亚低温后适应对树鼩局灶性脑缺血VEGF表达及神经元抗凋亡机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]观察树鼩血栓性脑缺血亚低温后适应对神经元、神经元微环境及其对皮层梗死面积的影响,研究缺血亚低温后适应对脑缺血保护效应,探讨血管内皮生长因子(endothelial vascular growth factor,VEGF)在基因水平、蛋白水平及受体在树鼩脑缺血以及低温后适应中的作用,揭示VEGF的表达调控在脑缺血亚低温后适应中的作用机制。
     [方法]采用光化学反应诱导树鼩局灶性脑缺血,建立动物模型,在造模后6h采用局部降温的方法,使树鼩脑部温度降至31±0.5℃,并维持1h以建立树鼩局灶性脑缺血亚低温后适应组;使用外源性VEGF抗体分别在脑缺血造模结束后即刻、6h后注入树鼩小脑延髓池,以复制树鼩局灶性脑缺血VEGF抗体注射模型,如同时使用上述两种方法,则可建立脑缺血VEGF注射后亚低温后适应(Hypothermia Post Condition,HPC)模型,分别应用TUNEL(Terminal deoxynucleotidy transferase-mediated uridine5'-triphosphate-biotin nick end labeling,TUNEL)染色法、HE染色、TTC(2,3,5-triphenyltetrazolium chloride)染色、海马区微透析技术探讨缺血组、缺血后亚低温后适应组、缺血VEGF抗体注射组的缺血VEGF注射后亚低温后适应组各脑区神经细胞死亡改变、皮层梗死面积的变化及海马区神经元微环境的改变;应用RT-PCR(Reverse transcription-Polymerase Chain Reaction)技术、ELISA(Enzymelinked-immuno-sorbent assay)技术,研究VEGFmRNA、VEGF蛋白质及其受体在脑缺血后亚低温后适应中的变化。
     [结果]脑缺血后,缺血组与VEGF抗体组、HPC组及联合使用VEGF抗体及HPC组的VEGFmRNA、VEGF蛋白、VEGF受体(VEGFR-1\VEGFR-2)及海马CA1区、皮层神经细胞坏死与凋亡、海马局部神经元微环境及皮层梗死面积上均有显著性差异。在VEGFmRaNA检测中提示:海马VEGFmRNA含量较皮层高(P<0.05),脑缺血后HPC使皮层VEGFmRNA于24h时含量明显增加(P<0.05),72h时表达下降,而使用VEGF抗体组VEGFmRNA于72h时明显增加(P<0.05);海马VEGFmRNA含量则表现为,HPC组缺血侧mRNA含量24h时低于缺血组(P<0.05),并持续至72h;VEGF抗体组能明显减少对侧VEGFmRNA的含量;VEGF在海马及皮层中含量的检测提示:在脑缺血后皮层和海马中,VEGF的含量24h时均明显增加(P<0.05),随时间延长有所下降(P<0.05),HPC组在缺血后24h时显著增(P<0.05),72h时下降与缺血组72h时无差异(P>0.05),VEGF抗体组能明显抑制HPC及缺血所致的VEGF含量增加;TTC染色显示:VEGF抗体组皮层梗死面积显著增加(P<0.05)达80%,HPC可显著降低皮层梗死面积(P<0.05)达19.67%;海马局部微透析液离子分析提示:缺血后海马局部神经元细胞外液中Na~+浓度显著下降(P<0.05),K~+浓度明显上升(P<0.05),Ca~(2+)显著下降(P<0.05);HPC在24h有助于抑制上述变化(P<0.05),72h使上述变化加剧(P<0.05)。HE染色提示:脑缺血后海马CA1区神经元坏死数明显增加(P<0.05),HPC于24h时可使坏死细胞数显著下降(P<0.05),但可增加72h的坏死细胞数,VEGF抗体组则在24h、72h均可增加缺血侧坏死细胞数;缺血同样可以使皮层缺血区神经细胞坏死数显著增加(P<0.05),但对侧区除VEGF抗体组,神经细胞坏死仅出现于72h,其中24h时HPC可明显减少皮层神经细胞坏死,但72h可增加神经细胞坏死。TUNEL染色提示:脑缺血后缺血侧海马CA1区神经元凋亡24h时显著增加(P<0.05),随时间延长凋亡细胞减少,但HPC组72h时神经元凋亡增加,72h HPC缺血+VEGF抗体组海马神经元凋亡显著低于HPC缺血组(P<0.05);皮层神经细胞表现为:HPC可显著减少缺血后24h皮层神经细胞凋亡(P<0.05),但随时间延长凋亡细胞数增加(P<0.05),而缺血组,皮层神经细胞凋亡数随时间延长逐渐减少(P<0.05)。ELISA检测VEGFR-1含量结果显示:缺血后VEGFR-1的含量显著升高(P<0.05),且缺血侧低于对侧(P<0.05);同时,VEGFR-1的含量于24h达高峰,HPC可增加缺血后VEGFR-1的含量。VEGFR-2含量检测结果示:缺血后VEGFR-2含量在脑和海马组织中显著增加(P<0.05),并随时间延长持续增加(P<0.05),HPC可显著增加VEGFR-2的含量(P<0.05)。
     [结论]①树鼩局灶性脑缺血HPC早期具有上调VEGF表达,抑制神经元凋亡和坏死以及减少梗死面积的作用。其机制可能与VEGF通过多条途径维持和改善神经元微环境的脑保护效应有关。②VEGF蛋白与VEGFmRNA的相互关系表明,HPC组缺血早期VEGF表达增强,而HPC后期VEGF表达下降可能是VEGF合成过程中的负反馈调节的结果,以致胞浆内mRaNA转录减少。③抑制VEGF作用可改变脑缺血后HPC的脑保护作用,证实HPC的脑保护作用与VEGF表达上调有关。
OBJECTIVE:To observe the changes of the neurons microenvironment,as weU as the effect of infarction area resulted fi'om hypothermia postcondition after thrombotic cerebral ischemia in Tree Shrews,to study effect on hypothermia postcondition cerebral ischemia.We explore the effect of VEGFmRNA,VEGF protein and its receptor on cerebral ischemia and hypothermic postcondition,and exposes the mechanism of VEGF expression and modulate on hypothermia postcondition.
     METHODS:Cerebral ischemia was induced by photochemical reaction.The temperature of Tree Shrews' brain was lowered down to 31±0.5℃for 1 h by local temperature reduction method at 6h after ischemia,which was classified as the hypothermia postcondition group; the foreign VEGF antibody was instantly injected into cerebellomedullary cister at 6h after ischemia,which was classified as VEGF antibody injection group.When these two procedures were all executed,it would be classified as antibody injection+hypothermia postcondition group.The changes of neurons injury,infarction area and hippocampal microenvironment were studied in every group by TUNEL stain,HE stain,TTC and microdialysis in hippocampus;The changes of VEGFrnRNA,VEGF protein and receptor were investigated in hypothermic postcondition group through RT-PCK and ELISA technique.
