静脉麻醉药对老龄大鼠认知功能的影响及海马的比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     术后认知功能障碍(postoperative cognitive dysfunction, POCD)是麻醉后中枢神经系统常见的并发症之一。导致POCD的因素很多,一般认为老龄是唯一明确的危险因素。研究显示,麻醉药可能是患者POCD的主要诱发因素之一。丙泊酚是临床常用的静脉麻醉药,具有诱导迅速、苏醒快,遗忘等优点,特别适用于各种门诊诊断治疗性操作的麻醉(比如,无痛胃镜)。氯胺酮是N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMDA)受体的非特异性拮抗剂,在术中术后镇痛应用广泛。研究表明,麻醉剂量丙泊酚或氯胺酮均可能导致学习记忆或行为学的改变,但其潜在的机制尚不明确。海马是中枢神经系统内与学习记忆等认知功能最为密切相关的重要部位。很多导致海马损伤的因素均可能会造成认知功能障碍。
     蛋白质是生命活动的最主要和最直接的体现者和执行者,也是多种致病因素和药物作用的靶分子,因此深入研究蛋白质的组成和活动规律对解释生理和病理现象有非常意义。蛋白质组学研究是从生物大分子整体水平研究蛋白质表达谱和蛋白质与蛋白质之间相互作用的新兴领域。具有全面性、整体性、高通量、大规模的特点。近年来,蛋白质组学已经逐渐被用于麻醉学领域的研究,并且获得了很好的结果。但该方法用于丙泊酚或氯胺酮麻醉对认知功能领域的研究尚未见到。
     研究目的
     1.通过行为学实验,观察丙泊酚或氯胺酮麻醉对不同时间点(麻醉后第1天和第7天)老龄大鼠认知功能的影响;
     2.结合蛋白质组学研究方法和生物信息学方法分析老龄大鼠海马组织蛋白的差异表达情况(麻醉后第1天和第7天),初步分析丙泊酚或氯胺酮麻醉后海马蛋白网络的变化,尽可能找出其与认知功能影响相关联的蛋白,从整体上全面深入探讨丙泊酚或氯胺酮麻醉影响老龄大鼠认知功能的分子机制;
     3.检测老龄大鼠血清S100β蛋白、神经烯醇化酶(NSE)等生物标记物,初步评估其在诊断丙泊酚或氯胺酮麻醉是否影响认知功能中的预测价值。
     研究方法
     选用健康雄性Wistar大鼠,20月龄,体重560-610g,随机分为对照组(C组)和丙泊酚组(P组)或氯胺酮组(K组)。P组大鼠经腹腔注射丙泊酚60mg/kg(6ml/kg)实施麻醉,然后酌情追加,维持麻醉3 h。K组大鼠经腹腔注射丙泊酚80mg/kg(8ml/kg)实施麻醉,然后酌情追加,维持麻醉3 h。C组腹腔注射等量生理盐水。于停药后1天开始行跳台实验(第1和7天)和Morris水迷宫实验(连续7天)测试认知功能。分别于第1天和第7天实验结束后大鼠断头取脑分离海马组织,2DQuant蛋白定量试剂盒测定蛋白浓度后,取150μg蛋白/胶上样进行双向凝胶(2-DE)电泳分离蛋白样品。2-DE凝胶银染显色蛋白点,图像扫描并输入凝胶图像分析软件ImageMaster 2-D Platinum(V5.0)进行凝胶匹配找出两组不同时间点的差异表达蛋白。确认的差异表达蛋白点切胶消化,提交基质辅助激光解析电离飞行时间质谱(MALDI-TOF MS)进行分析,获得差异表达蛋白的肽质量指纹图谱(PMF)。利用相关数据库(NCBInr, Mascot)对PMF进行检索,初步确定差异蛋白身份。根据确认蛋白的生物信息,结合对应差异表达蛋白点在蛋白凝胶中的位置,确认质谱结果的正确性。另外,通过串联质谱(MALDI-TOF/TOF MS)对上述结果进一步验证。进一步利用生物信息学分析确定差异蛋白的亚细胞定位、参与的生物学过程和主要功能,初步分析丙泊酚或氯胺酮麻醉后海马蛋白网络的变化。另外,随机选择部分蛋白通过Western-blot观察其不同时间点的动态变化,用以验证2-DE凝胶电泳结果的可靠性。分别于麻醉后1天和7天抽血采用双抗体夹心酶联免疫吸附法(ELISA)检测S100p和NSE浓度。
     研究结果
     丙泊酚部分
     1.行为学实验:
     1)跳台实验:与C组比较,丙泊酚麻醉结束后1天时老龄大鼠学习记忆功能减退;学习阶段潜伏期、受电击总时间均明显延长,学习错误次数较多(P<0.01);记忆阶段潜伏期缩短,而受电击总时间明显延长,记忆错误次数较多(P<0.01)。麻醉结束后7天时,两组间各指标差异没有统计学意义。
     2) Morris水迷宫实验:水迷宫定位航行实验结果表明,丙泊酚麻醉结束后第1天,P组大鼠逃避潜伏期和总游泳距离明显长于C组(P<0.01),而在第2-6天,与C组比较差异无统计学意义。与第1天比较,C组和P组其余各个时间点逃避潜伏期和总游泳距离均明显缩短(P<0.01)。两组大鼠平均游泳速度无统计学差异。水迷宫空间探索实验结果表明,两组大鼠原平台象限探索时间、探索距离、穿越平台次数间差异无统计学意义。
     2.2-DE凝胶电泳及蛋白质组学分析:与C组相比,丙泊酚麻醉后第1和7天分别发现21和15个差异表达蛋白点,其中分别有17和10个经MALDI-TOF成功鉴定;生物信息学分析表明,大部分检定蛋白分别主要位于细胞器(2天分别各有11个、5个),细胞浆(12、3),细胞核(3、3),细胞骨架(7、0),质膜(8、1)。检定蛋白分别主要具有催化功能(12、5),蛋白质折叠(2、0),生物结合(9、4),结构结构分子(5、1),分子伴侣(1、0)和抗氧化功能(1、0)。此外大部分蛋白分别主要参与代谢(6、6),生物调节(10、2),发生发育(10、1)以及刺激-反应过程(1、0)。通过Western-blot观察选定蛋白的差异表达,其变化趋势与双向凝胶电泳结果一致。
     3.两组大鼠药物处理后相应时间点血清S100β和NSE浓度差别没有统计学性意义。
     氯胺酮部分
     1.行为学实验和血清生化指标:结果变化趋势与丙泊酚部分相似。
     2.2-DE凝胶电泳及蛋白质组学分析:与C组相比,氯胺酮麻醉后第1和7天分别发现26和15个差异表达蛋白点,其中分别有21和8个经MALDI-TOF成功鉴定;生物信息学分析表明,大部分检定蛋白分别主要位于细胞器(2天分别各有14个、6个;下同),细胞浆(13、2),细胞核(5、2),细胞骨架(5、1),质膜(8、2)。检定蛋白分别主要具有催化功能(16、6),蛋白质折叠(1、0),生物结合(13、4),结构分子(4、1),转运(1、1),分子伴侣(1、0),第7天有2个蛋白分别参与抗氧化和转录调节。此外大部分蛋白分别主要参与代谢(11、5),生物调节(10、4),发生发育(15、4)以及刺激-反应过程(6、0)。通过Western-blot观察选定蛋白的差异表达,其变化趋势与双向凝胶电泳结果一致。
     结论
     丙泊酚或氯胺酮麻醉后可以导致第1天老龄大鼠认知功能障碍,但不影响第7天的认知功能。其机制可能与麻醉后第1天海马组织较多认知相关蛋白出现差异表达有关;差异表达的蛋白质呈现多维网络化联系,主要涉及多个生物学过程和多种功能,包括糖酵解和能量代谢,细胞骨架蛋白质量控制,突触囊泡转运和再循环、递质释放,抗氧化,Ca2+稳态,细胞内信号转导以及抗凋亡活性等,进而影响突触可塑性和学习记忆。NSE和S100β在预测丙泊酚或氯胺酮麻醉与认知功能关系上没有太大价值。
Background
     Postoperative cognitive dysfunction (POCD) is one of the common complications of central nervous system after anesthesia and surgery. In spite of many risk factors, increasing age (≥60) is the only definitely significant risk factor for the development of POCD. It is generally believed that, anesthetics may be one of the main factors inducing POCD. Propofol (2,6-diisopropylphenol) has the advantage of fast induction, better-quality recovery as well as amnesia and is widely used for induction and maintenance of general anesthesia as well as for procedural sedation(e.g. painless gastroscopy). Ketamine, which can produce analgesia, is as a noncompetitive antagonist to the phencyclidine site of the N-methylmethyl-D-aspartate (NMDA) receptor for the excitatory neurotransmitter glutamate. However, NMDA receptor-mediated long term potential (LTP) is believed to induce memory. Increasing evidence indicate that propofol or ketamine can produced amnesia and behavior disorder at anesthetic doses, but the precise molecular mechanisms underlying the cognitive impairment are poorly understood so far. Cognitive functions are known to involve multiple brain areas, complex processes and variable cellular components. It is demonstrated that hippocampus is one of the most important brain areas that participating in cognitive functions such as memory and learning. Many factors impairing hippocampus can cause cognitive dysfunction.
