resistance to phoxim in Helicoverpa armigera. Entomol. Sin., 2001, 8(1): 55-62.
    236. Tavernarakis N, Driscoll M. Molecular moldeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. PhysioL, 1997, 59: 659-689.
    237. Toougu V. Acetylocholinesterase: mechanism of catalysis and inhibition. Curry. Med. Chem-Central Nervous System Agents, 2001, 1: 155-170.
    238. Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barsted R, Maricq A, Bargmann C. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron, 2002,35:307-318.
    239. Todi S V, Franke J D, Kiehart D P, Eberl D F. Myosin VIIA defects, which underlie the usher 1B syndrome in humans, lead to deafness in Drosophila. Curr. Biol, 2005, 15:862-868.
    240. Todi S V, Sharma Y, Eberl D F. Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microsc. Res. Tech., 2004, 63: 388-399.
    241.Toivonen J M,O'Dell K M C,Petit N,Irvine S C,Knight G,Lehtonen M,Longgmuir M,Luoto K,Touraille S,Wang Z,Alziari S,Shah Z H,Jacobs H T.technicial knockout,a Drosophila model of mitochondrial deafness.Genetics,2001,159:241-254.
    242.Tougaard J.Energy detection and temporal integration in the noctuid A1auditory receptor.J.Comp.Physiol.A,1996,178:669-677.
    243.Tougaard J.Detection of short pure-tone stimuli in the noctuid ear:what are temporal integration and integration time all about? J.Comp.Physiol.A,1998,183:563-572.
    244.Tougaard J,Casseday J H,Covey E.Arctiid moths and bat echolocation:broad-band clicks interfere with neural responses to auditory stimuli in the nuclei of the lateral lemniscus of the big brown bat.J.Comp.Physiol.A,1998,182:203-215.
    245.Treat A E,Roeder K D.A nervous element of unknown function in the tympanic organ of moths.J.Insect Physiol.,1959,3:262-270.
    246.Van Campen L E,Murphy W J,Franks J R,Mathias P I,Toraason M A.Oxidative DNA damage is associated with intense noise exposure in the rat.Hear.Res.,2002,164:29-38.
    247.Vorontsov D D,Lapshin D N.Frequency tuning of the auditory system of acoustically active noctuids(Noctuidae,Lepidoptera).Dokl.Biol.Sci.,2002,386:415-417.
    248.Walker R G,Willingham A T,Zuker C S.A Drosophila mechanosensory transduction channel.Science,2000,287:2229-2234.
    249.Wang V,Hassan B,Bellen H,Zoghbi H.Drosophila atonal fully rescues the phenotype of Mathl null mice:new functions evolve in new cellular contexts.Curr.Biol.,2002,17:1611-1616.
    250.Wang Y,Oberley L W,Murhammer D W.Antioxidant defense systems of two lipidopteran insect cell lines.Free Radicall Bio.Med.,2001,30:1254-1262.
    251.Waters D A.The peripheral auditory characteristics of noctuid moths:information encoding and endogenous noise.J.Exp.Biol.,1996,199:857-868.
    252.Waters D A.Bats and moths:what is there left to learn? Physiol.Entomol.,.2003,28:237-250.
    253.Waters D A,Jones G.The peripheral auditory characteristics of noctuid moths:responses to the search-phase echolocation calls of bats.J.Exp.Biol.,1996,199:847-856.
    254.Weil D,Blanchard S,Kaplan J,Guilford P,Gibson F,Walsh J,Mburu P,Varela A,Levilliers J,Weston M D,Kelley P M,Kimberling W J,Wagenaar M,Levi-Acobas F,Larget-Piet D,Munnich A,Steel K P,Brown S D M,Petit C.Defective myosin ⅦA gene responsible for usher syndrome type 1B.Nature,1995,374:60-61.
    255.Weirich G F,Collins A M,Williams V P.Antioxidant enzymes in the honey bee,Apis mellifera.Apidologie,2001.33:3-14.
    256.Windmill J F C,Fullard J H,Robert D.Mechanics of a 'simple' ear:tympanal vibrations in noctuid moths.J.Exp.Biol.,2007,210:2637-2648.
    257.Wissenbach U,Bodding M,Freichel M,Flockerzi V.Trp12,a novel Trp related protein from kidney.FEBS Lett.,2000,485:127-134.
    258.Wyttenbach R A,Farris H E.Psychophysics in insect hearing.Microsc.Res.Tech.,2004,63:375-387.
    259.Yack J E.Janus Green B as a rapid,vital stain for peripheral nerves and chordotonal organs in insects.J.Neurosci.Methods,1993,49:17-22.
    260.Yack J E.The structure and function of auditory chordotonal organs in insects.Microsc.Res.Tech.,2004,63:315-337.
    261.Yack J E,Fullard J H.The mechanoreceptive origin of insect tympanal organs:a comparative study of similar nerves in tympanate and atympanate moths.J.Comp.Neurol.,1990,300:523-534.
    262.Yack J E,Fullard J H.What is an insect ear? Ann.Entomol.Soc.Am.,1993,86:677-682.
    263.Yack J E,Fullard J H.Ultrasoic hearing in nocturnal berterflies.Nature,2000,403:265-266.
    264.Yack J E,Otero L D,Dawson J W,Surlykke A,Fullard J H.Sound production and hearing in the blue cracker butterfly Hamadryas feronia(Lepidoptera,Nymphalidae) from Venezuela.J.Exp.Biol.,2000,203:3689-3702.
    265.Yack J E,Smith M L,Weatherhead P J.Caterpillar talk:acoustically mediated territoriality in larval Lepidoptera.Proc.Natl.Acad.Sci.USA,2001,98:11371-11375.
    266.Yager D D.Structure,development,and evolution of insect auditory systems.Microsc.Res.Tech.,1999,47:380-400.
    267.Yang S,Huang Y.Biological effect of paramecium in diffused ultrasonic fields.Ultrasonics,2002,39:525-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700