     RESULTS:The contents of VEGFmRNA,VEGF receptor(VEGFR-I\VEGFR-2),neurons necrosis and apoptosis in hippocampus CA1 and cortex,hippocampal microenvironment and cortical infarction area had markedly difference between every group.The result of VEGFmRNA indicated that the contents of VEGFmRNA in hippocampus was above cortex (P<0.05).hypothermia postcondition increased significantly the contents of VEGFmRNA in cortex at 24h after ischemia(P<0.05),whereas decreased at 72h.But the contents of VEGFmRNA obviously rose at 72h in VEGF antibody injection group(P<0.05).The results of VEGFmRNA in ischemic hippocampus displayed that the contents of mRNA of hypothermia postcondition group were less than that ischemia control group(P<0.05),and this change lasted at 72h,while VEGF antibody injection could markedly decrease the contents of VEGFmRNA in contra lateral to ischemia.The results of VEGFmRNA in hippocampus and cortex demonstrated that the contents of VEGFmRNA apparently increased in theses two regions(P<0.05),while decreased with time(P<0.05);It rascended markedly in HPhC group at 24h after ischemia(P<0.05),but descended at 72h and had no difference with control group(P>0.05).The VEGF antibody injection obviously inhibited increased VEGF resulted from HPC and ischemia.TTC stain showed that the infarction area enlarged to 80%in VEGF antibody group(P<0.05),while in HPC group the infarction area markedly reduced to19.67%.The analysis of microdialysis in hippocampus suggested that in extracellular fluid the sodium concentration decreased markedly(P<0.05),potassium concentration increased(P<0.05) at 24h,calcium concentration decreased markedly (P<0.05),while HPC helped to inhibit these changes(P<0.05),intensified these at 72h (P<0.05).HE stain showed that numbers of neuron necrosis in hippocampus CA1 region were increased(P<0.05) after ischemia,.but it was decreased at 24h in HPC group(P<0.05) while increased at 72h.The numbers of neuron necrosis rose at 24h,72h in VEGF antibody injection.Ischemia also made the numbers of cortical neuron necrosis to rise obviously (P<0.05) as well as in contra lateral(P<0.05).But in contra lateral,except VEGF antibody group,neuron necrosis only occurred at 72h.HPC could apparently alleviated neuron necrosis at 24h while deteriorated at 72h.TUNEL stain indicated that the neuron apoptosis in ischemic hippocampus CA1 region increased markedly at 24h after ischemia(P<0.05) while decreased with time,but the neuron apoptosis increased at 72h in HPC group.The neuron apoptosis in HPC+VEGF antibody group were less than in HPC group(P<0.05).Whereas in cortex,the neuron apoptosis decreased obviously in HPC group,but increased with time (P<0.05).the neuron apoptosis in ischemia group gradually decreased(P<0.05).ELISA investigation indicated that the contents of VEGFR-1 rose obviously(P<0.05) after ischemia, and ischemic lateral was less than contra lateral(P<0.05),at the same time,the contents of VEGFR-1 was at its peak at 24h after ischemia.The contents of VEGFR-2 were markedly increased in cortex and hippocampus(P<0.05)and continuously increased with time(P<0.05). HPC could obviously increase the contents of VEGFR-2(P<0.05).
     CONLUSION:①The instant protective effect of HPC can inhibit the neuronal apoptosis and necrosis by upregulating the expression of VEGF after thrombotic cerebral ischemia in Tree Shrews.Its mechanism maybe involved in that VEGF increase,improve the neuron microenvironment and inhibit neuronal apoptosis through multiple pathways,protect neurons from necrosis and apoptosis in hippocampus CA1 region and so on.②The relationship between VEGF protein and VEGFmRNA indicated that over expression of VEGF at ischemic early stage may stimulate mRNA transcription to decrease in cytoplasm through negative feedback,resulting in the reduction in VEGF contents at later stage.③Inhibition of VEGF function may reduce the neuroprotective effect in cerebral ischemia after HPC,HPC confirmed the neuroprotective effect throught VEGF upregulation.
引文
1.陈胜利,张汉伟.神经疾病的亚低温治疗.医学综述,1998,8(8):436-437
    2.只达石.亚低温脑保护研宄的发展与现状.现代神经疾病杂志,2002,5(3):133-135
    3.Dai J.Rabie AB.VEGF:an essential mediator of both angiogenesis and endochondral ossification[J].J Dent Res,2007,86(10):937-950
    4.Sun Y,Jin K,Childs JT,et al.Increased severity of cerebral ischernic injury in vascular endothelia/growth factor-B-deficient mic[J].J Cereb Blood Flow Metab,2004,24(10):1146-1152
    5.Otrock ZK,Makarem JA.Shamseddine AI.Vascular endothelial growth factor family of ligands and receptors:review[J].Blood Cells Mol Dis,2007,38(3):258-268