     Proteins are the most important biomacromolecules that directly embody and execute the function of life activities. They are also the target molecules that many causative factors and drugs bind and produce effects. Therefore, it is most significant to deeply explore the protein composition and activities pattern so as to elucidate the physiological and pathological process. The new method of proteomics analysis used to investigate changes in abundance of proteins has the advantage that high-capacity screening of proteins and integrally studying the differentially expressed protein profile and the interactions between proteins. Recently, proteomic tools have been used to explore the anesthetic effects, mostly focused on the inhalation anesthetics, and the results were enlightening. However, there is few study devoted to assess the effect of propofol on the cognitive function by proteomics analysis.
     Objective
     1. To observe the effects of propofol/or ketamine on cognitive function in aged rats at the 1st day and 7th day after termination of propofol/or ketamine anesthesia through behavioral experiments;
     2. To study the differentially expressed protein profile in aged rat hippocampus by proteomics analysis and bioinformatics tools, preliminarily understand the possible alternation of hippocampus proteins'network in post-propofol/or post-ketamine anesthesia was preliminary, try to explore the hippocampus protein mostly related to cognitive function and thus integrally deeply investigate the molecular mechanism of cognitive impairment after propofol/or ketamine anesthesia.
     3. To roughly investigate the value of S-100βand neuron specific enolase (NSE) in reflecting POCD after propofol/or ketamine anesthesia.
     Methods
     Male Wistar rats aged 20 months weighing 560-610g were randomly divided into 2 groups:control group(C) and propofol group(P)/ketamine group(K). The rats in Group P or Group K received intraperitoneal(IP) propofol 60mg/kg(6ml/kg) or ketamine 80mg/kg(8ml/kg) firstly and were boosted half of the initial dose when righting reflex emerged, whereas the rats in Group C received equal volume normal saline instead of propofol/ketamine in same way. One day after termination of drug administration, the rats were assessed with Morris water maze Test 4 times a day for 7 consecutive days and Step-down Test (1st day and 7th day, respectively). The rats were killed by decapitation after the test was finished. The blood samples in each group were collected to test the concentrations of S100βand NSE by ELISA and the hippocampus was isolated immediately. Proteins extracted from rat hippocampus were quantified by the 2D Quant Protein Assay Kit and 150μg protein solution was loaded in an IPG gel strip for 2-dimensional electrophoresis (2-DE) analysis.2-DE gels were silver stained to colour the isolated protein spots. Gel images were scanned and input into the gel image analyzing software ImageMaster 2-D Platinum(V5.0) to match the gels of two groups, compare protein expression difference and screen for the differentially expressed protein spots. The differential expressed protein spots were cut off and digested by trypsin for matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis to obtain corresponding peptide mass fingerprint (PMF) identities. Each protein were identified and confirmed by checking the biological information provided by MS and location of the corresponding protein spot in gel images. In addition, identification of MS results was also performed by MALDI-TOF/TOF MS. Bioinformatics analysis through Gene Ontology (GO) software was further used to summarize the subcellular distribution, molecular function and biological processes of the differentially-expressed identified proteins. The expression changes of selected protein were also assayed using Western-blot to verify the reliability of 2-DE results.
     Results
     Propofol fraction
     1. Behavioral experiments:
     (1) In the step-down test, aged rats in Group P showed significantly learning and memory impairment at the 1st day after propofol anesthesia compared with those in Group C. For post-propofol anesthesia aged rats, the latency, total time of electric shock and error-number in the learning phase increased significantly (p<0.01). The total time of electric shock and error-number displayed similar trend in the memory phase, while the latency decreased significantly (p<0.01). There were no differences between two groups at the 7th day after propofol anesthesia with respect to each index as above.
     (2) In Morris water maze, the escape latency and total swimming distance to find the submerged platform in Group P at the 1st day after propofol anesthesia were significantly longer than that of Group C (p<0.05 or 0.01). In the probe test, the two groups were comparable with respect to both time and distance of aged rats spent in target quadrant as well as number of crossing over the position.
     2.2-DE and Proteomics ananlysis: Compared with Group C,21 or 15 differentially expressed proteins were detected respectively on the 1st day or 7th day after propofol anesthesia, among which 17 or 10 proteins were successfully identified with MALDI-TOF MS. Gene Ontology(GO) analysis revealed that the numbers of identified proteins which mainly distributed in cell component were:11 or 5 (organelle); 12 or 3 (cytosol); 3 or 3 (nucleus); 7 or 0 (cytoskeleton); 8 or 1 (membrane), respectively. Functionally, most finally identified proteins were involved in catalytic activities (12,5 respective); binding activities (9,4); protein folding(2,0); structural molecule(5,1); chaperone(1,0) and antioxidant(1,0). According to biological process category,6 proteins were involved in metabolic process respectively; 10 or 2 proteins were involved in biological regulation; 10 or 1 were involved in developmental process; 1 protein was involved in stimulus-response on the 1st day after propofol anesthesia while none was on the 7th day. Change patterns of 2 selected proteins in 2-DE were identical with those in Western blot.
     3. Two groups were comparable with respect to both the concentrations of S100βprotein and NSE.
     Ketamine fraction
     1. Behavioral experiments: The results of step-down test and Morris water maze test in ketamine fraction displayed a similar trend with propofol fraction.
     2.2-DE and Proteomics ananlysis: Compared with Group C,26 or 15 differentially expressed proteins were detected respectively on the 1st day or 7th day after propofol anesthesia, among which 21 or 8 proteins were successfully identified with MALDI-TOF MS. Gene Ontology(GO) analysis revealed that the numbers of identified proteins which mainly distributed in cell component were:14 or 6 (organelle); 13 or 2 (cytosol); 5 or 2 (nucleus); 8 or 2(membrane); 5 or 1 (cytoskeleton), respectively. Functionally, most finally identified proteins were involved in catalytic activities (16,6 respective); binding activities (13,4); protein folding(1,0); structural molecule(4,1); tansport(1,1) and chaperone(1,0). According to biological process category,11 or 5 proteins were involved in metabolic process; 10 or 4 proteins were involved in biological regulation; 15 or 4 proteins were involved in developmental process; 6 proteins were involved in stimulus-response on the 1st day after propofol anesthesia while none was on the 7th day. Change patterns of 2 selected proteins in 2-DE were identical with those in Western blot.
     3. Two groups were comparable with respect to both the concentrations of S100βprotein and NSE.
     Conclusion
     Propofol or ketamine can cause the cognitive dysfunction in aging rats on the 1st day after anesthesia whereas has no effect on that of 7th day. The mechanism may involved in the multiple differentially expressed proteins of hippacampus in the 1st day which induced by propofol or ketamine anesthesia. The differentially expressed proteins show multidimensional network relationship with each other. Multiple processes and variable functions in rat hippocampus are involved which impair the synapse plasticity and memory, including glycolysis and energy metabolism, protein synthesis and protein qulity control, cytoskeleton morphology and dynamics, synaptic vesicle transport and recycle, transmitter release, antioxidation, Ca2+ homeostasis, signal transduction and apoptosis. NSE and S100βprotein, serving as biochemical markers, appear to be of limited value in detecting POCD after propofol or ketamine anesthesia.
引文
[1]Parikh SS, Chung F. Postoperative delirium in the elderly[J]. Anesth Analg,1995,80(6): 1223-32.
    [2]Dodds C, Allison J. Postoperative cognitive deficit in the elderly surgical patient[J]. Br J Anaesth,1998,81(3):449-62.
    [3]Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction[J]. Lancet,1998,351(9106):857-61.
    [4]Rohan D, Buggy DJ, Crowley S, et al. Increased incidence of postoperative cognitive dysfunction 24 hr after minor surgery in the elderly[J]. Can J Anaesth,2005,52(2):137-42.
    [5]Bekker AY, Weeks EJ. Cognitive function after anaesthesia in the elderly[J]. Best Pract Res Clin Anaesthesiol,2003,17(2):259-72.
    [6]Abildstrom H, Rasmussen LS, Rentowl P, et al. Cognitive dysfunction 1-2 years after non-cardiac surgery in the elderly. ISPOCD group. International Study of Post-Operative Cognitive Dysfunction[J]. Acta Anaesthesiol Scand,2000,44(10):1246-51.
    [7]Culley DJ, Baxter MG, Crosby CA, et al. Impaired acquisition of spatial memory 2 weeks after isoflurane and isoflurane-nitrous oxide anesthesia in aged rats[J]. Anesth Analg,2004,99(5): 1393-7.
