癫痫大鼠海马TRPC的动态变化及在BDNF介导的突触重建中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察TRPC蛋白在匹罗卡品致痫大鼠海马中的动态表达,探讨其在突触重建中的作用。
     方法:6-8周龄健康雄性SD大鼠108只,随机分为实验组(n=90)和对照组(n=18)。实验组采用氯化锂-匹罗卡品腹腔注射法建立颞叶癫痫模型;对照组大鼠腹腔注射等量无菌生理盐水。实验组按癫痫持续状态(SE)后1天、7天、15天、30天、60天分为5个亚组,每亚组18只大鼠。以上各亚组再分为3个小组,每小组6只大鼠,分别进行:①Western blot方法检测TRPC及突触重建标志蛋白Synaptophysin在海马中的表达;②Timm染色观察海马苔藓纤维出芽并评分;③免疫荧光双标方法检测海马BDNF与TRPC的表达,尼氏染色观察海马病理改变。对照组随机分为3个亚组,各亚组6只大鼠,分别进行以上三种检测。
     结果:
     1.实验组大鼠SE诱发成功率为88.9%,死亡率为22.2%,模型成功率为66.7%。
     2.实验组大鼠TRPC蛋白表达:①TRPC1蛋白表达量在SE后1d较对照组显著降低(P<0.01),7d降至最低,15d开始恢复但仍然低于正常,30d时显著上调(P<0.05),60d时达高峰(P<0.01)。②TRPC3蛋白表达量从SE后7d起进行性下降(P<0.01),60d时降至最低(P<0.01)。③TRPC4蛋白表达量在SE后1d显著增加达峰值(P<0.01),7d仍高于正常(P<0.01),15d显著下调(P<0.01),60d降至最低(P<0.01)。④TRPC5蛋白表达量从SE后1d起进行性下降(P<0.01),60d时降至最低(P<0.01)。⑤TRPC6蛋白表达量在SE后1d达高峰(P<0.01),其他时间点均显著高于正常(P<0.01)。
     3. Synaptophysin蛋白表达量在SE后7d、15d、30d、60d显著增加(7d,P<0.05;15d、30d、60d,P<0.01),30d达峰值(P<0.01)。
     4.实验组大鼠海马神经元缺失以SE后7d和60d最为明显。除齿状回颗粒细胞缺失相对较轻(P<0.05)外,CA区锥体细胞和门区神经元均显著减少(P<0.01)。
     5.实验组大鼠齿状回内分子层在SE后7d出现Timm颗粒,并呈进行性增加。
     6.两组各时间点均可检测到BDNF与TRPC1、TRPC3、TRPC4、TRPC5、TRPC6在大鼠海马各区共表达。
     结论:
     TRPC可能参与了苔藓纤维出芽,BDNF则可能介导了这一过程。
     目的:探讨干预BDNF对匹罗卡品致痫大鼠海马TRPC的表达及苔藓纤维出芽的影响。
     方法:6-8周龄健康雄性SD大鼠270只,随机分为K252a+Pilo组(n=90只),NS+Pilo (n=90)和K252a+NS组(n=90只)。K252a+Pilo组采用氯化锂-匹罗卡品腹腔注射法建立颞叶癫痫模型,在匹罗卡品注射前3小时予侧脑室注射K252a进行干预;NS+Pilo组大鼠在匹罗卡品注射前3小时予侧脑室注射无菌生理盐水;K252a+NS组大鼠侧脑室注射K252a,3小时后予腹腔注射无菌生理盐水。三组均选取腹腔注射后后1天、7天、15天、30天、60天为研究时间点,各时间点18只大鼠,分别进行:①Western blot方法检测TRPC及突触重建标志蛋白Synaptophysin在海马中的表达;②尼氏染色观察海马病理改变;③Timm染色观察海马苔藓纤维出芽并评分。
     结果:
     1. K252a+Pilo组SE诱发成功率(83.3%)低于NS+Pilo组(90.7%),SE诱发成功后生存状态好,死亡率(8%)同样低于NS+Pilo组(19.3%)。K252a+Pilo组SE诱导所需平均时间(55.84±17.44 min)较NS+Pilo组(27.80±13.58min)长,致痫所需Pilo平均剂量(34.84±9.44 mg/kg)较NS+Pilo组(24.80±5.58 mg/kg)大,而Ⅲ-Ⅴ级发作的平均持续时间(12.84±5.44 min)较NS+Pilo组(28.20±4.58min)短,终止发作所需水合氯醛平均总量(3.24±0.44 ml/kg)较NS+Pilo组(3.80±0.54 ml/kg)低,以上各差异均具有统计学意义(p<0.01)。
     2.与K252a+NS组相比:K252a+Pilo组TRPC1蛋白表达量在SE后1d显著上调(P<0.01),呈进行性上升,60d达高峰;TRPC3蛋白表达量在SE后1d显著下调(P<0.05),呈进行性下降,60d时降至最低;TRPC4蛋白表达量在SE后7d、15d、30d、60d显著下调(P<0.01),15d达最低值;TRPC5蛋白表达量在SE后1d显著上调(P<0.01),呈进行性升高,60d达峰值;TRPC6蛋白表达量在SE后1d显著性上调(P<0.01),但上调幅度逐渐减少,30d仍高于K252a+NS组(P<0.01),60d出现明显下调(P<0.01)。与NS+Pilo组相比:K252a+Pilo组各时间点TRPC1、TRPC4.TRPC5蛋白表达量均显著下调(P<0.01);TRPC3蛋白表达量在SE后1d显著下调至最低(P<0.01),随后逐渐恢复,在SE后7d、15d、30d仍下调(P<0.05或P<0.01),至60d显著上调(P<0.01);而TRPC6在SE后1d显著上调(P<0.05),呈进行性上升,30d达高峰(P<0.01),60d显著下调(P<0.01)。
     3.与K252a+NS组相比,K252a+Pilo组Synaptophysin蛋白在SE后15d表达显著增多(P<0.01),呈进行性上升,至60d达最高峰(P<0.01)。与NS+Pilo组相比,K252a+Pilo组Synaptophysin蛋白的表达在SE后1d显著上调(P<0.01),呈进行性上升,至60d达最高峰(P<0.01)。
     4. K252a+Pilo组可见海马神经元缺失,以SE后7d和60d最为明显。除齿状回颗粒细胞缺失相对较轻(P<0.05)外,CA区锥体细胞和门区神经元均较K252a+NS组显著减少(P<0.01)。而K252a+Pilo组海马神经元缺失程度较NS+Pilo组则明显减轻,尤以SE后7d开始差异明显,具有统计学意义(p<0.05或p<0.01)。
     5. K252a+Pilo组海马齿状回内分子层在SE后15d开始出现Timm颗粒,随后进行性增加至本研究终点,与NS+Pilo组相应时间点相比出芽程度显著减轻(p<0.05)。
     结论:
     1.干预BDNF可减轻痫性发作的程度。
     2.干预BDNF可能通过改变TRPC的表达抑制苔藓纤维出芽。
Objective To observe the dynamic changes of TRPC expression in the rat hippocampus after pilocarpine-induced seizures, and to investigate its involvement in synapse remodeling.