    6.Marti HH,Kisan W.Systemic hypoxia changes the organ-specific distribution of vascular endothelia growth factor and it receptors.Proc NatiAcad Sci USA,1998,95:15809-15814
    7.Lennmyr F,Ata KA,Funa K.Expression of vascular endothelia growth factor(VEGF) and its receptor (FLT-1 and FLK-1) following permanent and transient occlusion of the middle cerebral artery in the rat.J Neuropathol Exp Neurol.,1998,57:874-882
    8.刘亢丁,宫萍,吴江等.实验性局灶性脑缺血不同脑区VEGF、VEGFR-1、2表达及意义.中风与神经疾病在杂志,2003,20(4):332-333
    9.Yancopoulos GD,Davis S,Gate NW,et al.Vascular2specific growth factors and blood vessel formation[J].Naure,2000,407(14):242-247.
    10.Zhang ZG,Zhang L,Tsang W,et al.Correlation of VEGF and angiopoietin expression with disruption of blood2brain barrier and angiogenesis after focal cerebral ischemia[J].Cereb Blood Flow Metab,2002,22(4):379-392.
    11.Sun Y,Jin K,Xie L,et al.VEGF-induced neuroprotection,neurogenesis,and angiogenesis after focal cerebral ischemia[J].J Clin Invest,2003,111(12):1843-1851.
    12.Marti HJ,Bernaudin M,Bellail A.Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia[J].AmJ Pathol,2000,156(3):965-976.
    13.Krupinski J,Kaluza J,Kumar P,et al.Role of angiogenesis in patients with cerebral ischemic stroke [J].Stroke,1994,25(9):1794-1798.
    14.Hayashi T,Abe K,Itoyama Y.et al.Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia.J Cereb Blood Flow Metab.1998,18:887-895.
    15.Jin KL,Mao XO,Greenberg DA.Vascular endothelial growth factor:direct neuroprotective effect in in vitro ischemia[J].Proc Natl Acad Sci USA,2000,97(18):10242-10247
    16.Jin KL,Mao XO,Nagcyama T,et al.Induction of vascular endot belial growth factor and hypoxia-inducible factor-1α by global ischemia in rat brain[J].Neuroscience,2000,99(3):577-585.
    17.Li Shuqing,Meng Qiang,Zhang Lineng.Experimental therapy ofpalatelet-activating factor antagonist(ginkgolide B) on photochemically induced thrombitic cerebral ischemia in tree shrews[J].Clin Experiment Pharmacol physiol,1999,26:824-826.
    18.陈群,脑缺血再灌期间脑温的变化和测定方法[J].国外医学麻醉学与复苏分册,1998,19(1):30-32.
    19.Lnadgraf R,Nemunnal,SchwZarberg H.Central and peripHeral release of vasopressin and oxytocin in the conscious rat after osmotic stimulation[J].Brain Res.1988,457(2):219-25.
    20.Myesr RD,Adell A,Lankford MF.Simultaneous comparison of cerebral dialysis and push-pull perfusion in the brain of rats[J].Neurosci Biobehav Rev.1998;22(3):371-87
    21.唐代彬.树鼩脑缺血时海马微环境与血脑屏障通透性改变的可能机制[J].中国微循环.2008,12(2):76-80.
    22.Murry CE,Jennings RB,Reimer KA.Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J].Circulation,1986,74:11242-1136.
    23.Zhao ZQ,Corvera JS,Halkos ME,et al.Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning[J].Am J PHysiol,2003,285:H579-H588.
    24.李飞,李树清.亚低温后适应对树鼩局部脑缺血海马CA1区神经元的保护机制[J].中国病理生理杂志.2009:25(2):236-240.
    25.李飞,李树清.不同脑温对树鼩局部脑缺血海马血管内皮细胞生长因子表达的影响[J].中国微循环.2009:13(3):154-156.
    26.Shweiki D,Itin A,Softer D et al1Vascular endothelial growth factor induced by hypoxiamaymediate hypoxia-initiated angiogenesis1Nature,1992;359(6398):843-845
    27.Levy AP1Hypoxic regulation of VEGF mRNA stability byRNA-binding p roteins1 Trends Cardiovasc Med,1998;8(6):246-250.
    28.Sun Y,Tin K,Xie L,et al.VEGF-induced neuroprotection,neurogenesis,and angiogenesis after focal cerebral ischemia[J].J Clin Invest.,2003,111(12):1843-1851.
    29.Zhang ZG,Chopp M.Vascular endothelial growth factor and angipoietins in focal cerebral ischemia [J].Trends Cardiovsc Med.,2002,12(2):62-73.
    30.周沐科,周麟.血管内皮生长因子与缺血性脑血管疾病关系的研究进展[J].生物医学工程杂志.2005,22(2):420-423.
    31.Duan S,Anderson CM,Stein BA,et al.Glutamate induces rapid up regulation of astrocyte glutamate transport and cell-surface expression of GLAST[J].J Neurosci,1999,19(23):10193-10200.
    32.Matsuzaki H,Tamatani M,Yamaguchi A,et al.Vascular endothelia growth factor rescues hippocampal neurons from glutamate-induced toxicity:signal transduction cascades[J].The Faseb Journal.,2001;10(3):1096-1105.
    33.Yang ZJ,Bao WL,Qiu MH,etal.Role of vascular endothelial growth factor in neuroprotective effect in in vitro ischemia[J].NatiAcad Sci USA.,2000,97:10242-10253.
    34.Frykholn P,Andersson JLR,Valtysson J,et al.A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion reperfusion model[J].Acta Neurol Scand,2000,102(1):18-26.