    [8]Sauer AM, Kalkman C, van DD. Postoperative cognitive decline. J Anesth,2009,23(2):256-9.
    [9]Bryson GL, Wyand A. Evidence-based clinical update:general anesthesia and the risk of delirium and postoperative cognitive dysfunction[J]. Can J Anaesth,2006,53(7):669-77.
    [10]Selwood A, Orrell M. Long term cognitive dysfunction in older people after non-cardiac surgery[J]. BMJ,2004,328(7432):120-1.
    [11]Rasmussen LS, Johnson T, Kuipers HM, et al. Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients[J]. Acta Anaesthesiol Scand,2003,47(3):260-6.
    [12]Perouansky M. Liaisons dangereuses? General anaesthetics and long-term toxicity in the CNS[J]. Eur J Anaesthesiol,2007,24(2):107-15.
    [13]Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits[J]. J Neurosci,2003,23(3):876-82.
    [14]Ren Y, Zhang FJ, Xue QS, et al. Bilateral inhibition of gamma-aminobutyric acid type A receptor function within the basolateral amygdala blocked propofol-induced amnesia and activity-regulated cytoskeletal protein expression inhibition in the hippocampus[J]. Anesthesiology,2008,109(5):775-81.
    [15]Kozinn J, Mao L, Arora A, Yang L, et al. Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol[J]. Anesthesiology,2006,105(6):1182-91.
    [16]Kingston S, Mao L, Yang L, et al. Propofol inhibits phosphorylation of N-methyl-D-aspartate receptor NR1 subunits in neurons[J]. Anesthesiology,2006,104(4):763-9.
    [17]Fibuch EE, Wang JQ. Inhibition of the MAPK/ERK cascade:a potential transcription-dependent mechanism for the amnesic effect of anesthetic propofol[J]. Neurosci Bull,2007,23(2):119-24.
    [18]Minville V, Fourcade O, Girolami JP, et al. Opioid-induced hyperalgesia in a mice model of orthopaedic pain:preventive effect of ketamine[J]. Br J Anaesth,2010,104(2):231-8.
    [19]权翔,叶铁虎.异丙酚遗忘作用的加工分离程序研究和功能性磁共振成像研究[D].北京:北京协和医院,2008:
    [20]谭宏宇,叶铁虎.氯胺酮和异丙酚对大鼠海马神经元电压门控性钙通道的作用[D].北京:北京协和医院,2007:
    [21]邹亮,叶铁虎.镇痛剂量氯胺酮遗忘作用的加工分离程序研究和功能性磁共振成像研究[D].北京:北京协和医院,2009:
    [22]Haseneder R, Kratzer S, von ML, Eder M, Kochs E, Rammes G. Isoflurane and sevoflurane dose-dependently impair hippocampal long-term potentiation[J]. Eur J Pharmacol,2009, 623(1-3):47-51.
    [23]Wentlandt K, Samoiloya M, Carlen PL, et al. General anesthetics inhibit gap junction communication in cultured organotypic hippocampal slices[J]. Anesth Analg,2006,102(6): 1692-8.
    [24]Gygi SP, Rochon Y, Franza BR, et al. Correlation between protein and mRNA abundance in yeast[J]. Mol Cell Biol,1999,19(3):1720-30.
    [25]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J]. Electrophoresis,1995,16(7):1090-4.
    [26]Futterer CD, Maurer MH, Schmitt A, et al. Alterations in rat brain proteins after desflurane anesthesia[J]. Anesthesiology,2004,100(2):302-8.
    [27]Kalenka A, Hinkelbein J, Feldmann RE Jr, et al. The effects of sevoflurane anesthesia on rat brain proteins:a proteomic time-course analysis[J]. Anesth Analg,2007,104(5):1129-35.
    [28]Iohom G, Szarvas S, Larney V, et al. Perioperative plasma concentrations of stable nitric oxide products are predictive of cognitive dysfunction after laparoscopic cholecystectomy[J]. Anesth Analg,2004,99(4):1245-52.
    [29]Linstedt U, Meyer O, Kropp P, et al. Serum concentration of S-100 protein in assessment of cognitive dysfunction after general anesthesia in different types of surgery[J]. Acta Anaesthesiol Scand,2002,46(4):384-9.
    [30]Rasmussen LS, Christiansen M, Eliasen K, et al. Biochemical markers for brain damage after cardiac surgery-time profile and correlation with cognitive dysfunction[J]. Acta Anaesthesiol Scand,2002,46(5):547-51.
    [31]Sandier SJ, Figaji AA, Adelson PD. Clinical applications of biomarkers in pediatric traumatic brain injury[J]. Childs Nerv Syst,2010,26(2):205-13.
    [32]Korfias S, Papadimitriou A, Stranjalis G, et al. Serum biochemical markers of brain injury[J]. Mini Rev Med Chem,2009,9(2):227-34.
    [33]Kochanek PM, Berger RP, Bayir H, et al. Biomarkers of primary and evolving damage in traumatic and ischemic brain injury:diagnosis, prognosis, probing mechanisms, and therapeutic decision making[J]. Curr Opin Crit Care,2008,14(2):135-41.
    [34]Morris R. Developments of a water-maze procedure for studying spatial learning in the rat[J]. J Neurosci Methods,1984,11(1):47-60.
    [35]Zhao H, Li Q, Zhang Z, et al. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus[J]. Brain Res,2009,1256:111-22.
    [36]Zhao H, Li Q, Pei X, et al. Long-term ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus[J]. Behav Brain Res,2009,201 (2):311-7.
    [37]Zhang J, Kang.B, Tan X, et al. Comparative analysis of the protein profiles from primary gastric tumors and their adjacent regions:MAWBP could be a new protein candidate involved in gastric cancer[J]. J Proteome Res,2007,6(11):4423-32.
    [38]刘毓和,吴新民,杜敏逸.咪唑安定、异丙酚和氯胺酮对老年大鼠认知功能的影响[J].中华麻醉学杂志,2006,26(4):315-317.
    [39]van DD, Keizer AM, Diephuis JC, et al. Neurocognitive dysfunction after coronary artery bypass surgery:a systematic review[J]. J Thorac Cardiovasc Surg,2000,120(4):632-9.
    [40]汤慈美.认知功能与认知功能障碍[J].中华老年医学杂志,2006,25(7):497-499.
    [41]D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory[J]. Brain Res Brain Res Rev,2001,36(1):60-90.
    [42]Cain DP, Ighanian K, Boon F. Individual and combined manipulation of muscarinic, NMDA, and benzodiazepine receptor activity in the water maze task:implications for a rat model of Alzheimer dementia[J]. Behav Brain Res,2000,111(1-2):125-37.
    [43]Whitlock JR, Heynen AJ, Shuler MG, et al. Learning induces long-term potentiation in the hippocampus[J]. Science,2006,313(5790):1093-7.
    [44]Marrone DF, Petit TL. The role of synaptic morphology in neural plasticity:structural interactions underlying synaptic power[J]. Brain Res Brain Res Rev,2002,38(3):291-308.
    [45]Liou YC, Sun A, Ryo A, et al. Role of the prolyl isomerase Pinl in protecting against age-dependent neurodegeneration[J]. Nature,2003,424(6948):556-61.
    [46]Lim J, Lu KP. Pinning down phosphorylated tau and tauopathies[J]. Biochim Biophys Acta, 2005,1739(2-3):311-22.
    [47]Nowotny P, Bertelsen S, Hinrichs AL, et al. Association studies between common variants in prolyl isomerase Pinl and the risk for late-onset Alzheimer's disease[J]. Neurosci Lett,2007, 419(1):15-7.
    [48]Gothel SF, Marahiel MA. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts[J]. Cell Mol Life Sci,1999,55(3):423-36.
    [49]Ayala G, Wang D, Wulf G, et al. The prolyl isomerase Pinl is a novel prognostic marker in human prostate cancer[J]. Cancer Res,2003,63(19):6244-51.
    [50]Bao L, Kimzey A, Sauter G, et al. Prevalent overexpression of prolyl isomerase Pinl in human cancers[J]. Am J Pathol,2004,164(5):1727-37.
    [51]Sultana R, Perluigi M, Butterfield DA. Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD:role of Abeta in pathogenesis[J]. Acta Neuropathol,2009,118(1):131-50.
    [52]Wang S, Simon BP, Bennett DA, et al. The significance of Pinl in the development of Alzheimer's disease[J]. J Alzheimers Dis,2007,11(1):13-23.
    [53]Pastorino L, Sun A, Lu PJ, et al. The prolyl isomerase Pinl regulates amyloid precursor protein processing and amyloid-beta production[J]. Nature,2006,440(7083):528-34.
    [54]Maruszak A, Safranow K, Gustaw K, et al. PIN1 gene variants in Alzheimer's disease[J]. BMC Med Genet,2009,10:115.
    [55]Chew CS, Chen X, Parente JA Jr, et al. Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo[J]. J Cell Sci,2002,115(Pt 24):4787-99.
