烧伤病房耐碳青霉烯类铜绿假单胞菌耐药机制及分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜绿假单胞菌(Pseudomonas aeruginosa, PA)是临床最常见的条件致病菌之一,尤其是医院获得性感染的最常见致病菌之一。碳青霉烯类抗菌药物为目前临床治疗铜绿假单胞菌的常用药物,但随着此类药物的广泛使用,耐碳青霉烯类铜绿假单胞菌菌株逐渐增多,已对临床控制医院获得性感染构成了严重威胁,且该菌的流行呈全球化趋势。铜绿假单胞菌耐药机制主要包括抗生素灭活酶或修饰酶的生成、外膜低渗透性、外膜孔蛋白缺失、生物膜形成和主动外排等。
     产金属β-内酰胺酶(metallo-β-lactamases, MBL)的生成是铜绿假单胞菌耐碳青霉烯类抗菌药物最主要的耐药机制之一。MBL属于Ambler分子结构分类中的B类和Bush功能分类中的第3组,是一组活性部位为金属离子、且必须依赖金属离子的存在而发挥催化活性的酶类。MBL能水解包括碳青霉烯类在内的一大类β-内酰胺抗菌药物,其活性可被离子螯合物EDTA、菲咯啉以及巯基化合物所抑制,但不被克拉维酸、舒巴坦等常见的β-内酰胺酶抑制剂抑制。
     吉林市某医院烧伤病房在2006年10月~12月期间,住院患者暴发多重耐药性铜绿假单胞菌的流行。为探讨该烧伤病房铜绿假单胞菌多重耐药性产生和流行机制,本研究分别采集烧伤患者烧伤患部标本和烧伤病房环境标本,以常规方法分离出18株铜绿假单胞菌。在测定抗菌药物敏感性基础上,检测细菌细胞壁外膜蛋白(OprD2)表达情况,采用PCR、克隆测序技术,转化和接合传递实验,检测细菌携带MBL耐药基因、整合子类型及整合子定位分析,并以质粒谱、脉冲场凝胶电泳和随机引物多态性分析技术检测铜绿假单胞菌株流行机制。
     1.烧伤患者和烧伤病房环境标本的铜绿假单胞菌分离培养及血清学鉴定
     吉林市某医院烧伤中心共有30张病床,分隔离病房和普通病房两种。2006年10月10日普通病房收治一名4岁农村儿童,腿部烧伤后在当地医院治疗,患部经治疗没有好转反而感染加重入院。入院时采集患部脓汁标本经常规分离培养后,用Viteck系统进行鉴定,证实是铜绿假单胞菌感染(命名为PA1)。入院1周后,该患者出现肺部感染,并继发败血症,从血液标本中分离出PA1。在10月~12月期间,分别住在3个普通烧伤病房7名患者的患部相继发生感染,采集7名患者脓汁标本,经常规分离培养鉴定为铜绿假单胞菌感染(命名为PA2,3,4,5,6,7,8)。经血清学鉴定,8株铜绿假单胞菌均为同一血清型,即O6型。
     为调查烧伤病房铜绿假单胞菌来源,对医院烧伤病房环境进行监测。用无菌棉拭子涂擦方式采集医护人员手指、注射室操作台表面、治疗室表面、手推车表面、洗漱室水龙头表面、病房门把手表面、陪护人员手指。用无菌注射器抽取医疗器械浸泡液以及无菌平板采集病房空气各四份样本,共51份标本。结果从7份手推车表面涂抹样中分离出1株PA(14.3%);从洗漱室5个水龙头表面涂抹样中分离出3株PA(60.0%);从5名陪护人员手涂抹样中分离出3株PA(60.0%);从4个病房门把手表面涂抹样中分离2株PA(50.0%);从4个病房空气样中分离出1株PA(25.0%),共10株PA(18.6%),分别命名为PA9~18,血清学鉴定分别属于O6,O7和O11三个血清型。
     2.铜绿假单胞菌临床分离株耐药性的研究
     2.1耐药性检测