    35.Harrigan MR,Ennis SR,Sullivan SE,et al.Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow,edema,and infarct volume[J].Acta Neurochir(Wien).2003,145(1) 49-53
    36.Maier CM,Ahern K,Cheng ML,et al.Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia:effects on neurologic outcome,infarct size,apoptosis,and inflammation.Stroke,1998,29(10):2171-2180
    37.Yanamoto H,Nagata I,Nakahara I.Combination of intraischemic and postischemic hypothermia against temporary focal ischemia in rats.Stroke,1999,30(12):2720-2726
    38.Jin KL,Zhu YH,Sun YJ.Vascular endothelial growth factor(VEGF) stimulates neurogenesis in vitro and in vivo[J].Neurobiology,2002,99(18):11946-11950.
    39.Schanzer A,Wachs FP,Wilhelm D,et al.Direct stimulation of adult neural stem cells in vit ro and neurogenesis in vivo by vascular endot helial growth factor[J].Brain Pathol,2004,14(3):237-248.
    40.Yu SP,Choi DW.Ions,cell volume,and apotosis[J].Proc Natl Acad Sci USA,2000,97(17):9360-9362.
    41.Mattson MP,Culmsee C,Yu ZF.Apototic and antiapototic mechanisms in stroke[J].Cell Tissue Res,2000,301(1):173-187
    42.Chung YH,Kim HS,Shin C,et al.Immunohistochemical study on the distribution of voltage-gated K (+) channels in rat brain following transient forcal in ischemia[J].Neurosci Lett,2001,308(3):157-160.
    43.Kirino T.Delayed neuronal death in the gerbil hippocampus following ischemia.Brain Res,1982,239(1):57-69.
    44.邱梅红.VEGF的神经保护机制之一诱导Kv1.2钾通道蛋白的磷酸化:[博士学位论文].上海:复旦大学,2003.7
    45.Friedman JE,Haddad GG.Anoxia induced an increase in intracellular sodium in rat cortical neurons in virto[J].Brain Res,1994,663(2):329-334
    46.Haigney MC,Lakatta EG,Stern MD,et al.Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading[J].Circulation,1994,90(1):391-399
    47.Pringle AK,Iannotti F,Wilde GJ,et al.Neuroprotection bu both NMDA and non-NMDA receptor antagoni& in vitro ischemia[J].Brain Res,1997,775(1):36-46
    48.Probert AW,Borosky S,Marcoux FW,et al.Sodium channel modulators prevent oxygen and glucose deprivation injury and glutamate release in rat neocortical cultures[J].Neuropharmacology,1997,36(8):1031-1038
    49.Hammarstrom AK,Gage PW.Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons[J],journal of physiology,1998,510(3:) 741
    50.张一,周岱,庄心良等.脑缺血后大鼠海马CA1区神经元持续钠电流变化的研究[J].中华神经医学杂志,2003,2(1):61-63
    51.孙秀,梅元武.Mg~(2+)对缺血性脑损害保护作用的研究进展[J].国外医学神经病学神经外科分册,1997,24(5):260-260.
    52.毛春,张苏明.镁对缺血性脑损伤的神经保护作用[J].国外医学脑血管病分册,2000,8(1):31-34
    53.Hu BR,Kamme F,Wieloch T,et al.Alterations of Ca~(2+)/calmodulin-dependent protein kinase Ⅱ and its messager RNA in the rat hippocampus following normo-and hypothermic ischemia[J].Neuroscience,1995,68(4):1003-1016
    54.Harada K,Maekawa T,Tsuruta R,et al.Hypothermia inhibits translocation of CaM kinase Ⅱ and PKC-alpha,beta,gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion[J].J Neurosci Res.,2002,67(5):664-669
    55.Leao AAP,Spreading depression of activity in the cerebral cortex[J].J Neurophysiol,1944,7:359-390.
    56.Scheckenbach KEL,Dreier JP,Dirnagl U,et al.Impaired cerebrovascular reactivity after cortical spreading depression in rats:Restoration by nitric oxide or cGMP[J].Exp Neurology,2006,202:449-455.
    57.Lu XCM,WilliamsAJ,Wagstaff JD,et al.Effects of delayed intrathecal infusion of an NM.DA receptor antagonist on ischemic injury and peri-infarctdepolarizations[J].B rain Res,2005,1056:200-208.
    58.Chen SB,L i PC,Luo WH,et al.Time-varying spreading dep ression waves in rat cortex revealed by op tical intrinsic signal imaging[J].Neurosci Letters,2006,396:132-135.
    59.李树清,李凡,李家立等.星形胶质细胞活化在局部脑缺血扩布性抑制中的作用[J].中国微循环,2009,13(5):333-336
    60.KazushiM,Rainald SK,Matthew J H,et al.Cortical sp reading depression activates trophic factor expression in neurons and astrocytesand protects against subsequent focal brain ischemia[J].Brain Res,1998,807:47-60
    1.Li Shuqing,Meng Qiang,Zhang Lineng.Experimental therapy of palatelet-activating factor antagonist(ginkgolide B) on photochemically induced thrombitic cerebral ischemia in tree shrews[J].Clin Experiment Pharmacol physiol,1999,26:824-826.
    2.陈群,脑缺血再灌期间脑温的变化和测定方法[J].国外医学麻醉学与复苏分册,1998,19(1):30-32