    [56]Grunewald TG, Butt E. The LIM and SH3 domain protein family:structural proteins or signal transducers or both[J]. Mol Cancer,2008,7:31.
    [57]Phillips GR, Anderson TR, Florens L, et al. Actin-binding proteins in a postsynaptic preparation:Lasp-1 is a component of central nervous system synapses and dendritic spines[J]. J Neurosci Res,2004,78(1):38-48.
    [58]Qualmann B, Boeckers TM, Jeromin M, et al. Linkage of the actin cytoskeieton to the postsynaptic density via direct interactions of Abpl with the ProSAP/Shank family[J]. J Neurosci,2004,24(10):2481-95.
    [59]Li K, Hornshaw MP, van MJ, et al. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins[J]. J Proteome Res,2005,4(3):725-33.
    [60]Walikonis RS, Jensen ON, Mann M, et al. Identification of proteins in the postsynaptic density fraction by mass spectrometry[J]. J Neurosci,2000,20(11):4069-80.
    [61]Nakagawa T, Engler JA, Sheng M. The dynamic turnover and functional roles of alpha-actinin in dendritic spines[J]. Neuropharmacology,2004,47(5):734-45.
    [62]Krueger J, Chou FL, Glading A, et al. Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates extracellular signal-regulated kinase-dependent transcription and cell proliferation[J]. Mol Biol Cell,2005,16(8):3552-61.
    [63]Glading A, Koziol JA, Krueger J, et al. PEA-15 inhibits tumor cell invasion by binding to extracellular signal-regulated kinase 1/2[J]. Cancer Res,2007,67(4):1536-44.
    [64]Fiory F, Formisano P, Perruolo G, et al. Frontiers:PED/PEA-15, a multifunctional protein controlling cell survival and glucose metabolism[J]. Am J Physiol Endocrinol Metab,2009, 297(3):E592-601.
    [65]Ramos JW, Townsend DA, Piarulli D, et al. Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities[J]. BMC Neurosci,2009,10:134.
    [66]Bamburg JR, Bloom GS. Cytoskeletal pathologies of Alzheimer disease[J]. Cell Motil Cytoskeleton,2009,66(8):635-49.
    [67]Ostrowski M, Grzanka A, Izdebska M. The role of actin in Alzheimer's disease[J]. Postepy Hig Med Dosw (Online),2005,59:224-8.
    [68]Sultana R, Boyd-Kimball D, Cai J, et al. Proteomics analysis of the Alzheimer's disease hippocampal proteome[J]. J Alzheimers Dis,2007,11(2):153-64.
    [69]Jaworski J, Kapitein LC, Gouveia SM, et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity [J]. Neuron,2009,61(1):85-100.
    [70]Feit H, Kelly P, Cotman CW. Identification of a protein related to tubulin in the postsynaptic density[J]. Proc Natl Acad Sci U S A,1977,74(3):1047-51.
    [71]Kelly PT, Cotman CW. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol,1978,79(1):173-83.
    [72]Benitez-King G, Ramirez-Rodriguez G, Ortiz L, Meza I. The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia[J]. Curr Drug Targets CNS Neurol Disord,2004,3(6):515-33.
    [73]Lo LP, Liu SH, Chang YC. Assembling microtubules disintegrate the postsynaptic density in vitro[J]. Cell Motil Cytoskeleton,2007,64(1):6-18.
    [74]Hoskison MM, Shuttleworth CW. Microtubule disruption, not calpain-dependent loss of MAP2, contributes to enduring NMDA-induced dendritic dysfunction in acute hippocampal slices[J]. Exp Neurol,2006,202(2):302-12.
    [75]Sarmiere PD, Bamburg JR. Regulation of the neuronal actin cytoskeleton by ADF/cofilin[J]. J Neurobiol,2004,58(1):103-17.
    [76]Meng Y, Takahashi H, Meng J, et al. Regulation of ADF/cofilin phosphorylation and synaptic function by LIM-kinase[J]. Neuropharmacology,2004,47(5):746-54.
    [77]Maloney MT, Bamburg JR. Cofilin-mediated neurodegeneration in Alzheimer's disease and other amyloidopathies[J]. Mol Neurobiol,2007,35(1):21-44.
    [78]Whiteman IT, Gervasio OL, Cullen KM, et al. Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations[J]. J Neurosci,2009,29(41):12994-3005.
    [79]Bamburg JR, Wiggan OP. ADF/cofilin and actin dynamics in disease[J]. Trends Cell Biol, 2002,12(12):598-605.
    [80]Galiano MR, Andrieux A, Deloulme JC, et al. Myelin basic protein functions as a microtubule stabilizing protein in differentiated oligodendrocytes[J]. J Neurosci Res,2006,84(3):534-41.
    [81]Harauz G, Libich DS. The classic basic protein of myelin-conserved structural motifs and the dynamic molecular barcode involved in membrane adhesion and protein-protein interactions[J]. Curr Protein Pept Sci,2009,10(3):196-215.
    [82]Huang Z, Liu J, Cheung PY, Chen C. Long-term cognitive impairment and myelination deficiency in a rat model of perinatal hypoxic-ischemic brain injury[J]. Brain Res,2009,1301: 100-9.
    [83]Schneider A, Plessmann U, Weber K. Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated[J]. J Cell Sci,1997,110 (Pt 4):431-7.
    [84]Tobaben S, Thakur P, Fernandez-Chacon R, et al. A trimeric protein complex functions as a synaptic chaperone machine[J]. Neuron,2001,31(6):987-99.
    [85]Ding Q, Vaynman S, Souda P, et al. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis[J]. Eur J Neurosci,2006,24(5):1265-76.
    [86]Morimoto RI, Kline MP, Bimston DN, et al. The heat-shock response:regulation and function of heat-shock proteins and molecular chaperones[J]. Essays Biochem,1997,32:17-29.
    [87]Gerges NZ, Tran IC, Backos DS, et al. Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors[J]. J Neurosci,2004,24(20): 4758-66.
    [88]Hattori T, Takei N, Mizuno Y, et al. Neurotrophic and neuroprotective effects of neuron-specific enolase on cultured neurons from embryonic rat brain[J]. Neurosci Res,1995, 21(3):191-8.
    [89]Li Q, Zhang R, Ge YL, et al. Effects of neuregulin on expression of MMP-9 and NSE in brain of ischemia/reperfusion rat[J]. J Mol Neurosci,2009,38(2):207-15.
    [90]Rhee SG, Kang SW, Netto LE, et al. A family of novel peroxidases, peroxiredoxins[J]. Biofactors,1999,10(2-3):207-9.
    [91]Hattori F, Oikawa S. Peroxiredoxins in the central nervous system[J]. Subcell Biochem,2007, 44:357-74.
    [92]Krapfenbauer K, Engidawork E, Cairns N, et al. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders[J]. Brain Res,2003,967(1-2):152-60.
    [93]Sasaki T, Takai Y. The Rho small G protein family-Rho GDI system as a temporal and spatial determinant for cytoskeletal control[J]. Biochem Biophys Res Commun,1998,245(3):641-5.
    [94]Park JB, Kim JS, Lee JY, et al. GTP binds to Rab3A in a complex with Ca2+/calmodulin[J]. Biochem J,2002,362(Pt 3):651-7.
    [95]Chou JH, Jahn R. Binding of Rab3A to synaptic vesicles[J]. J Biol Chem,2000,275(13): 9433-40.
    [96]Araki S, Kikuchi A, Hata Y, et al. Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor[J]. J Biol Chem,1990,265(22):13007-15.
    [97]Ishizaki H, Miyoshi J, Kamiya H, et al. Role of rab GDP dissociation inhibitor alpha in regulating plasticity of hippocampal neurotransmission[J]. Proc Natl Acad Sci U S A,2000, 97(21):11587-92.
    [98]Marin R, Ramirez CM, Gonzalez M, et al. Voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxicity and interacts with plasma membrane estrogen receptor alpha in septal and hippocampal neurons[J]. Mol Membr Biol,2007,24(2):148-60.
    [99]陈晨,桂波,钱燕宁.不同剂量氯胺酮对老年大鼠认知功能的影响[J].中华麻醉学杂志,2008,28(7):590-593.
    [100]Enomoto T, Floresco SB. Disruptions in spatial working memory, but not short-term memory, induced by repeated ketamine exposure[J]. Prog Neuropsychopharmacol Biol Psychiatry,2009, 33(4):668-75.
    [101]Pitsikas N, Boultadakis A, Sakellaridis N. Effects of sub-anesthetic doses of ketamine on rats' spatial and non-spatial recognition memory[J]. Neuroscience,2008,154(2):454-60.
    [102]Hudetz JA, Pagel PS. Neuroprotection by ketamine:a review of the experimental and clinical evidence[J]. J Cardiothorac Vasc Anesth,2010,24(1):131-42.