     Method 108 healthy male Sprague-Dawley (SD) rats were divided randomly into experimental group (n=90) and control group (n=18). The temporal lobe epilepsy model was established by intraperitoneal injection of lithium and pilocarpine, while the controls were injected with equal dose of saline (NS). The experimental rats were equally divided into 5 subgroups at time points 1 day、7 days、15 days、30 days and 60 days after status epileptics (SE). Each subgroup was subsequently divided into 3 panels (6 rats in each panel) for the following tests respectively:①expression of TRPC and Synaptophysin protein in rats'hippocampus by Western blot;②Timm staining and score;③co-expression of TRPC and BDNF in rats'hippocampus by double immunofluorescence and hippocampal pathology by Nissl staining. The control rats were equally divided into 3 subgroups and received the aforementioned tests.
     Results
     1. The lithium-pilocarpine model of TLE:SE rate reached 88.9%, total mortality rate was 22.2% and the succeful rate was 66.7%.
     2. The expression of TRPC protein in the hippocampus of experimental rats compared with the control rats:①The expression of TRPC1 protein markedly decreased from 1d after SE (P<0.01), and reached a minimum on 7d. On 15d, it rebounded gradually yet was still lower than normal. Until 30d, it significantly increased and reached the peak on 60d (P<0.01).②The expression of TRPC3 protein gradually decreased from 7d after SE (P<0.01) and reached a minimum on 60d.③The expression of TRPC4 protein was markedly up-regulated and reached the peak on 1d after SE. Thereafter, it gradually decreased but maintained higher than in control on 7d(P<0.01), but the protein level on 15d after SE was lower than in control group(P<0.05), and lowest on 60d after SE.④The expression of TRPC5 was markedly decreased from the time point of 1d after SE (P<0.01), then gradually decreased, reaching its lowest on 60d after SE.⑤The expression of TRPC6 was markedly increased and reached its peak on 1d after SE (P<0.01), and it was higher than normal at all the other time points (P<0.01).
     3. The expression of Synaptophysin in the experimental groups rats compared with the control group rats:The expression of Synaptophysin was markedly up-regulated on 15d、30d、60d after SE (P<0.05 or P<0.01), and reached the peak on 30d after SE.
     4. The loss of hippocampal neurons in the experimental group was most evident on 7d and 60d after SE. Significant loss of hilar neurons and pyramidal neurons was present in area CA1 (P<0.01), while the loss of granular cells in dentate gyrus was relatively slight (P<0.05).
     5. There were Timm granules in molecular layer of gyrus dentatus since 7d after SE in the hippocampus of experimental rats, then they gradually increased.
     6. In the experimental group, BDNF and TRPC1、TRPC3、TRPC4、TRPC5、TRPC6 co-expression was observed all the time in rat's hippocampus.
     Conclusion
     TRPC may play a potential role in mossy fiber sprouting, in which BDNF may involve.
     Objective To observe the effect of intervention in BDNF on TRPC expression and mossy fiber sprouting in rat's hippocampus after pilocarpine-induced seizures.
     Method 270 healthy male Sprague-Dawley (SD) rats were divided randomly into 3 groups:the K252a+Pilo group (n=90), the NS+Pilo group (n=90) and the K252a+NS group (n=90). Rats in K252a+Pilo group were treated by intraperitoneal injection of lithium and pilocarpine, with intracerebroventricular injection of K252a 3h before pilocarpine injection; the NS+Pilo group rats received intracerebroventricular injection of sterile saline 3h before pilocarpine injection; and the K252a+NS group rats received intraperitoneal injection of sterile saline 3h after intracerebroventricular injection of K252a. These three groups all selected 5 time points (1d、7d、15d、30d、60d after intraperitoneal injection) for investigation. The rats of each time point (n=18) received the detection below respectively:①expression of TRPC and Synaptophysin protein in rats'hippocampus by Western blot;②Timm staining and score;③hippocampal pathology by Nissl staining.
     Results
     1. SE ratio of the K252a+Pilo group (83.3%) was lower than that of the NS+Pilo group (90.7%), and mortality rate was lower as well (8% and 19.3%, respectively). The mean time required for inducing SE in the K252a+Pilo group (55.84±17.44min) was longer than that in the NS+Pilo group (27.80±13.58min). The dosage of pilocarpine required for inducing SE in the K252a+Pilo group (34.84±9.44 mg/kg) was larger than that in the NS+Pilo group (24.80±5.58 mg/kg). The mean duration of grade III-V seizure in the K252a+Pilo group (12.84±5.44 min) was shorter than in the NS+Pilo group (28.20±4.58 min). And the average total amount of chloral hydrate required for ending seizures in the K252a+Pilo group (3.24±0.44 ml/kg) was lower than that in the NS+Pilo group (3.80±0.54 ml/kg). All the differences above were of statistic significance (P<0.01).
     2. The expression of TRPC protein in the K252a+Pilo group rats compared with the K252a+NS groups:①The expression of TRPC1 protein was markedly up-regulated since 1d after SE(P<0.01), then gradually increased, and reached the peak on 60d after SE.②The expression of TRPC3 protein markedly decreased since 1d after SE (P<0.05), then gradually decreased and reached the lowest on 60d.③The expression of TRPC4 protein markedly decreased on 7d、15d、30d、60d after SE (P<0.01), and reached the lowest on 15d.④The expression of TRPC5 protein was markedly up-regulated since 1d after SE (P<0.01), then gradually increased and reached the peak on 60d.⑤The expression of TRPC6 protein was markedly up-regulated since 1d after SE (P<0.01), but the extent of increase declined, on 30d it was still higher than that of the K252a+NS group (P<0.01), but became lower than normal on 60d (P<0.01). Compared with the K252a+NS group:At each time point, the expression of TRPC1、TRPC4 and TRPC5 protein were all down-regulated greatly (P<0.01); The expression of TRPC3 protein was significantly down-regulated since 1d after SE and reached the lowest (P<0.01); Thereafter, it gradually increased but was still lower on 7d、15d、30d (P<0.01 or P<0.05), until it was significantly up-regulated on 60d (P<0.01).However, the expression of TRPC6 protein was markedly up-regulated since 1d after SE(P<0.05), then gradually increased, and reached the peak on 30d after SE(P<0.01), but markedly decreased on 60d.