    3.黄越芳,庄思齐,陈东平等.新生大鼠缺氧缺血性脑病模型脑组织新生血管形成及调控因素[J].儿科杂志,2004,42(3):210-214
    4.Pichiule P,Agani F,Chavez JC et al.H IF-1 alpha and VEGF exp ression after transient global cerebral ischemia[J].Adv Exp Med Biol,2003;530:611-617
    5.Lennmyr F,Terent A,Syvanen AC et al.Vascular endothelial growth factor gene expression in middle cerebral artery occlusion in the ratlActa Anaesthesiol Scand,2005;49(4):488-493
    6.Nagy Z,Simon L,Bori Z.Regulatory mechanisms in focal cerebral ischemia:New possibilities in neuroprotective therapy.Ideggyogy Sz.,2002,55(3-4):73-94
    7.Zhang ZG,Chopp M.Vascular endothelial growth factor and angipoietins in focal cerebral ischemia.Trends Cardiovsc Med.,2002,12(2):62-73
    8.Yang ZJ,Bao WL,Qiu MH,etal.Role of vascular endothelial growth factor in neuroprotective effect in in vitro ischemia.NatiAcad Sci USA.,2000,97:10242-10253
    9.Sun Y,Tin K,Xie L,et al.VEGF-induced neuroprotection,neurogenesis,and angiogenesis after focal cerebral ischemia.J Clin Invest.,2003,111(12):1843-1851
    10.Hayashi T,Abe K,Itoyama Y.et al.Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia.J Cereb Blood Flow Metab.,1998,18:887-895
    11.Zhang ZG,Zhang L,Jiang Q,et al.VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.J Cerebal Blood Flow Metab.,2000,16(7):829-838
    12.Van Bruggen N,Thibodeaux H,Palmer JT,et al VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury.J Clin Invest.,1999,104(11):1613-1620
    13.邢影,徐忠信,莽靖等.大鼠局灶性脑缺血-再灌注损伤血管内皮细胞生长因子表达的研究[J].中国危重急救医学,2005;17(3):174-176
    14.Minger SL,Ekonomou A,Carta EM et al.Endogenous neurogenesis in the human brain following cerebral infarction[J].RegenMed,2007;2(1):69-74
    15.Hiratsuka S,Maru Y,Okada A et all Involvement of Flt-1 tyrosine kinase(vascular endothelial growth factor receptor-1) in pathological angiogenesisl Cancer Res,2001;61(3):1207-121316.Robinson CJ,Stringer SE1 The sp lice variants of vascular endothelial growth factor(VEGF)and their recep tors.J Cell Sci,2001;114(5):853-865 17.Millauer B,Wizigmann-Voos S,Schnurch H et al1High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogcncsis.Cell,1993;72(6):835-846 18.Davis-Smyth T,Chen H,Park J et al1The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate asignal transduction caseadelEMBO J,1996;15(18):4919-4927 19.Shalaby F,Rossant J,Yamaguchi TP et al1Failure of blood-island formation and vasculogenesis in Flk-1-deficientmicc.Nature,1995;376(6535):62-66 20.Banai S,Jaklitsch MT,Shou Met al1Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs.Circulation,1994;89(5):2183-2189 21.Yoshiji H,Gomez DE,Shibuya M et al1Exp ression of vascular endothelial growth factor,its recep tor,and other angiogenic factors in human breast cancerlCancer Res,1996;56(9):2013-2016 22.Hiratsuka S,Minowa O,Kuno J et al1Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in micelProc NatlAcad Sci USA,1998;95(16):9349-9354 23.Gille H,Kowalski J,L i B et al1Analysis of biological effects and signaling properties of Flt-1(VEGFR-1)and KDR(VEGFR-2) 1A reassessment using novel recep tor-specific vascular endothelial growth factor mutantsl J Biol Chem,200t;276(5):3222-3230 24.Ferrara N.Role of vascular endothelial growth factor in regulation of physiological angiogenesis1Am J Physiol Cell.Physiol,2001;280(6):C1358-1366 25.Marti HJ,Bernaudin M,Bellail A et al1Hypoxia-induced vascular endothelial growth factor expression p recedes neovascularization after cerebral ischemialAm J Pathol,2000;156(3):965-976
    26.Sun FY,Guo X.Molecular and celluar mechanisms of neuroprotection by vascular endot belial growt h factor.J Neurosci Res,2005,79(122):180-184.
    27.Gary L.Wright,Ioanna G.Maroulakou,et al.VEGF stimulation of mitochondrial biogenesis:requirement ofAKT3 kinase.The FASEB Journal,2008,32:3264-3275
    28.Choi JS,Kim HY,Cha JH et al1Up regulation of vascular endothelial growth factor receptors Flt -1 and Flk-1 in rat hippocampus after transient forebrain ischemia.J Neurotrauma,2007;24(3):521-531 29.周沐科,周麟.血管内皮生长因子与缺血性脑血管疾病关系的研究进展.生物医学工程杂志.2005,22(2):420-423
    30. Nagy Z, Simon L, Bori Z. Regulatory mechanisms in focal cerebral ischemia: New possibilities in neuroprotective therapy. Ideggyogy Sz., 2002, 55(3-4):73-94
    