    [103]Shibuta S, Varathan S, Mashimo T. Ketamine and thiopental sodium:individual and combined neuroprotective effects on cortical cultures exposed to NMDA or nitric oxide[J]. Br J Anaesth, 2006,97(4):517-24.
    [104]Chang ML, Yang J, Kem S, et al. Nicotinamide and ketamine reduce infarct volume and DNA fragmentation in rats after brain ischemia and reperfusion[J]. Neurosci Lett,2002,322(3): 137-40.
    [105]Zhang JZ, Jing L, Guo FY, et al. Inhibitory effect of ketamine on phosphorylation of the extracellular signal-regulated kinase 1/2 following brain ischemia and reperfusion in rats with hyperglycemia[J]. Exp Toxicol Pathol,2007,59(3-4):227-35.
    [106]Zou X, Patterson TA, Sadovova N, et al. Potential neurotoxicity of ketamine in the developing rat brain[J]. Toxicol Sci,2009,108(1):149-58.
    [107]Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function[J]. Anesth Analg,2008,106(6):1681-707.
    [108]Wang C, Sadovova N, Fu X, et al. The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture[J]. Neuroscience,2005,132(4):967-77.
    [109]Jevtovic-Todorovic V, Carter LB. The anesthetics nitrous oxide and ketamine are more neurotoxic to old than to young rat brain[J]. Neurobiol Aging,2005,26(6):947-56.
    [110]Zhang L, Zhao ZX. The impact of synapsins on synaptic plasticity and cognitive behaviors[J]. Neurosci Bull,2006,22(1):63-7.
    [111]Langer SZ. Presynaptic autoreceptors regulating transmitter release[J]. Neurochem Int,2008, 52(1-2):26-30.
    [112]Catterall WA, Few AP. Calcium channel regulation and presynaptic plasticity[J]. Neuron,2008, 59(6):882-901.
    [113]Carroll RC, Beattie EC, von ZM, et al. Role of AMPA receptor endocytosis in synaptic plasticity [J]. Nat Rev Neurosci,2001,2(5):315-24.
    [114]Gomez-Pinilla F, So V, Kesslak JP. Spatial learning induces neurotrophin receptor and synapsin I in the hippocampus [J]. Brain Res,2001,904(1):13-9.
    [115]Kesslak JP, So V, Choi J, Cotman CW, et al. Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid:a mechanism to facilitate encoding and circuit maintenance[J]. Behav Neurosci,1998,112(4):1012-9.
    [116]Hall J, Thomas KL, Everitt BJ. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning[J]. Nat Neurosci,2000,3(6):533-5.
    [117]Rosahl TW, Geppert M, Spillane D, et al. Short-term synaptic plasticity is altered in mice lacking synapsin I[J]. Cell,1993,75(4):661-70.
    [118]Zhong P, Liu W, Gu Z, et al. Serotonin facilitates long-term depression induction in prefrontal cortex via p38 MAPK/Rab5-mediated enhancement of AMPA receptor internalization[J]. J Physiol,2008,586(Pt 18):4465-79.
    [119]Kelly BL, Ferreira A. beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons[J]. J Biol Chem,2006,281(38): 28079-89.
    [120]Kelly BL, Vassar R, Ferreira A. Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease[J]. J Biol Chem,2005,280(36):31746-53.
    [121]Yao PJ, Zhu M, Pyun EI, et al. Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease[J]. Neurobiol Dis,2003,12(2):97-109.
    [122]Kelly BL, Ferreira A. Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons[J]. Neuroscience,2007,147(1):60-70.
    [123]Gottschalk W, Pozzo-Miller LD, Figurov A, et al. Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus[J]. J Neurosci,1998,18(17):6830-9.
    [124]Vawter MP, Thatcher L, Usen N, et al. Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia[J]. Mol Psychiatry,2002,7(6):571-8.
    [125]Newton AJ, Kirchhausen T, Murthy VN. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis[J]. Proc Natl Acad Sci U S A,2006,103(47): 17955-60.
    [126]Takei K, McPherson PS, Schmid SL, et al. Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals[J]. Nature,1995,374(6518): 186-90.
    [127]Damke H, Binns DD, Ueda H, et al. Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages[J]. Mol Biol Cell,2001,12(9):2578-89.
    [128]Blanpied TA, Scott DB, Ehlers MD. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines[J]. Neuron,2002,36(3):435-49.
    [129]Moss SJ, Smart TG. Constructing inhibitory synapses. Nat Rev Neurosci,2001,2(4):240-50.
    [130]Kelly BL, Ferreira A. beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons[J]. J Biol Chem,2006,281(38): 28079-89.
    [131]Krishnan KS, Rikhy R, Rao S, et al. Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling[J]. Neuron,2001,30(1):197-210.
    [132]Walters BJ, Campbell SL, Chen PC, et al. Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity[J]. Mol Cell Neurosci,2008,39(4):539-48.
    [133]Rogers N, Paine S, Bedford L, et al. Review:the ubiquitin-proteasome system:contributions to cell death or survival in neurodegeneration[J]. Neuropathol Appl Neurobiol,2010,36(2): 113-24.
    [134]Sakurai M, Sekiguchi M, Zushida K, et al. Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin C-terminal hydrolase L1 gene[J]. Eur J Neurosci,2008,27(3):691-701.
    [135]Ardley HC, Hung CC, Robinson PA. The aggravating role of the ubiquitin-proteasome system in neurodegeneration[J]. FEBS Lett,2005,579(3):571-6.
    [136]Choi J, Levey AI, Weintraub ST, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases[J]. J Biol Chem,2004,279(13):13256-64.
    [137]Layfield R, Cavey JR, Lowe J. Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders[J]. Ageing Res Rev,2003,2(4):343-56.
    [138]Wood MA, Kaplan MP, Brensinger CM, et al. Ubiquitin C-terminal hydrolase L3 (Uch(?)3) is involved in working memory[J]. Hippocampus,2005,15(5):610-21.
    [139]Cookson MR, Hardy J. The persistence of memory [J]. N Engl J Med,2006,355(25):2697-8.
    [140]Gong B, Cao Z, Zheng P, et al. Ubiquitin hydrolase Uch-Ll rescues beta-amyloid-induced decreases in synaptic function and contextual memory[J]. Cell,2006,126(4):775-88.
    [141]Hirabayashi M, Inoue K, Tanaka K, et al. VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration[J]. Cell Death Differ,2001,8(10):977-84.
    [142]Rabinovich E, Kerem A, Frohlich KU, et al. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation[J]. Mol Cell Biol,2002, 22(2):626-34.
    [143]Asai T, Tomita Y, Nakatsuka S, et al. VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line[J]. Jpn J Cancer Res,2002,93(3): 296-304.
    [144]Dai RM, Li CC. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation [J]. Nat Cell Biol,2001,3(8):740-4.
    [145]Liscic RM. Frontotemporal dementias:update on recent developments in molecular genetics and neuropathology[J]. Arh Hig Rada Toksikol,2009,60(1):117-22.
    [146]Halawani D, Tessier S, Anzellotti D, et al. Identification of Caspase-6-mediated processing of the valosin containing protein (p97) in Alzheimer's disease:a novel link to dysfunction in ubiquitin proteasome system-mediated protein degradation[J]. J Neurosci,2010,30(17): 6132-42.
    [147]Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein:GFAP-thirty-one years (1969-2000) [J]. Neurochem Res,2000,25(9-10):1439-51.
    [148]Baydas G, Tuzcu M. Protective effects of melatonin against ethanol-induced reactive gliosis in hippocampus and cortex of young and aged rats[J]. Exp Neurol,2005,194(1):175-81.
    [149]Witcher MR, Park YD, Lee MR, et al. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses[J]. Glia,2010,58(5):572-87.
    [150]Halassa MM, Fellin T, Takano H,et al. Synaptic islands defined by the territory of a single astrocyte[J]. J Neurosci,2007,27(24):6473-7.
    [151]Haber M, Zhou L, Murai KK. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses[J]. J Neurosci,2006,26(35):8881-91.
    [152]Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes[J]. J Neurosci,1999,19(16):6897-906.
    [153]Araque A, Parpura V, Sanzgiri RP, et al. Tripartite synapses:glia, the unacknowledged partner[J]. Trends Neurosci,1999,22(5):208-15.
    [154]Gomi H, Yokoyama T, Itohara S. Role of GFAP in morphological retention and distribution of reactive astrocytes induced by scrapie encephalopathy in mice. Brain Res,2010,1312:156-67.
    [155]Korolainen MA, Auriola S, Nyman TA, et al. Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain[J]. Neurobiol Dis,2005,20(3):858-70.
    [156]Reyes JF, Reynolds MR, Horowitz PM, et al. A possible link between astrocyte activation and tau nitration in Alzheimer's disease[J]. Neurobiol Dis,2008,31(2):198-208.