     3. The expression of Synaptophysin protein in the K252a+Pilo group compared with that in the K252a+NS group:it was markedly up-regulated on 15d after SE (P<0.01), inceased gradually, and then reached the peak on 60d (P<0.01). Compared with that in the NS+Pilo group:it was markedly up-regulated since 1d after SE (P<0.01), inceased gradually, and then reached the peak on 60d (P<0.01).
     4. In the K252a+Pilo group, hippocamapal neuron loss can be observed, extremely obvious on 15d and 60d after SE. Compared with the K252a+NS group, significant hilar neuron loss and pyramidal neuron loss was present in area CA1-3 (P<0.01), while the loss of granular cells in dentate gyrus was relatively slight (P<0.05). Compared with the NS+Pilo group, the degree of hippocampal neuron loss in the K252a+Pilo group was significantly sligter, especially since 7d after SE, with significant statistic differences (P<0.05).
     5. There were Timm granules in molecular layer of gyrus dentatus since 15d after SE in the K252a+Pilo group. The Timm score gradually increased and reached the peak on 60d. Compared with the NS+Pilo group, the degree of sprouting in the K252a+Pilo group was markedly slighter (P<0.01).
     Conclusion
     1. Intervention in BDNF can decrease the severity of seizure.
     2. Intervention in BDNF can inhibit mossy fiber sprouting, possibly through regulating the expression of TRPC.
引文
[1]Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep.2007, 7(4):348-354.
    [2]Berg AT. Defining intractable epilepsy. Adv Neurol.2006,97:5-10.
    [3]Sutula TP, Dudek FE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus:an emergent property of a complex system[J]. Prog Brain Res,2007,163; 547-563.
    [4]Williams PA, Larimer P, Gao Y, et al. Semilunar granule cells:glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J Neurosci,2007,27(50):13756-13761.
    [5]Celesia G. Disorders of membrane Channels or channelopathies. Clinical Neurophysiology.2001,112(1):2-18.
    [6]Restituito S, Thompson RM, Eliet J, et al. The polyglutamine expansion in spinocerebellar ataxia type 6 causes abeta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci.2000,20(17): 6394-6403.
    [7]Celesia G. Disorders of membrane channels or channelopathies. Clinical Neurophysiology.2001,112(1):2-18.
    [8]Lorenzon NM, Beam KG. Calcium channelopathies. Kideney Int.2000, 57(3):794-802.
    [9]Ophoff RA, van den Maagdenberg AM, Roon KI, et al. The impact of pharmacogenetics for migraine. Eur J Pharmacol.2001,413(1):1-10.
    [10]Totene A, Fellin T, PagnuttiS, et al. Familial hemiplegics migraine mu-tations increase Ca(2+) influx through single human CaV2.1 channels and decrease maximal CaV2.I current density in neurons. Proc Natl Acad Sci USA.2002, 99(20):13284-13289.
    [11]Steckley JL, Ebers GC, Cader MZ, et al. An autosomal dominant disorder with episodic ataxia, vertigo, and tinnitus. Neurology.2001,57 (8):1499-1502.
    [12]Kulnrarm DM. The neuronal channelopathies. Brain.2002,125(Pt6):1177-
    1195.
    [13]Proper EA, Jansen GH, Van Veelen CW, et al. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting. Acta Neuropathol (Berl),2001,101(4):405-409.
    [14]Andra-Valenca LP, Valenca MM, Velasco TR, Carlotti CG Jr, Assirati JA, Galvis-Alonso OY, Neder L, Cendes F, Leite JP. Mesial temporal lobe epilepsy: clinical and neuropathologic findings of familial and sporadic forms. Epilepsia. 2008,49(6):1046-1054.
    [15]Lamont SR, Stanwell BJ, Hill R, Reid IC, Stewart CA. Ketamine pre-treatment dissociates the effects of electroconvulsive stimulation on mossy fibre sprouting and cellular proliferation in the dentate gyrus. Brain Res.2005, 1053(1-2):27-32.
    [16]Kuo LW, Lee CY, Chen JH, Wedeen VJ, Chen CC, Liou HH, Tseng WY. Mossy fiber sprouting in pilocarpine-induced status epilepticus rat hippocampus: a correlative study of diffusion spectrum imaging and histology. Neuroimage. 2008,1; 41(3):789-800.
    [17]Wang C, Shimizu-Okabe C, et al. Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain. Developmental Brain Research. 2002,139:59-66
    [18]Delpire E. and Mount DB. Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol.2002,64:803-843.
    [19]Gulyas AI, Sik A, Payne JA, et al. The KC1 cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus. The European Journal of Neuroscience.13,2205-2217.
    [20]Lee JH, Reed DR, Li WD, et al., Genome scan for human obesity and linkage to markers in 20q13. Am.J Hum Genet.1999,64:196-209.
    [21]T. Klupa, M.T. Malecki, M. Pezzolesi, et al.,Further evidence for a susceptibility locus for type-2 diabetes on chromosome 20q13.1-13.2. Diabetes 2000, 49:2212-2216.
    [22]Bayer SA, Altman J. Neurogenesis and neuronal migration, in:G. Paxinos(Ed.), The Rat Nervous System. Academic Press. Sydney,1995.
    [23]Payne JA. Functional characterization of the neuronal-specific K-CL cotransporter:implications for [K+]o regulation. Am J Physiol,1997,273(Cell Physiol.42):C1516-C1525.
    [24]Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci, 1996,19:299-317.
    [25]Mathern GW, Babb TL, Micevych PE, et al. Granule cell mRNA levels for BDNF, NGF, and NT-3 correlate with neuron losses or supragranular mossy fiber sprouting in the chronically damaged and epileptic human hippocampus. Mol Chem Neuropathol,1997,30:53-76.
    [26]Takahashi M, Hayashi S, Kakita A, et al. Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y. Brain Res,1999,818:579-582.
    [27]Sutula T, Zhang P, Lynch M, et al. Synaptic and axonal remodeling of mossy fibers in the hilus and supragranular region of the dentate gyrus in kainate-treated rats. J Comp Neurol,1998,390:578-594.
    [28]Zafra F, Castren E, Thoenen H, et al. Interplay between glutamate and y-aminobutyric acid transmitter system in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc Natl Acad Sci USA,1991,88:10037-10041.
    [29]Mudo'G, Jiang XH, Timmusk T, et al. Change in neurotrophins and their receptor mRNA in the rat forebrain after status epilepticus induced by pilocarpine. Epilepsia,1996,37:198-207.
    [30]Wetmore C, Olson L, Bean AJ. Regulation of brain-derived neurotrophic factor (BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors. J Neurosci,1994,14:1688-1700.