    31. Zhang ZG, Chopp M. Vascular endothelial growth factor and angipoietins in focal cerebral ischemia. Trends Cardiovsc Med., 2002,12(2):62-73
    
    32. Sun Y, Tin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest., 2003, 111 (12): 1843-1851.
    1.Reith J,Jorgensen HS,Pedersen PM,et al.Body temperature in acute stroke:relation to stroke severity,infarct size,mortality,and outcome.Lancet,1996;347:422-425.
    2.Schwab S,Schwarz S,Spranger M,et al.Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction.Stroke,1998;29:2461-2466,
    3.Schwab S,Georgiadis D,Berrouschot J,et al.Feasibility and safety of moderate hypothermia after massive hemispheric infarction.Stroke,2001;32:2033-2035.
    4.Krieger DW,De Georgia MA,Abou-Chebl A,et al.Cooling for acute ischemic brain damage(cool aid):an open pilot study of induced hypothermia in acute ischemic stroke.Stroke,2001;32:1847-1854.
    5.Fay T.Observations on generalized refrigeration in cases of severe cerebral trauma.Assoc Res Nerv Ment Dis Proc,1945;24:611-619.
    6.Selker RG,Wolfson SK,Maroon JC,et al.Preferential cerebral hypothermia with elective cardiac arrest:resection of"giant" aneurysm.Surg Neurol,1976;3:173-179.
    7.Botterell EH,Lougheed WM,Scott JW,et al.Hypothermia and interruption of carotid,or carotid and vertebral circulation,in the management of intracranial aneurysms.J Neurosurg,1956;13:1-42;
    8.Selker RG,Wolfson SK,Maroon JC,et al.Preferential cerebral hypothermia with elective cardiac arrest:resection of "giant" aneurysm.Surg Neurol,1976;3:173-179.
    9.Bigelow WG,Callaghan JC,Hopps JA.General hypothermia for experimental intracardiac surgery.Ann Surg,1950;132:531-537;
    10.Bigelow WG.Methods for inducing hypothermia and rewarming.Ann NY Acad Sci,1959;80:522-532.
    11.Dietrich WD.The importance of brain temperature in cerebral injury.J Neurotrauma,1992,9(suppl 2):S475-85.
    12.Hoffman W E,W erner C,Baughman VL,et al.Postischemic treatment with hypothermia improves outcome from incomplete cerebral ischemia in rats.J Neurosurg A nesthesiol,1991,3(1):34-8.
    13.Leonov T,Sterz F,Safar P,et al.Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs.J Cereb Blood Flow Metab,1990,10:57-70.
    14.Horn M,Schlote W,Henrich HA.Global cerebral ischemia and subsequent selective hypothermia.Acta Neuropathol,1991,81(4):443-9
    15.Kariebe H,Zarow GJ,W eistein PR.Use of mild hypotherm ia vesusmannito 1 to reduce infarct size after temporary middle cerebral artery occlusion in rat.J Neurosurg,1995,83:93.
    16.李飞,李树清.亚低温后适应对树鼩局部脑缺血海马CA1区神经元的保护机制.中国病理生理杂志.2009;25(2):236-240.
    17.Coimbra CG,Cavalheiro EA.Protective effect of short-term post-ischemic hypothermia on the gerbil brain.Braz J Med Biol Res.1990;23(6-7):605-11.
    18.Olsen TS,Weber UJ,Kammersgaard LP.Therapeutic hypothermia for acute stroke.Lancet Neurol,2003;2:410-416.
    19.Lawrence EJ,Dentcheva E,Curtis KM,et al.Neuroprotection with delayed initiation of prolonged hypothermia after in vitro transient global brain ischemia.Resuscitation 2005;64:383-388.
    20.Colbourne F,Corbett D.Delayed postischemic hypothermia:a six-month survival study using behavioral and histological assessments of neuroprotection.J Neurosci 1995;15:7250-7260;
    21.Green EJ,Dietrich WD,van Dijk F,Busto R,Markgraf CG,McCabe PM,Ginsberg MD,Schneiderman N.Protective effects of brain hypothermia on behaviour and histopathology following global cerebral ischemia in rats.Brain Res 1992;580:197-204.
    22.Plattner O,Kunz A,Sessler DI,Ikeda T,Christensen R,Morder D,Clough D.Efficacy of intraoperative cooling methods.Anesthesiology 1997;87:1089-1095.
    23.Bernard SA,Gray TW,Buist MD,Jones BM,Silvester W,Gutteridge G,Smith K.Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.N Engl J Med 2002;346:557-563;
    24.The Hypothermia After Cardiac Arrest Study Group.Mild therapeutic hypothermia to improve the neurological outcome after cardiac arrest.New Engl J Med 2002;346:549-556.
    25.Hammer MD,Krieger DW.Hypothermia for acute ischemic stroke:not just another neuroprotectant.Neurolog 2003;9:280-289.
    26.Kammersgaard LP,Rasmussen BH,Jorgensen HS,Reith J,Weber U,Olsen TS.Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling:a casecontrol study.Stroke 2000;31:2251-2256.
    27.Georgiadis D,Schwarz S,Kollmar R,Schwab S.Endovascular cooling for moderate hypothermia in patients with acute stroke:first results of a novel approach.Stroke 2001;32:2550-2553;
    28.Badjatia N.Celsius Control System.Neurocrit Care,2004,1(2):201-3
    29.De Georgia MA,Krieger DW,Abou-Chebl A,Cooling for acute ischemic brain damage(cool aid),An feasibility trial of endovascular cooling.Neurology,2004;63:312-317;
    30.Mellergard P.Changes in human intracerebral temperature in response to different methods of brain cooling.Neurosurgery,1992;31:671-677.
    31.Hachimi-Idrissi S,Corne L,Ebinger G,Michotte Y,Huyghens L.Mild hypothermia induced by a helmet device:a clinical feasibility study.Resuscitation,2001;51:275-81;
    32.Tooley JR,Satas S,Porter H,Silver IA,Thoresen M.Head cooling with mild systemic hypothermia in anesthetized piglets is neuroprotective.Ann Neurol,2003;53:65-72.
    33.Ebmeyer U,Safar P,Radovsky A,etal.Thiopental combination treatments for cerebral resuscitation after prolonged cardiac arrest in dogs.Exploratory outcome study.Resuscitation,2000;45:119-131.
    34.徐蔚,高永军,江基尧等.猴脑选择性深低温断血流复苏实验模型的建立.中华神经医学杂志.2005;4(2):126-129
    35.陈群.脑缺血再灌注期间脑温的变化和测定方法.1998,19(1):30-32