    [157]Harpin ML, Delaere P, Javoy-Agid F, et al. Glial fibrillary acidic protein and beta A4 protein deposits in temporal lobe of aging brain and senile dementia of the Alzheimer type:relation with the cognitive state and with quantitative studies of senile plaques and neurofibrillary tangles[J]. J Neurosci Res,1990,27(4):587-94.
    [158]O'Dowd BS, Gibbs ME, Sedman GL, et al. Astrocytes implicated in the energizing of intermediate memory processes in neonate chicks[J]. Brain Res Cogn Brain Res,1994,2(2): 93-102.
    [159]Bradbury EJ, Kershaw TR, Marchbanks RM, et al. Astrocyte transplants alleviate lesion induced memory deficits independently of cholinergic recovery[J]. Neuroscience,1995,65(4): 955-72.
    [160]Gibbs ME, Hertz L. Inhibition of astrocytic energy metabolism by D-lactate exposure impairs memory[J]. Neurochem Int,2008,52(6):1012-8.
    [161]Kobayashi M, Masaki T, Hori K, et al. Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory[J]. Neuroscience,2005,133(2):471-84.
    [162]Kobayashi M, Takamatsu K, Saitoh S, et al. Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus[J]. Biochem Biophys Res Commun,1992,189(1):511-7.
    [163]Amici M, Doherty A, Jo J, et al. Neuronal calcium sensors and synaptic plasticity [J]. Biochem Soc Trans,2009,37(Pt 6):1359-63.
    [164]Supnet C, Bezprozvanny I. Neuronal Calcium Signaling, Mitochondrial Dysfunction, and Alzheimer's Disease[J]. J Alzheimers Dis,2010.
    [165]Oh DY, Cho JH, Park SY, et al. A novel role of hippocalcin in bFGF-induced neurite outgrowth of H19-7 cells[J]. J Neurosci Res,2008,86(7):1557-65.
    [166]Noguchi H, Kobayashi M, Miwa N, et al. Lack of hippocalcin causes impairment in Ras/extracellular signal-regulated kinase cascade via a Raf-mediated activation process[J]. J Neurosci Res,2007,85(4):837-44.
    [167]Korhonen L, Hansson I, Kukkonen JP, et al. Hippocalcin protects against caspase-12-induced and age-dependent neuronal degeneration[J]. Mol Cell Neurosci,2005,28(1):85-95.
    [168]Mercer EA, Korhonen L, Skoglosa Y, et al. NAIP interacts with hippocalcin and protects neurons against calcium-induced cell death through caspase-3-dependent and-independent pathways[J]. EMBO J,2000,19(14):3597-607.
    [169]Masuo Y, Ogura A, Kobayashi M, et al. Hippocalcin protects hippocampal neurons against excitotoxin damage by enhancing calcium extrusion[J]. Neuroscience,2007,145(2):495-504.
    [170]Yeung LY, Wai MS, Fan M, et al. Hyperphosphorylated tau in the brains of mice and monkeys with long-term administration of ketamine[J]. Toxicol Lett,2010,193(2):189-93.
    [171]Jevtovic-Todorovic V. General anesthetics and the developing brain:friends or foes[J]. J Neurosurg Anesthesiol,2005,17(4):204-6.
    [172]Zhang C, Shen W, Zhang G. N-methyl-D-aspartate receptor and L-type voltage-gated Ca(2+) channel antagonists suppress the release of cytochrome c and the expression of procaspase-3 in rat hippocampus after global brain ischemia[J]. Neurosci Lett,2002,328(3):265-8.
    [173]Koerner IP, Brambrink AM. Brain protection by anesthetic agents[J]. Curr Opin Anaesthesiol, 2006,19(5):481-6.
    [1]Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction[J]. Lancet,1998,351(9106):857-61.
    [2]Rohan D, Buggy DJ, Crowley S, et al. Increased incidence of postoperative cognitive dysfunction 24 hr after minor surgery in the elderly[J]. Can J Anaesth,2005,52(2):137-42.
    [3]Bekker AY, Weeks EJ. Cognitive function after anaesthesia in the elderly[J]. Best Pract Res Clin Anaesthesiol,2003,17(2):259-72.
    [4]Abildstrom H, Rasmussen LS, Rentowl P, et al. Cognitive dysfunction 1-2 years after non-cardiac surgery in the elderly. ISPOCD group. International Study of Post-Operative Cognitive Dysfunction[J]. Acta Anaesthesiol Scand,2000,44(10):1246-51.
    [5]van DD, Keizer AM, Diephuis JC, et al. Neurocognitive dysfunction after coronary artery bypass surgery:a systematic review[J]. J Thorac Cardiovasc Surg,2000,120(4):632-9.
    [6]汤慈美.认知功能与认知功能障碍[J].中华老年医学杂志,2006,25(7):497-499.
    [7]Parikh SS, Chung F. Postoperative delirium in the elderly[J]. Anesth Analg,1995,80(6): 1223-32.
    [8]Dodds C, Allison J. Postoperative cognitive deficit in the elderly surgical patient[J]. Br J Anaesth,1998,81(3):449-62.
    [9]Newman S, Stygall J, Hirani S, et al. Postoperative cognitive dysfunction after noncardiac surgery:a systematic review[J]. Anesthesiology,2007,106(3):572-90.
    [10]Anthony JC, LeResche L. Niaz U.et al. Limits of the'Mini-Mental State'as a screening test for dementia and delirium among hospital patients[J]. Psychol Med,1982,12(2):397-408.
    [11]贾宝森,张宏.异氟醚及七氟醚复合麻醉下老年患者脑氧饱和度与术后认知功能的关系[J].中华麻醉学杂志,2004,24(5):348-351.
    [12]Iohom G, Szarvas S, Larney V, et al. Perioperative plasma concentrations of stable nitric oxide products are predictive of cognitive dysfunction after laparoscopic cholecystectomy[J]. Anesth Analg,2004,99(4):1245-52, table of contents.
    [13]Linstedt U, Meyer O, Kropp P, et al. Serum concentration of S-100 protein in assessment of cognitive dysfunction after general anesthesia in different types of surgery [J]. Acta Anaesthesiol Scand,2002,46(4):384-9.
    [14]Rasmussen LS, Christiansen M, Eliasen K, et al. Biochemical markers for brain damage after cardiac surgery-time profile and correlation with cognitive dysfunction[J]. Acta Anaesthesiol Scand,2002,46(5):547-51.
    [15]Chung F, Seyone C, Dyck B, et al. Age-related cognitive recovery after general anesthesia[J]. Anesth Analg,1990,71(3):217-24.
    [16]Selwood A, Orrell M. Long term cognitive dysfunction in older people after non-cardiac surgery[J]. BMJ,2004,328(7432):120-1.
    [17]Biedler A, Juckenhofel S, Larsen R, et al. [Postoperative cognition disorders in elderly patients. The results of the "International Study of Postoperative Cognitive Dysfunction" ISPOCD 1)] [J]. Anaesthesist,1999,48(12):884-95.
    [18]Monk TG, Weldon BC, Garvan CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery[J]. Anesthesiology,2008,108(1):18-30.
    [19]Price CC, Garvan CW, Monk TG. Type and severity of cognitive decline in older adults after noncardiac surgery [J]. Anesthesiology,2008,108(1):8-17.
    [20]Ancelin ML, de Roquefeuil G, Ledesert B, et al. Exposure to anaesthetic agents, cognitive functioning and depressive symptomatology in the elderly[J]. Br J Psychiatry,2001,178: 360-6.
    [21]Canet J, Raeder J, Rasmussen LS, et al. Cognitive dysfunction after minor surgery in the elderly[J]. Acta Anaesthesiol Scand,2003,47(10):1204-10.
    [22]Grichnik KP, Ijsselmuiden AJ, D'Amico TA, et al. Cognitive decline after major noncardiac operations:a preliminary prospective study [J]. Ann Thorac Surg,1999,68(5):1786-91.
    [23]Forette F, Seux ML, Staessen JA, et al. The prevention of dementia with antihypertensive treatment:new evidence from the Systolic Hypertension in Europe (Syst-Eur) study[J]. Arch Intern Med,2002,162(18):2046-52.
    [24]Kuo HK, Jones RN, Milberg WP, et al. Effect of blood pressure and diabetes mellitus on cognitive and physical functions in older adults:a longitudinal analysis of the advanced cognitive training for independent and vital elderly cohort[J]. J Am Geriatr Soc,2005,53(7): 1154-61.
    [25]Fontbonne A, Berr C, Ducimetiere P, et al. Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects:results of the Epidemiology of Vascular Aging Study[J]. Diabetes Care,2001,24(2):366-70.
    [26]蔡一榕,薛张纲,朱彪.患者术后认知功能障碍的危险因素分析[J].临床麻醉学杂志,2006,22(8):608-610.
    [27]Byrick RJ, Kay JC, Mazer CD, et al. Dynamic characteristics of cerebral lipid microemboli: videomicroscopy studies in rats[J]. Anesth Analg,2003,97(6):1789-94.