    [31]Li HS, Xu XZ, Montell C. Activation of a T RPC3-dependent cation current through the neurotrophin BDNF. Neuron,1999; 24,261-73.
    [32]Greka A, Navarro B, Oancea E et al.T RPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci,2003; 6,837-845.
    [33]Li Y, Jia YC, Cui K, et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature,2005,434: 894-898.
    [34]Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkable functional family. Cell,2002,108:595-598.
    [35]Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell,2002,9:229-231.
    [36]Corey DP. New TRP channels in hearing and mechanosensation. Neuron,2003, 39:585-588.
    [37]Clapham DE. TRP channels as cellular sensors. Nature,2003,426:517-524.
    [38]Delmas P. Polycystins:from mechanosensation to gene regulation. Cell.2004, 118:145-148.
    [39]Moran MM, Xu H, Clapham DE. TRP ion channels in the nervous system. Curr Opin Neurobiol,2004,14:362-369.
    [40]Klitgaard H, Matagne A, Vanneste-Goemaere J, et al. Pilocarpine-induced epileptogenesis in the rat:impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res,2002,51: 93-107.
    [41]Proper EA, Jansen GH, van Veelen CW, et al. A grading system for hippocampal sclerosis based on the degree of hippocampal mossy fiber sprouting. Acta Neuropathol,2001,101:405-409.
    [42]Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res, 2002,50:105-123.
    [43]Racine RJ. Modification of seizure activity by electrical stimulation II Motor Seizure. Electroencephogr Clin Neurophysiol,1972,32:781-794.
    [44]Coulter DA. Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol,2001,45(2):237-252.
    [45]Hanaya R, Boehm N, Nehlig A. Dissociation of the immunoreactivity of synaptophysin and GAP-43 during the acute and latent phases ofthe lithium-piloearpine model in the immature and adult rat[J]. Exp Neurol,2007, 204(2):720-732.
    [46]Peredery O,Persinger MA,Parker G,et al.Temporal changes in neuronal dropout following inductions of lithium/pilocarpine seizures in the rat. Brain Res,2000, 881:9-17.
    [47]Lee SH, Magger S, Spender DD, et al. Human epileptic astrocytes exhibit increase gap junction coupling. Gial,1995,15(2):195-201.
    [48]王平宇,朱治远,祁建等。大白鼠中枢神经系统解剖学基础。人民卫生出版社,1986,152-157.
    [49]Esclapez M, Houser CR. Somatostatin neurons are a subpopulation of GABA neurons in the rat dentate gyrus:evidence from colocalization of pre-prosomatostatin and glutamate decarboxylase messenger RNAs. Neuroscience,1995,64:339-355
    [50]Peredery O, Persinger MA, Parker G, et al. Temporal changes in neuronal dropout following inductions of lithium/pilocarpine seizures in the rat. Brain Res,2000,881:9-17.
    [51]Clifford DB, Olney JW, Maniotis A, et al. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience,1987,23:953-968.
    [52]Li WE, Nagy JI. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord:evidence for junction regulation by neuronal-glial interactions. Neuroscience,2000,97: 113-123.
    [53]Glien M, Brandt C, Potschka H. et al. Repeated low-dose treatment of rats with pilocarpine:low mortality but high proportion of rats developing epilepsy. Epilepsy Res,2001,46:111-119.
    [54]Coulter DA, McIntyre DC, Loscher W. Animal models of limbic epilepsies: what can they tell us? Brain Pathol,2002,12:240-256.
    [55]Savolainen KM, Hirvonen MR. Second messengers in cholinergic induced convulsions and neuronal injury. Toxicol Lett,1992,64:43-45.
    [56]Einet H, Kofman O,Itkin O, et al. Augmentation of lithium's behavioral effect by inositol uptake inhibitors. J Neural Transm,1998,105:31-38.
    [57]Williams MB, Jope RS. Modulation by inositol of cholinergic-and serotonergic- induced seizures in lithium-treated rats. Brain Res,1995,685 (1-2):169-178.
    [58]Hogan RE, Bucholz RD, Joshi S. Hippocampal deformation based shape analysis in epilepsy and unilateral mesial temporal sclerosis. Epilepsia,2003,44 (6):8002-8061.
    [59]吴逊。癫痫与发作性疾病。北京:人民军医出版社,2001,6-22。
    [60]Falcomer MA, Serafetinides EA, Corsellis FAN, et al. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol,1964,10:233-248.
    [61]Falcomer MA. Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy. Aetiology, treatment, and prevention. Lancet,1974,2 (7883) 767-770.
    [62]Wasterlain CG, Shirasaka Y, Mazarati AM, et al. Chronic epilepsy with damage restricted to the hippocampus:possible mechanisms. Epilepsy Res,1996,26 (1): 255-265.
    [63]Andra-Valenca LP, Valenca MM, Velasco TR, et al. Mesial temporal lobe epilepsy:clinical and neuropathologic findings of familial and sporadic forms. Epilepsia.2008; 49(6):1046-1054.
    [64]Lamont SR, Stanwell BJ, Hill R, et al. Ketamine pre-treatment dissociates the effects of electroconvulsive stimulation on mossy fibre sprouting and cellular proliferation in the dentate gyrus. Brain Res.2005; 1053(1-2):27-32.
    [65]Kuo LW, Lee CY, Chen JH, Wedeen VJ, Chen CC, Liou HH, Tseng WY. Mossy fiber sprouting in pilocarpine-induced status epilepticus rat hippocampus: a correlative study of diffusion spectrum imaging and histology. Neuroimage. 2008,41(3):789-800.
    [66]Mathern GW, Pretorius JK, Mendoza D, et al. Hippocampal AMPA and NMD A mRNA levels correlate with aberrant fascia dentata mossy fiber sprouting in the pilocarpine model of spontaneous limbic epilepsy. J Neurosci Res.1998,54(6): 734-753.
    [67]Coulter DA. Chronic epileptogenic cellular alterations in the limbic system after status ep ilep ticus [J]. Epilepsia,1999,40 (supp 1):S23-33.
    [68]Sloviter RS. Status epilepticus-induced neuronal injury and network reorganization. Epilepsia.1999,40:34-39.
    [69]Riban V, Bouilleret V, Pham-Le BT. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience.2002,112(1):101-111.
    [70]Boon P, Vandekerckhove T, Achten E, et al. Epilepsy surgery in Belgium, the experience in Gent. Acta Neurol Belg,1999,99:256-265.
    [71]叶静,张文波,祁吉等。实验性癫痫大鼠颞叶及海马损害的病理学观察。中国神经精神疾病杂志,2000,26(3):168-169。
    [72]汤继宏,包仕尧,顾琴。海人酸颞叶癫痫模型的建立及其行为与病理学改变。苏州大学学报(医学版),2005,25(5):796-799。
    [73]Yang ZX, Luan GM, Yan L, et al. Establishment of temporal epilepsy models and its permanent epilepsy sensitivity. Chinese Medical J.2004,84:152-155.