    36.Fujimura M,Morita-Fujimura Y,Murakami K,et al.Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats.J Cereb Blood Flow Metab,1998,18(11):1239-1247.
    37.Perez-pinzon MA,Xu GP,Born J,et al.Cytochrome c is released from mitochondria into the cytosol after cerebral anoxia or ischemia.J Cereb Blood Flow Metab,1999,19(1):39-43.
    38.Cao G,Xing J,Xiao X,et al.Critical role of calpain I in mitochondrial release of apoptosis2inducing factor in ischernic neuronal injury.J Neurosci,2007,27(35):9278-9293.
    39.Nicholson D W,Thornberry N A.Caspases:killer proteases.Trends Biochem Sci,1997,22(8):299-306
    40.Yenari MA,Iwayama S,Cheng D,et al.Mild hypothermia attenuates cytochrome C release but does not alter Bcl-2 expression or caspase activation after experimental stroke.J Cereb Blood Flow Metab,2002,22:29-38.
    41.Chang F,Lee JT,Navolanic PM,et al.Involvement of PI3-K/Akt pathway in cell cycle progression,apoptosis,and neoplastic transformation:a target for cancer chemotherapy.Leukemia,2003,17(3):590-603.
    42.Downwrd J.PI3-kinase,Akt and cell survival.Sere in Cell Dev Biol,2004,15(2):177-182.
    43.Heng Zhao,Takayoshi Shimohata,Jade Q.Wang,et al.Akt Contributes to Neuroprotection by Hypothermia againstCerebral Ischemia in Rats The Journal of Neuroscience,October 19,2005.25(42):9794-9806
    44.Kamei H,SaitO T,Ozawa M,et al.Suppression of calpain-dependent cleavage of the CDK5activator p35 to p25 by site-specific phosphorylation.J Biol Chem,2007,282(3):1687-1694.
    45.Norberg E,Gogvadze V,OttM,et al.An increase in intracellular Ca2+is required for the activation of mitochondrial calpain to release A IF during cell death.Cell Death Differ,2008,15(12):1857-1864.
    46.Wu HY,Tomizawa K,Matsui H.Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder.Acta Med Okayama,2007,61(3):123-137
    47.Koumura A,Nonaka Y,Hyakkoku K,et al.A novel calpain inhibitor,((1S) 21(((1S)-1-benzyl-3-cyclop ropylamino-2,3 -di-oxopropyl) amino) carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester,protects neuronal cells from cerebral ischemia-induced damage in mice.Neuroscience,2008,157(2):309-318.
    48.Liebetrau M,Burggraf D,Martens H K,et al.Delayed moderate hypothermia reduces calpain activity and breakdown of its substrate in experimental focal cerebral ischemia in rats.Neurosci Lett,2004,357(1):17-20.
    49.D'Cruz B J,Fertig K C,Filiano A J,et al.Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation.J Cereb Blood FlowMetab,2002,22(7):843-851.
    50.Verkman A S,Binder D K,Bloch O,et al.Three distinct roles of aquaporin-4 in brain function revealed by knockout mice.Biochim Biophys Acta,2006,1758(8):1085-1093.
    51.Wang Y H,Wang W Y,Chang C C,et al.Taxifolin ameliorates cerebral ischemia/reperfusion injury in rats through its antioxidative effect and modulation of NF2kappa B activation.J Biomed Sci,2006,13(1):127-41.
    52.Aggarwal B B.Nuclear factor kappa B.the enemywithin.Cancer Cell,2004,6(3):203-208.
    53.Toledo-Pereyra L H,Toledo A H,Walsh J,et al.Molecular signaling pathways in ischemia/reperfusion.Exp Clin Transp lant,2004,2(1):174-178.
    54.Hill W D,Hess D C,Carroll J E,et al.The NF-kappaB inhibitor diethyldithiocarbarnate(DDTC)increases brain cell death in a transientmiddle cerebral artery occlusion model of ischemia.Brain Res Bull,2001,55(3):375-386.
    55.Matsushita H,Morishita R,Nata T,et al.Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB(NF-kappaB)-mediated bcl-2 suppression:in vivo evidence of the importance of NF-kappaB in endothelial cell regulation.Circ Res,2000,86(9):974-81
    56.Han HS,Karabiyikoglu M,Kelly S,Sobel RA,Yenari MA.Mild hypothermia inhibits nuclear factor kappa B translocation in experimental stroke.J Cereb Blood Flow Metab 2003;23:589-598.
    57.Yenari MA,Onley D,Hedehus M,deCrespigny A,Sun GH,Moseley ME,Steinberg GK.Diffusionand perfusion-weighted magnetic resonance imaging of focal cerebral ischemia and cortical spreading depression under conditions of mild hypothermia.Brain Res 2000;885:208-219
    58.刘轲,李建生.脑缺血血脑屏障基膜损伤的酶调节研究.中医药学刊,2004,22(3):421-426
    59.Belayev L,Busto R,Zhao W,et al.Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats.Brain Res.,1996,739:88-96
    60.Claude P.Morphological factors influencing transep ithelial permeability:a model for the resistance of the zonula occludens.J Membr Biol.,1979,39:219-232
    61.Kiyatkin EA,Sharma HS.Permeability of the blood-brain barrier depends on brain temperature.Neuroscience.2009 161(3):926-39.
    62.Van Itallie CM,Anderson JM.Occludin confers adhesiveness when expressed in fibroblasts.J Cell Sci.,1997,110:11113-11121
    63.FuruseM,Fujita K,Hiiragi T,et al.Claudin-1 and-2:novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.J Cell Biol.,1998,141:1539-1550
    64.Martin-Padura I,Lostaglio S,Schneemann M,et al.Junctional adhesion molecule,a novelmember of the immunogl obulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration.J Cell Biol.,1998,142:117-127
    65.Denker BM,Nigam SK.Molecular structure and assembly of the tight junction.Am J Physiol.,1998,274:F1-F9
    66.Nusra A,Parkos CA,Verekade P,et al.Tight junctions are membrane microdomains.J Cell Sci.,2000,113:1771-1778
    67.Abbruscato TJ,Lopez SP,Mark KS,et al.Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors exp ressed on brain endothelial cells.J Pharm Sci.,2002,91:2525-2538
    68.Lee SW,Kim WJ,Choi YK,et al.SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier.NatMed.,2003,9:900-906
    69.Tsukamoto T,Nigam SK.Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J physiol., 1999, 276: F737-F750
    