    [28]Kivipelto M, Helkala EL, Hanninen T, et al. Midlife vascular risk factors and late-life mild cognitive impairment:A population-based study[J]. Neurology,2001,56(12):1683-9.
    [29]Abildstrom H, Christiansen M, Siersma VD, et al. Apolipoprotein E genotype and cognitive dysfunction after noncardiac surgery[J]. Anesthesiology,2004,101(4):855-61.
    [30]Deary IJ, Whiteman MC, Pattie A, et al. Cognitive change and the APOE epsilon 4 allele[J]. Nature,2002,418(6901):932.
    [31]Dik MG, Jonker C, Bouter LM, et al. APOE-epsilon4 is associated with memory decline in cognitively impaired elderly [J]. Neurology,2000,54(7):1492-7.
    [32]Dik MG, Deeg DJ, Bouter LM, et al. Stroke and apolipoprotein E epsilon4 are independent risk factors for cognitive decline:A population-based study[J]. Stroke,2000,31(10):2431-6.
    [33]Lelis RG, Krieger JE, Pereira AC, et al. Apolipoprotein E4 genotype increases the risk of postoperative cognitive dysfunction in patients undergoing coronary artery bypass graft surgery[J]. J Cardiovasc Surg (Torino),2006,47(4):451-6.
    [34]Tagarakis GI, Tsolaki-Tagaraki F, Tsolaki M, et al. The role of apolipoprotein E in cognitive decline and delirium after bypass heart operations[J]. Am J Alzheimers Dis Other Demen. 2007.22(3):223-8.
    [35]McDonagh DL, Mathew JP, White WD, et al. Cognitive Function after Major Noncardiac Surgery, Apolipoprotein E4 Genotype, and Biomarkers of Brain Injury[J]. Anesthesiology, 2010.
    [36]Gustafson Y, Brannstrom B, Berggren D, et al. A geriatric-anesthesiologic program to reduce acute confusional states in elderly patients treated for femoral neck fractures[J]. J Am Geriatr Soc,1991,39(7):655-62.
    [37]2nd BDG, Friedman SW. Depression in late life. Am Fam Physician,1979,20(5):91-6.
    [38]Hammon JW Jr, Stump DA, Kon ND, et al. Risk factors and solutions for the development of neurobehavioral changes after coronary artery bypass grafting[J]. Ann Thorac Surg,1997, 63(6):1613-8.
    [39]姜炬芳,邓五一,刘宗志,等.老年患者手术后精神障碍临床观察.中华临床医师杂志,2008,2(2):46-47.
    [40]Yin YQ, Luo AL, Guo XY, et al. Postoperative neuropsychological change and its underlying mechanism in patients undergoing coronary artery bypass grafting[J]. Chin Med J (Engl),2007, 120(22):1951-7.
    [41]Sauer AM, Kalkman C, van DD. Postoperative cognitive decline[J]. J Anesth,2009,23(2): 256-9.
    [42]Bryson GL, Wyand A. Evidence-based clinical update:general anesthesia and the risk of delirium and postoperative cognitive dysfunction[J]. Can J Anaesth,2006,53(7):669-77.
    [43]Williams-Russo P, Sharrock NE, Mattis S, et al. Cognitive effects after epidural vs general anesthesia in older adults. A randomized trial[J]. JAMA,1995,274(1):44-50.
    [44]Campbell DN, Lim M, Muir MK, et al. A prospective randomised study of local versus general anaesthesia for cataract surgery[J]. Anaesthesia,1993,48(5):422-8.
    [45]Wu CL, Hsu W, Richman JM, et al. Postoperative cognitive function as an outcome of regional anesthesia and analgesia[J]. Reg Anesth Pain Med,2004,29(3):257-68.
    [46]Rasmussen LS, Johnson T, Kuipers HM, et al. Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients[J]. Acta Anaesthesiol Scand,2003,47(3):260-6.
    [47]Perouansky M. Liaisons dangereuses? General anaesthetics and long-term toxicity in the CNS[J]. Eur J Anaesthesiol,2007,24(2):107-15.
    [48]Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits[J]. J Neurosci,2003,23(3):876-82.
    [49]Stemmelin J, Cassel JC, Will B, et al. Sensitivity to cholinergic drug treatments of aged rats with variable degrees of spatial memory impairment[J]. Behav Brain Res,1999,98(1):53-66.
    [50]Harrison FE, Hosseini AH, Dawes SM, et al. Ascorbic acid attenuates scopolamine-induced spatial learning deficits in the water maze[J]. Behav Brain Res,2009,205(2):550-8.
    [51]初春芹,桂波,陈玲.盐酸戊乙奎醚对老龄大鼠认知功能的影响.临床麻醉学杂志,2008,24,4.328-330.
    [52]Sanou J, Goodall G, Capuron L, et al. Cognitive sequelae of propofol anaesthesia[J]. Neuroreport,1996,7(6):1130-2.
    [53]Sanou J, Ilboudo D, Goodall G, et al. Evaluation of cognitive functions after anesthesia with propofol[J]. Ann Fr Anesth Reanim,1996,15(8):1155-61.
    [54]Lee IH, Culley DJ, Baxter MG, et al. Spatial memory is intact in aged rats after propofol anesthesia[J]. Anesth Analg,2008,107(4):1211-5.
    [55]刘秀芬,吴新民,刘毓和.丙泊酚全凭静脉麻醉对老龄大鼠空间认知能力的影响.临床麻醉学杂志,2008,24(9):791-4.
    [56]Jacobi J, Fraser GL, Coursin DB, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult[J]. Crit Care Med,2002,30(1):119-41.
    [57]Steele PM, Mauk MD. Inhibitory control of LTP and LTD:stability of synapse strength[J]. J Neurophysiol,1999,81(4):1559-66.
    [58]Mantz J, Lecharny JB, Laudenbach V, et al. Anesthetics affect the uptake but not the depolarization-evoked release of GABA in rat striatal synaptosomes[J]. Anesthesiology,1995, 82(2):502-11.
    [59]Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia[J]. Nature, 1994,367(6464):607-14.
    [60]Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones[J]. Br J Pharmacol,1991, 104(3):619-28.
    [61]Bai D, Pennefather PS, MacDonald JF, et al. The general anesthetic propofol slows deactivation and desensitization of GABA(A) receptors[J]. J Neurosci,1999,19(24): 10635-46.
    [62]Buggy DJ, Nicol B, Rowbotham DJ, et al. Effects of intravenous anesthetic agents on glutamate release:a role for GABAA receptor-mediated inhibition[J]. Anesthesiology,2000, 92(4):1067-73.
    [63]Lingamaneni R, Birch ML, Hemmings HC Jr. Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol[J]. Anesthesiology,2001,95(6):1460-6.
    [64]Kozinn J, Mao L, Arora A, et ai. Inhibition of giutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol[J]. Anesthesiology,2006,105(6):1182-91.
    [65]Kingston S, Mao L, Yang L, et al. Propofol inhibits phosphorylation of N-methyl-D-aspartate receptor NR1 subunits in neurons[J]. Anesthesiology,2006,104(4):763-9.
    [66]Fibuch EE, Wang JQ. Inhibition of the MAPK/ERK cascade:a potential transcription-dependent mechanism for the amnesic effect of anesthetic propofol[J]. Neurosci Bull,2007,23(2):119-24.
    [67]Orser BA, Bertlik M, Wang LY, et al. Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-D-aspartate subtype of glutamate receptor in cultured hippocampal neurones[J]. Br J Pharmacol,1995,116(2):1761-8.
    [68]Ouyang W, Wang G, Hemmings HC Jr. Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals[J]. Mol Pharmacol,2003,64(2): 373-81.
    [69]Lingamaneni R, Hemmings HC Jr. Differential interaction of anaesthetics and antiepileptic drugs with neuronal Na+ channels, Ca2+ channels, and GABA(A) receptors[J]. Br J Anaesth, 2003,90(2):199-211.
    [70]Friederich P, Benzenberg D, Urban BW. Ketamine and propofol differentially inhibit human neuronal K(+) channels[J]. Eur J Anaesthesiol,2001,18(3):177-83.
    [71]Morgan CJ, Mofeez A, Brandner B, et al. Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers[J]. Neuropsychopharmacology,2004,29(1): 208-18.
    [72]Wang JH, Fu Y, Wilson FA, et al. Ketamine affects memory consolidation:differential effects in T-maze and passive avoidance paradigms in mice[J]. Neuroscience,2006,140(3): 993-1002.
    [73]Hudetz JA, Iqbal Z, Gandhi SD, et al. Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery[J]. Acta Anaesthesiol Scand,2009,53(7):864-72.
    [74]Krauz VA, Mamchur VI. GABA-ergic mechanisms of the action of ketamine on the structures of the hippocampo-reticulo-neocortical system of the brain[J]. Farmakol Toksikol,1988,51(1): 29-31.
    [75]Salmi E, Langsjo JW, Aalto S, et al. Subanesthetic ketamine does not affect 11 C-flumazenil binding in humans[J]. Anesth Analg,2005,101(3):722-5.