    [74]Cascino GD. Temporal lobe epilepsy:More then hippocampal pathology. Epilepsy Currents.2005,5:187-189.
    [75]Coulter DA. Chronic epileptogenic cellular alterations in the limbic system after status ep ilep ticus. Epilepsia,1999,40 (supp 1):S23-33.
    [76]Hanaya R, Boehm N, Nehlig A. Dissociation of the immunoreaetivity of synaptophysin and GAP-43 during the acute and latent phases of the lithium-piloearpine model in the immature and adult rat[J]. Exp Neurol.2007, 204(2):720-732.
    [77]Hinz B, Becher A, Mitter D, et al. Activity-dependent changes of the presynaptic synaptophysin-synaptobrevin complex in adult rat brain. EurJ Cell Biol.2001,80(10):615-619.
    [78]Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkable functional family. Cell.2002,108:595-598.
    [79]Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell.2002,9:229-231.
    [80]Corey DP. New TRP channels in hearing and mechanosensation, Neuron.2003, 39:585-588.
    [81]Clapham DE. TRP channels as cellular sensors. Nature.2003,426:517-524.
    [82]Delmas P. Polycystins:from mechanosensation to gene regulation. Cell.2004, 118:145-148.
    [83]Moran MM, Xu H, Clapham DE. TRP ion channels in the nervous system. Curr Opin Neurobiol.2004,14:362-369.
    [84]Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol.2006,68:619-647.
    [85]Clapham DE, Julius D, Montell C, et al. Nomenclature and structure-function relationships of transient receptor potentialchannels.Pharmacol Rev.2005,57: 427-450.
    [86]ClaphamDE.TRP channels as cellular sensors.Nature,2003,426:517-524.
    [87]Huang CL.The transient receptor potentialsuperfamily of ion channels. J Am Soc Nephro.2004,15:1690-1699.
    [88]Wes PD, Chevesich J, Jeromin A, et al. TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci, USA.1995,92: 9652-9656.
    [89]Petersen CCH, Berridge MJ, Borgese MF, et al. Putative capacitative calcium entry channels:Expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J.1995,311:41-44.
    [90]Lintschinger B, Balzer-Geldsetzer M, Baskaran T, et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol-and Ca2+-sensitive cation channels. J Biol Chem.2000,275:27799-27805.
    [91]Nilius B. Store-operated Ca2+ entry channels:still elusive! Sci.STKE.2004, pe36.
    [92]Trebak M, Bird GS, McKay RR, et al. Comparison of human TRPC3 Channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem.2002,277:21617-21623.
    [93]Plant TD, Schaefer M. TRPC4 and TRPC5:receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium.2003,33:441-450.
    [94]Zhu X, Jiang M, Peyton M, et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell.1996,85:661-671.
    [95]Zitt C, Zobel A, Obukhov AG, et al.Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron.1996,16:1189-1196.
    [96]Liu X, Singh BB, Ambudkar IS. TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol. Chem,2003,278:11337-11343
    [97]Xu SZ, Beech DJ. TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res,2001,88: 84-87.
    [98]Brough GH, Wu S, Cioffi D, et al. Contribution of endogenously expressed Trpl to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J,2001, 15:1727-1738.
    [99]Antoniotti S, Lovisolo D, Pla AF et al. Expression and functional role of bTRPCl channels in native endothelial cells. FEBS Lett.2002,510:189-195.
    [100]Mori Y, Wakamori M, Miyakawa T, et al. Transient receptor potential 1 regulates capacitative Ca(2+) entry and Ca(2+) release from endoplasmic reticulum in B lymphocytes. J Exp Med.2002,195:673-681.
    [101]Paria BC, Vogel SM, Ahmmed GU, et al.Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol.2004,287:L1303-L1313.
    [102]Beech DJ, Muraki K, Flemming R. Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol.2004, 559:685-706.
    [103]Welsh DG, Bray den JE. Mechanisms of coronary artery depolarization by uridine triphosphate. Am J Physiol Heart Circ Physiol,2001,280: H2545-H2553.
    [104]Kamouchi M, Philipp S, Flockerzi V, et al. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol Lond.1999,518:345-358.
    [105]Hofmann T, Schaefer M, Schultz G, et al. Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med,2000,78: 14-25.
    [106]Vazquez G, Wedel BJ, Kawasaki BT, et al. Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J. Biol Chem,2004,279: 40521-40528.
    [107]Dietrich A, Mederos y Schnitzler M, Emmel J, et al. N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem.2003,278:47842-47852.
    [108]Wedel BJ, Vazquez G, McKay RR, et al. A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem. 2003,278:25758-25765.
    [109]Zhang Z, Tang J, Tikunova S, et al. Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci USA.2001,98: 3168-3173.
    [110]Reading SA, Earley S, Waldron BJ, et al. TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral artery. Am J Physiol Heart Circ Physiol.2005,288:H2055-H5061.
    [111]Kiselyov K, Xu X, MozhayevaG, et al. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature,1998,396:478-482.
    [112]Rosker C, Graziani A, Lukas M, et al. Ca(2+) signaling by TRPC3 involves Na(+) entry and local coupling to the Na(+)/Ca(2+) exchanger. J Biol Chem, 2004,279:13696-13704.
    [113]Tang Y, Tang J, Chen Z, et al. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem,2000,275:37559-37564.
    [114]Song X, Zhao Y, Narcisse L, et al. Canonical transient receptor potential channel 4 (TRPC4) co-localizes with the scaffolding protein ZO-1 in human fetal astrocytes in culture. GLIA,2005,49:418-429.
    [115]Philipp S, Trost C, Warnat J, et al. TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J. Biol Chem, 2002,75:23965-23972.
    [116]Walker RL, Koh SD, Sergeant GP, et al. TRPC4 currents have properties. similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol Cell Physiol.2002,283:C1637-C1645.
    [117]Tiruppathi C, Freichel M, Vogel SM, et al. Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res.2002,91:70-76.
    [118]Munsch T, Freichel M, Flockerzi V, et al. Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci USA.2003,100:16065-16070.
    [119]Walker RL, Koh SD, Sergeant GP, et al. TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol Cell Physiol.2002,283:C1637-C1645.
    [120]Torihashi S, Fujimoto T, Trost C, et al. Calcium oscillation linked to pacemaking of interstitial cells of Cajal:requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem.2002,277:19191-19197.
    [121]Schaefer M, Plant TD, Obukhov AG, et al. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5, J Biol Chem.2000,275: 17517-17526.