    70. del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab.,2003,23:879-894
    
    71. Taft WC, Yang K, Dixon CE, et al. Hypothermia attenuates the loss of hippocampal microtubule associated protein 2 (MAP2) following traumatic brain injury. J Cereb Blood Flow Metab., 1993, 13:796-802
    
    72. Humann GF, Okata Y, Fitridge R, et al. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke,1995,26:2121-2129
    
    73. Gearing AJH, Beckett P, Christodoulou M, et al. Processing of tumour necrosis factor-a precursor by metalloproteinase. Nature, 1994,370:555-557
    
    74. Cuzner ML, Gveric D, Strand C, et al. The expression of tissue-type plasminogen activator, matrix metalloproteinase and endogenous inhibitiors in the central nervous system in multiple sclerosis:comparison of stages in lesion evolution. J Neuropathol Exp Neurol., 1996,55:1194-1204
    
    75. Rosenberg GA, Cunningham LA, Wallace J, et al. Immunohistochemistry of matrix metalloproteinase in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res., 2001, 893:104-112
    
    76. Yu Q, Stamenkovic I. Localization of metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev, 1999,13:35-48
    
    77. Greene J, Wang M, Liu YE, et al. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem., 1996,271: 30375-30380
    
    78. Rosenberg CA, Navratil M, Barone F. Proteolytic cascade enzymes increase in focal cerebra ischemia in rats. J Cereb Blood Flow Metab., 1996,16:360-371
    
    79. Romanic AM, White RF, Arthony AJ, et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats. Stroke, 1998, 29:1020-1030
    
    80. Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke, 1998 , 29 (10) :2189-2195
    
    81. Fasciglione GF, Marini S, D'Alessio S, et al. PH- and temperature-dependence of functional modulation in metalloproteinases. A comparison between neutrophil collagenase and gelatinases A and B.J Bio., 2000, 79:2138-2149
    
    82. Horstmann S, Koziol J, Koziol J, et al. Profiles of metalloproteinases, their inhibitors and laminin in stroke patients: influence of different therapies. Stroke, 2003, 34:2165-2170
    
    83. Hamann GF, Burggraf D, Martens HK, et al. Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke, 2004,35:764-769
    
    84. Nagel S, Su Y, Horstmann S et al, Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res. 2008, 1188:198-206.
    85. Baumann E, Preston E, Slinn J, et al. Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and SPARC, and the blood-brain barrier disruption after global cerebral ischemia. Brain Res. 2009; 1269:185-97.
    
    86. Jabaudon D, Scanzian M, Gahwiler BH, et al. Acute decrease in net gluatamate up take during energy dep rivation. Proc NatlAcad Sci USA., 2000, 97: 5610-5615
    
    87. Takagi K, Ginesberg MD, et al. Changes in amino acid neurotransmittes and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat correlation with histopathology. J cereb Blood Flow Metab., 1993, 13 (4): 575-585
    
    88. Bruno VM, GoldbergMP, Dugan LL, et al. Neurop rotective effect of hypothermia in cortical cultures exposed to oxygen - glucose dep rivation or excitatory amino acids. J Neurochem, 1994, 63:1398
    
    89. Winfree CJ, Baker CJ, Connolly ES Jr, et al. Mild hypothermia reduces penumbral glutamate levels in rat permanent focal cerebral ischemia model. Neurosurgery, 1996, 38: 1216-1222
    
    90. Berger C, Schabitz WR, Georgiadis D, et al.Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke, 2002, 33(2): 519-524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700