    [76]Orser BA, Pennefather PS, MacDonald JF. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors[J]. Anesthesiology,1997,86(4):903-17.
    [77]Shimizu E, Tang YP, Rampon C, et al.NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation[J]. Science,2000,290(5494):1170-4.
    [78]Pringle AK, Iannotti F, Wilde GJ, et al. Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia[J]. Brain Res,1997,755(1):36-46.
    [79]Magee JC, Johnston D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons[J]. Science,1995,268(5208):301-4.
    [80]2nd WLE, Gingrich KJ, Kulli JC, Yang J. Ketamine blockade of voltage-gated sodium channels:evidence for a shared receptor site with local anesthetics[J]. Anesthesiology,2001, 95(6):1406-13.
    [81]Weinbroum AA, Geller E. Flumazenil improves cognitive and neuromotor emergence and attenuates shivering after halothane-, enflurane-and isoflurane-based anesthesia[J]. Can J Anaesth,2001,48(10):963-72.
    [82]Girdler NM, Lyne JP, Wallace R, et al. A randomised, controlled trial of cognitive and psychomotor recovery from midazolam sedation following reversal with oral flumazenil [J]. Anaesthesia,2002,57(9):868-76.
    [83]Rogers JF, Morrison AL, Nafziger AN, et al. Flumazenil reduces midazolam-induced cognitive impairment without altering pharmacokinetics[J]. Clin Pharmacol Ther,2002,72(6):711-7.
    [84]Xie Z, Dong Y, Maeda U, et al. Isoflurane-induced apoptosis:a potential pathogenic link between delirium and dementia[J]. J Gerontol A Biol Sci Med Sci,2006,61(12):1300-6.
    [85]Xie Z, Dong Y, Maeda U, et al. The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation[J]. J Neurosci,2007,27(6):1247-54.
    [86]Mandal PK, Schifilliti D, Mafrica F, et al Inhaled anesthesia and cognitive performance[J]. Drugs Today (Barc),2009,45(1):47-54.
    [87]陈晓光,王俊科,王淑月.地氟醚与七氟醚麻醉对老年病人术后认知功能的影响[J].中华麻醉学杂志,2002,22(4):211-213.
    [88]Kadoi Y, Goto F. Sevoflurane anesthesia did not affect postoperative cognitive dysfunction in patients undergoing coronary artery bypass graft surgery[J]. J Anesth,2007,21(3):330-5.
    [89]Rortgen D, Kloos J, Fries M, et al. Comparison of early cognitive function and recovery after desflurane or sevoflurane anaesthesia in the elderly:a double-blinded randomized controlled trial[J]. Br J Anaesth,2010,104(2):167-74.
    [90]Steinmetz J, Funder KS, Dahl BT, et al. Depth of anaesthesia and post-operative cognitive dysfunction[J]. Acta Anaesthesiol Scand,2010,54(2):162-8.
    [91]Newman MF, Croughwell ND, Blumenthal JA, et al. Predictors of cognitive decline after cardiac operation[J]. Ann Thorac Surg,1995,59(5):1326-30.
    [92]Muller SV, Krause N, Schmidt M, et al. Cognitive dysfunction after abdominal surgery in elderly patients[J]. Z Gerontol Geriatr,2004,37(6):475-85.
    [93]Zamvar V, Williams D, Hall J, et al. Assessment of neurocognitive impairment after off-pump and on-pump techniques for coronary artery bypass graft surgery:prospective randomised controlled trial[J]. BMJ,2002,325(7375):1268.
    [94]姚立农.老年人术后认知功能障碣的研究现状[J].国外医学:麻醉学与复苏分册,2001,22(4): 217-220.
    [95]Arrowsmith JE, Grocott HP, Newman MF. Neurologic risk assessment, monitoring and outcome in cardiac surgery[J]. J Cardiothorac Vasc Anesth,1999,13(6):736-43.
    [96]Nussmeier NA. Management of temperature during and after cardiac surgery[J]. Tex Heart Inst J,2005,32(4):472-6.
    [97]Van Dijk D, Jansen EW, Hijman R, et al. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery:a randomized trial[J]. JAMA,.2002,287(11):1405-12.
    [98]van DD, Spoor M, Hijman R, et al. Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery[J]. JAMA,2007,297(7):701-8.
    [99]van DD, Moons KG, Nathoe HM, et al. Cognitive outcomes five years after not undergoing coronary artery bypass graft surgery[J]. Ann Thorac Surg,2008,85(1):60-4.
    [100]Lund C, Sundet K, Tennoe B, et al. Cerebral ischemic injury and cognitive impairment after off-pump and on-pump coronary artery bypass grafting surgery [J]. Ann Thorac Surg,2005, 80(6):2126-31.
    [101]Wilson RS, Beckett LA, Barnes LL, et al. Individual differences in rates of change in cognitive abilities of older persons[J]. Psychol Aging,2002,17(2):179-93.
    [102]Biedler A, Juckenhofel S, Larsen R, et al. [Postoperative cognition disorders in elderly patients. The results of the "International Study of Postoperative Cognitive Dysfunction" ISPOCD 1)] [J]. Anaesthesist,1999,48(12):884-95.
    [103]Moller JT, Svennild I, Johannessen NW, et al. Perioperative monitoring with pulse oximetry and late postoperative cognitive dysfunction[J]. Br J Anaesth,1993,71(3):340-7.
    [104]Weiskopf RB, Kramer JH, Viele M, et al. Acute severe isovolemic anemia impairs cognitive function and memory in humans[J]. Anesthesiology,2000,92(6):1646-52.
    [105]Xu Y, Li SW, Huang XZ, et al. Insulin-like growth factor-Ⅰ and cognitive function in patients with obstructive sleep apnea syndrome[J]. Chinese medical journal,2002,82(20):1388-1390.
    [106]Dundar B, Akcoral A, Saylam G, et al. Chronic hypoxemia leads to reduced serum IGF-I levels in cyanotic congenital heart disease[J]. J Pediatr Endocrinol Metab,2000,13(4):431-6.
    [107]Linstedt U, Meyer O, Berkau A, et al. [Does intraoperative hyperventilation improve neurological functions of older patients after general anaesthesia?] [J]. Anaesthesist,2002, 51(6):457-62.
    [108]Newman MF, Kramer D, Croughwell ND, et al. Differential age effects of mean arterial pressure and rewarming on cognitive dysfunction after cardiac surgery [J]. Anesth Analg,1995, 81(2):236-42.
    [109]Eriksson-Mjoberg M, Svensson JO, Almkvist O, et al. Extradural morphine gives better pain relief than patient-controlled i.v. morphine after hysterectomy [J]. Br J Anaesth,1997,78(1): 10-6.
    [110]Heyer EJ, Sharma R, Winfree CJ, et al. Severe pain confounds neuropsychological test performance[J]. J Clin Exp Neuropsychol,2000,22(5):633-9.
    [111]Mann C, Pouzeratte Y, Boccara G, et al. Comparison of intravenous or epidural patient-controlled analgesia in the elderly after major abdominal surgery [J]. Anesthesiology, 2000,92(2):433-41.
    [112]Van Dijk KR, Van Gerven PW, Van Boxtel MP, et al. No protective effects of education during normal cognitive aging:results from the 6-year follow-up of the Maastricht Aging Study[J]. Psychol Aging,2008,23(1):119-30.
    [113]Lewis MC, Nevo I, Paniagua MA, et al. Uncomplicated general anesthesia in the elderly results in cognitive decline:does cognitive decline predict morbidity and mortality[J]. Med Hypotheses,2007,68(3):484-92.
    [114]Wang D, Wu X, Li J, et al. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery[J]. Anesth Analg,2002,95(5):1134-41.
    [115]Lei B, Cottrell JE, Kass IS. Neuroprotective effect of low-dose lidocaine in a rat model of transient focal cerebral ischemia[J]. Anesthesiology,2001,95(2):445-51.
    [116]Murkin JM. Postoperative cognitive dysfunction:aprotinin, bleeding and cognitive testing[J]. Can J Anaesth,2004,51(10):957-62.
    [117]Harmon DC, Ghori KG, Eustace NP, et al. Aprotinin decreases the incidence of cognitive deficit following CABG and cardiopulmonary bypass:a pilot randomized controlled study[J]. Can J Anaesth,2004,51(10):1002-9.
    [118]Cohendy R, Brougere A, Cuvillon P. Anaesthesia in the older patient[J]. Curr Opin Clin Nutr Metab Care,2005,8(1):17-21.
    [119]Fong HK, Sands LP, Leung JM. The role of postoperative analgesia in delirium and cognitive decline in elderly patients:a systematic review[J]. Anesth Analg,2006,102(4):1255-66.
    [120]Jacobi J, Fraser GL, Coursin DB, et al. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult[J]. Crit Care Med,2002,30(1):119-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700