    [122]Jung S, Muhle A, Schaefer M, et al. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem.2003,278: 3562-3571.
    [123]Zeng F, Xu SZ, Jackson PK, et al. Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol.2004,559:739-750.
    [124]Greka A, Navarro B, Oancea E, et al. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci.2003,6:837-845.
    [1]Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol,2000(1):11-21
    [2]Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature,1969,224:285-287
    [3]Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol,2006,68:619-647
    [4]Clapham DE, Julius D, Montell C, et al. Nomenclature and structure-function relationships of transient receptor potentialchannels. Pharmacol Rev,2005,57: 427-450
    [5]Clapham DE. TRP channels as cellular sensors. Nature,2003,426:517-524
    [6]Huang CL. The transient receptor potentialsuperfamily of ion channels. J Am Soc Nephrol,2004,15:1690-1699
    [7]Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature,1969,224:285-287
    [8]Montell C, Jones K, Hafen E, et al. Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science,1985,230,1040-1043.
    [9]Hardie RC. Phototransduction in Drosophila melanogaster. J Exp Biol,2001,
    204:3403-3409
    [10]Niemeyer BA, Suzuki E, Scott K, et al. The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 1996,85(5): 651-9
    [11]Tsunoda S, Zuker CS. The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signalling. Cell Calcium,1999,26:165-171
    [12]Raghu P, Usher K, Jonas S, et al. Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron,2000,26:169-179
    [13]Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkable functional family. Cell,2002,108:595-598
    [14]Corey DP. New TRP channels in hearing and mechanosensation. Neuron,2003, 39:585-588
    [15]Clapham DE. TRP channels as cellular sensors. Nature,2003,426:517-524
    [16]Delmas P. Polycystins:from mechanosensation to gene regulation. Cell,2004, 118:145-148
    [17]Moran MM, Xu H, Clapham DE. TRP ion channels in the nervous system. Curr Opin Neurobiol,2004,14:362-369
    [18]Clapham, DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci,2001,2:387-396
    [19]Montell C. The TRP superfamily of cation channels. Sci STKE,2005, re3
    [20]Aarts M, Iihara K, Wei WL, etr al. A key role for TRPM7 channels in anoxic neuronal death.Cell,2005,115:863-877
    [21]Turner H, Fleig A, Stokes A, et al. Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member release channel activity. Biochem J,2003,371:341 -350
    [22]Zhang L, Barritt GJ. Evidence that TRPM8 Is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res,2004,64: 8365-8373
    [23]Raychowdhury M.K, Gonzalez-Perrett S, Montalbetti N, et al. Molecular pathophysiology of mucolipidosis type Ⅳ:pH dysregulation of the mucolipin-1 cation channel. Hum Mol Genet,2004,13:617-627
    [24]Koulen P, Cai Y, Geng L, et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol,2002,4:191-197
    [25]Bezzerides VJ, Ramsey IS, Kotecha S, et al. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol,2004,6:709-720
    [26]Kanzaki M, Zhang YQ, Mashima H, et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-Ⅰ. Nat Cell Bio,1999,1:165-170
    [27]Boels K, Glassmeier G, Herrmann D, et al. The neuropeptide head activator induces activation and translocation of the growth-factor--regulated Ca 2+-permeable channel GRC. J Cell Sci,2001,114:3599-3606
    [28]Iwata Y, Katanosaka Y, Arai Y, et al. A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol,2003,161:957-967
    [29]Wes PD, Chevesich J, Jeromin A, et al. TRPC1, a human homolog of a Drosophila store - operated channel. Proc Natl Acad Sci, USA 1995,92: 9652-9656
    [30]Petersen CCH, Berridge MJ, Borgese MF, et al. Putative capacitative calcium entry channels:Expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J,1995,311:41-44
    [31]Philipp S, Wissenbach U, Flockerzi V. Molecular biology of calcium channels, in:JWJ. Putney (Ed.), Calcium Signaling, CRC Press, Boca Raton, USA,2000, pp.321-342
    [32]Hofmann T, Schaefer M, Schultz G, et al. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA, 2002,99:7461-7466
    [33]Strubing C, Krapivinsky G, Krapivinsky L, et al. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron,2001,29:645 - 655
    [34]Strubing C, Krapivinsky G, Krapivinsky L, et al. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem,
    2003,278:39014-39019
    [35]Schilling WP, Goel M. Mammalian TRPC channel subunit assembly. Novartis Found, Symp,2004,258:18-30
    [36]Goel M, Sinkins WG, Schilling WP. Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem,2002,277:48303-48310
    [37]Lintschinger B, Balzer-Geldsetzer M, Baskaran T, et al. Coassembly of Trpl and Trp3 proteins generates diacylglycerol-and Ca 2+-sensitive cation channels. J Biol Chem,2000,275:27799-27805
    [38]Nilius B. Store-operated Ca2+ entry channels:still elusive! Sci.STKE,2004, pe36
    [39]Trebak M, Bird GS, McKay RR, et al. Comparison of human TRPC3 Channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem,2002,277:21617-21623
    [40]Plant TD, Schaefer M. TRPC4 and TRPC5:receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium,2003,33:441-450
    [41]Venkatachalam K, van Rossum DB, Patterson RL et al. The cellular and molecular basis of store-operated calcium entry. Nat Cell Biol,2002,4:E263-E272
    [42]Ma HT, Patterson RL, van Rossum DB, et al. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science, 2000,287:1647-1651
    [43]Hofmann T, Obukhov AG, Schaefer M, et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature,1999,397:259-263
    [44]Ma HT, Venkatachalam K, Parys JB, et al. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem,2002,277: 6915-6922
    [45]Venkatachalam K, Zheng F, Gill DL. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem,2003,278:29031-29040
    [46]Kiselyov K, Xu X, MozhayevaG, et al. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature,1998,396:478-482
    [47]Trost C, Bergs C, Himmerkus N, et al. The transient receptor potential, TRP4, cation channel is a novel member of the family of calmodulin binding proteins. Biochem J,2001,355:663-670
    [48]Zhu MX, Tang J. TRPC channel interactions with calmodulin and IP3 receptors, Novartis Found. Symp,2004,(258):44-58, discussion 58-62,98-102,263 -266
    [49]Lockwich TP, Liu X, Singh BB,et al. Assembly of Trpl in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem,2000,275: 11934-11942
    [50]Tang Y, Tang J, Chen Z, et al. Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem,2000,275:37559-37564
    [51]Lee-Kwon W, Wade JB, Zhang Z et al. Expression of TRPC 4 channel protein that interacts with NHERF-2 in rat Descending Vasa Recta. Am J Physiol Cell Physiol,2004,288:942-949
    [52]Harteneck C. Proteins modulating TRP channel function. Cell Calcium,2003, 33:303-310
    [53]Obukhov AG, Nowycky MC. TRPC5 activation kinetics are modulated by the scaffolding protein ezrin/radixin/moesin-binding phosphoprotein-50 (EBP50). J Cell Physiol,2004,201:227-235
    [54]Sutton KA, Jungnickel MK, Wang Y, et al. Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev Biol,2004,274:426-435
    [55]Yuan JP, Kiselyov K, Shin DM, et al. Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell,2003,114:777-789
    [56]Li HS, Xu XZ, Motell C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron,1999,24:261-273
    [57]Yan Li, Yi-Chang Jia, Kai Cui, et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature, 2005.434:894-898
    [58]Bonni A, Brunet A, West AE, et al. Cell survival promoted by the ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science,1999,286:1358-1362
    [59]Yichang Jia, Jian Zhou, Yilin Tai, et al. TRPC channels promote cerebellar granule neuron survival. Nature Neuroscience,2007,10(5):559-567
    [60]Zhu X, Jiang M, Peyton M, et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell,1996,85:661-671
    [61]Zitt C, Zobel A, Obukhov AG, et al.Cloning and functional expression of a human Ca 2+-permeable cation channel activated by calcium store depletion. Neuron,1996,16:1189-1196
    [62]Liu X, Singh BB, Ambudkar IS. TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol. Chem,2003,278:11337-11343
    [63]Xu SZ, Beech DJ. TrpCl is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res,2001,88:84-87
    [64]Brough GH, Wu S, Cioffi D, et al. Contribution of endogenously expressed Trp1 to a Ca 2+-selective, store-operated Ca2+ entry pathway. FASEB J,2001, 15:1727-1738
    [65]Antoniotti S, Lovisolo D, Pla AF et al. Expression and functional role of bTRPCl channels in native endothelial cells. FEBS Lett,2002,510:189-195
    [66]Mori Y, Wakamori M, Miyakawa T, et al. Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med,2002,195:673-681
    [67]Paria BC, Vogel SM, Ahmmed GU, et al.Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol,2004,287:L1303-L1313
    [68]Beech DJ, Muraki K, Flemming R. Non-selective cationic channels of smooth' muscle and the mammalian homologues of Drosophila TRP. J Physiol,2004, 559:685-706
    [69]Kim SJ, Kim YS, Yuan JP, et al. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluRl. Nature,2003,426:285-291
    [70]Wang GX, Poo MM. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature,2005,434:898-904
    [71]Shim S, Goh EL, Ge S, et al. XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat. Neurosci,2005,8:730-735
    [72]Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev,2001,81:1415-1459
    [73]Ahmmed GU, Mehta D, Voge S et al. Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem,2004,279:20941-20949
    [74]Rosado JA, Brownlow SL, Sage SO. Endogenously expressed Trpl is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem,2002,277:42157-42163
    [75]Sage SO, Brownlow SL, Rosado JA. TRP channels and calcium entry in human platelets. Blood,2002,100:4245-4246, author reply 4246-4247
    [76]Brownlow SL, Sage SO. Rapid agonist-evoked coupling of type Ⅱ Ins(1,4,5)P3 receptor with human transient receptor potential (hTRPC 1) channels in human platelets. Biochem J,2003,375:697-704
    [77]Sweeney M, Yu Y, Platoshyn O, et al. Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol,2002,283:L144-L155
    [78]Flemming R, Xu SZ., Beech DJ. Pharmacological profile of store-operated channels in cerebral arteriolar smooth muscle cells. Br J Pharmacol,2003,139: 955-965
    [79]Larsson KP, Peltonen HM, Bart G, et al. Orexin-A induced Ca2+ entry:evidence for involvement of TRPc channels and protein kinase C regulation. J Biol Chem,2005,280:1771-1781
    [80]Maroto R, Raso A, Wood TG, et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol,2005.7:179-185
    [81]Lucas P, Ukhanov K, Leinders-Zufall T, et al. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice:
    mechanism of pheromone transduction. Neuron,2003,40:551-561
    [82]Stowers L, Holy TE, Meister M, et al. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science,2002,295:1493 -1500
    [83]Zufall F, Ukhanov K, Lucas. P, et al. Neurobiology of TRPC2:from gene to behaviour. Pfluugers Arch Europ J Physiol, Special Issue, Functional role of TRP channels, edited by Nilius B.????
    [84]Jungnickel MK, Marrero H, Birnbaumer L, et al. Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol,2001,3:499-502
    [85]Gailly P, Colson-Van Schoor M. Involvement of trp-2 protein in store-operated influx of calcium in fibroblasts. Cell Calcium,2001,30:157-165
    [86]Gailly P. New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim Biophys Acta,2002, 1600:38-44
    [87]Hofmann T, Schaefer M, Schultz G, et al. Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2. Biochem J,2000,351:115-122
    [88]Hofmann T, Schaefer M, Schultz G, et al. Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med,2000,78: 14-25
    [89]Vazquez G, Wedel BJ, Kawasaki BT, et al. Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J. Biol Chem,2004,279: 40521-40528
    [90]Dietrich A, Mederos y Schnitzler M, Emmel J, et al. N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem,2003,278:47842-47852
    [91]Wedel BJ, Vazquez G, McKay RR, et al. A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem, 2003,278:25758-25765
    [92]Zhang Z, Tang J, Tikunova S, et al. Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci USA,2001,98: 3168-3173
    [93]Boulay G. Ca2+-calmodulin regulates receptor-operated Ca2+ entry activity of TRPC6 in HEK-293 cells. Cell Calcium,2002,32:201-207
    [94]Li H.S., Xu X.Z., Montell C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 1999,24:261-73
    [95]Wang G.X., Poo M.M. Requirement of TRPC channela in netrin-1-induced chemotropic turning of nerve growth cones.Nature,2005,434:898-904
    [96]Kamouchi M, Philipp S, Flockerzi V, et al. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol Lond,1999,518:345-358
    [97]Reading SA, Earley S, Waldron BJ, et al. TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral artery. Am J Physiol Heart Circ Physiol,2005,288:H2055-H5061
    [98]Welsh DG, Brayden JE. Mechanisms of coronary artery depolarization by uridine triphosphate. Am J Physiol Heart Circ Physiol,2001,280:H2545-H2553
    [99]Kwan HY, Huang Y, Yao X. Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc. Natl Acad Sci USA, 2004,101:2625-2630
    [100]Philipp S, Strauss B, Hirnet D, et al. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J Biol Chem,2003,278:26629-26638
    [101]Nishida M, Sugimoto K, Hara Y, et al. Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCgamma2 in B lymphocytes. EMBO J,2003,22:4677-4688
    [102]Rosker C, Graziani A, Lukas M, et al. Ca2+ signaling by TRPC3 involves Na+entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem,2004, 279:13696-13704
    [103]Freichel M, Suh SH, Pfeifer A, et al.Lack of an endothelial store-operated Ca2
    current impairs agonist-dependent vasorelaxation in TRP4-/-mice. Nat Cell Biol,2001,3:121 - 127
    [104]Tiruppathi C, Freichel M, Vogel SM, et al. Impairment of store-operated Ca2 entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res,2002,91:70-76
    [105]Munsch T, Freichel M, Flockerzi V, et al. Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci USA,2003,100:16065-16070
    [106]Philipp S, Trost C, Warnat J, et al. TRP4 (CCE1) protein is part of native calcium release-activated Ca 2+-like channels in adrenal cells. J. Biol Chem, 20002,75:23965-23972
    [107]Walker RL, Koh SD, Sergeant GP, et al. TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol Cell Physiol,2002,283:C1637-C1645
    [108]Torihashi S, Fujimoto T, Trost C, et al. Calcium oscillation linked to pacemaking of interstitial cells of Cajal:requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem,2002,277:19191 - 19197
    [109]Song X, Zhao Y, Narcisse L, et al. Canonical transient receptor potential channel 4 (TRPC4) co-localizes with the scaffolding protein ZO-1 in human fetal astrocytes in culture. GLIA,2005,49:418-429
    [110]Schaefer M, Plant TD, Obukhov AG, et al. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem,2000,275: 17517-17526
    [111]Inoue R, Okada T, Onoue H, et al.The transient receptor potential protein homologue TRP6 is the essential component of vascular al-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res,2001,88: 325-332
    [112]Jung S, Strotmann R, Schultz G, et al. TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol,2002,282:C347-C359
    [113]Jung S, Muhle A, Schaefer M, et al. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem,2003,278: 3562-3571
    [114]Zeng F, Xu SZ, Jackson PK, et al. Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol,2004,559:739-750
    [115]Greka A, Navarro B, Oancea E, et al. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci,2003,6:837-845
    [116]Strubing C.,Krapivinsky,G.,Krapivinsky,L.&Clapham,D.E.TRPCland TRPC5 form a novel cation channel in mammalian brain.Neuron,2001,29:645-55
    [117]Greka,A.,Navarro,B.,Oancea,E.,Duggan,A.& Clapham,D.E.TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat NEUROSCI,2003,6,837-45
    [118]Bezzerides,V.j.,Ramesey,I.S.,Kotecha,S.,Greka,A.&Clapham,D.E.Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol,2004,6: 709-20
    [119]Inoue R, Okada T, Onoue H, et al.The transient receptor potential protein homologue TRP6 is the essential component of vascular α1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res,2001,88: 325-332
    [120]Jung S, Strotmann R, Schultz G, et al. TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol,2002,282:C347-C359
    [121]Hassock SR, Zhu MX, Trost C, et al. Expression and role of TRPC proteins in human platelets:evidence that TRPC6 forms the store-independent calcium entry channel. Blood,2002,100:2801-2811
    [122]Okada T, Inoue R, Yamazaki K, et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca 2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem,1999,274:27359-27370
    [123]Estacion M, Li S, Sinkins WG, et al. Activation of human TRPC6-channels by receptor stimulation. J Biol Chem,2004,279:22047-22056
    [124]Albert AP, Large WA. Synergism between inositol phosphates and diacylglycerol on native TRPC6-like channels in rabbit portal vein myocytes. J Physiol,2003,552:789-795
    [125]Basora N, Boulay G, Bilodeau L, et al.20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem,2003,278:31709-31716
    [126]Shi J, Mori E, Mori Y, et al. Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol,2004,561:415-432
    [127]Albert AP. Activation of TRPC6 channel proteins:evidence for an essential role of phosphorylation. J Physiol,2004,561:354
    [128]Hisatsune C, Kuroda Y, Nakamura K, et al. Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem,2004,279:18887-18894
    [129]Lussier P, Cayouette S, Lepage PK, et al. MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC, J. Biol. Chem.2005,280(19):19393-400
    [130]Choi HK, Won LA, Kontur PJ, et al. Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res,1991, 552(1):67-76
    [131]Seaton TA, Cooper JM, Schapira AH. Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex 1 inhibitors. Brain-Res,1997,777:110-118.
    [132]Hirsch EC. Animal models in neurodegenerative diseases. J Neurol Transm Suppl,2007,72:87-90
    [133]张雷,王军锋,葛瑞良等.TRPC3通道对MPP+所致MN9D细胞损伤的保护作用.首都医科大学学报,2008,29:153-157
    [134]Aarts M, Iihara K, Wei WL, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell,2003,26; 115(7):863-77
    [135]高艳琴,高慧,周正怡等.大鼠局灶性脑缺血再灌注损伤后纹状体和海马瞬时受体电位通道蛋白4的表达增加.生理学报,2004,56(2):153-157.
    [136]Winn MP, Colon PJ, Lynn KL, et al. A mutation in the trpc6 cation channel causes familiar focal segmental glomerulosclerosis. Science,2005,308(5729): 1801 - 1804
    [137]Moller CC, Wei C, Altintas MM, et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol.2007,18(1):29-36
    [138]Dertrich A, Gudermann T. TRPC6. Handb Exp Pharmacol,2007,179:125-141
    [139]Reiser J, Polu KR, Moller CC, et al. TRPC6 is a glomerular slit diaphragm-assocaited channel required for normal renal function. Nat Genet, 2005,37(7):739-744
    [140]Mukerji N, Damodaran TV, Winn MP. TRPC6 AND FSGS:The latest TRP channelopathy. Biochim Biophys Acta,2007,1772(8):859-868
    [141]Walz G. Slit or pore? A mutation of the ion channel TRPC6 causes FSGS. Nephrol Dial Transplant,2005,20(9):1777-1779
    [142]孙宏伟,沈锋,吴孟超.瞬时受体势C可能存在介导肝癌细胞增殖的作用.肿瘤,2006,26(4):396-401
    [143]Yu Y, Ivana F, Carmelle V, et al. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertention. Proc Natl Acad Sci USA,2004,101(38):13861-13866
    [144]Walz G. Slit or pore? A mutation of the ion channel TRPC6 causes FSGS. Nephrol Dial Transplant,2005,20(9):1777-1779
    [145]Thebault S, Zholos A, Enfissi A, et al. Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cellular Physiology,2005,204(1):320-328
    [146]Yu Y, Ivana F, Carmelle V, et al. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertention. Proc Natl Acad Sci USA,2004,101(38):13861 - 13866
    [147]Thebault S, Zholos A, Enfissi A, et al. Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cellular Physiology,2005,204(1):320-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700