     采用WHO推荐的K-B法测定分离菌株对15种抗菌药物敏感性。实验时用标准的参考对照菌株与检测菌株平行测定,根据临床实验室标准化研究所(CLSI,2005)规定标准判读结果。大肠埃希菌ATCC25922、铜绿假单胞菌ATCC27853作为药敏质控菌株。采用微量肉汤稀释法对β-内酰胺抗菌药物进行MIC测定。结果显示8株烧伤患者临床标本分离株对氨苄西林、阿米卡星、庆大霉素、妥布霉素、复方磺胺、四环素、氯霉素7种抗菌药物耐药率均为100%,对环丙沙星耐药率为50%。替卡西林、替卡西林/克拉维酸和头孢唑啉MIC均大于256μg/ml。头孢噻肟和头孢吡肟MIC均大于128μg/ml。亚胺培南和氨曲南MIC有所差异:对亚胺培南表现高度耐药,但是PA1、PA2、PA3、PA4的MIC为64μg/ml,PA5、PA6、PA7、PA8的MIC为32μg/ml。PA1、PA2、PA3、PA4对氨曲南表现高度耐药(MIC为64μg/ml),PA5、PA6、PA7、PA8对氨曲南敏感(MIC为8μg/ml)。10株烧伤病房环境分离株对氨苄西林耐药率为100%,对阿米卡星、庆大霉素、妥布霉素、复方磺胺、四环素、氯霉素6种抗菌药物耐药率均为20%,对环丙沙星敏感。微量肉汤稀释法结果显示:替卡西林、替卡西林/克拉维酸和头孢唑啉的MIC均小于16μg/ml。头孢噻肟和头孢吡肟的MIC均小于12μg/ml。亚胺培南和氨曲南的MIC均小于8μg/ml。
     2.2MBLs菌株的确定
     采用双纸片增效法。将受试菌均匀涂布于M-H琼脂平板,然后在平板上贴两张亚胺培南(IPM,10μg/片)纸片,其中1张纸片上加入适量EDTA,置35℃孵育16~18h,比较两张纸片的抑菌圈大小。加EDTA的IPM纸片比不加EDTA的IPM纸片抑菌圈明显扩大,超过了5mm判断为产酶株。结果显示烧伤患者临床标本分离株均为产MBLs菌株,而10株烧伤病房环境分离株均为未产MBLs菌株。
     3.铜绿假单胞菌临床分离株耐药机制的研究
     3.1铜绿假单胞菌临床分离株外膜蛋白检测
     铜绿假单胞菌细胞壁两侧有内、外两层膜,其中具有异常低通透性的外膜在抗菌药物耐药产生中发挥着重要作用。外膜蛋白oprD2孔道是小分子的亚胺培南选择性快速进入菌体而达高度抗菌活性的特异性通道;碳青霉烯类抗生素必须首先穿透外膜才能与内膜的青霉素结合蛋白结合,发挥抗菌效应。实验采用超声波破碎铜绿假单胞菌,提取细胞壁蛋白,进行SDS-PAGE和Western blotting,结果显示8株烧伤标本铜绿假单胞菌临床分离株OprD2孔蛋白缺失,与亚胺培南耐药相关;10株烧伤环境标本铜绿假单胞菌分离株均具有OprD2孔蛋白,对亚胺培南敏感。
     3.2铜绿假单胞菌临床分离株携带MBL基因和第1类整合子
     迄今为止发现细菌的获得性MBL有五种基因类型: IMP、VIM、SPM、GIM和AIM,其中最主要的是IMP型和VIM型,根据氨基酸序列不同分为很多亚型。到目前为止,在铜绿假单胞菌中发现了至少38种MBL,最常见的MBL包括:IMP-1、IMP-7、IMP-9、IMP-10、IMP-11和IMP-13型等;VIM型包括VIM-1、VIM-2、VIM-3、VIM-4和VIM-7型等;SPM、GIM和AIM型只有一种,即SPM-1、GIM-1和AIM-1型。这些基因大多数位于整合子上,并随着碳青霉烯类抗菌药物的应用不断有新类型出现,整合子不仅可通过位点特异性重组在细菌中传播,而且具有高效捕获耐药基因的功能,对细菌之间耐药的水平传播起着重要的作用。
     实验设计了IMP、VIM、SPM和GIM基因引物及第1类整合酶引物,采用PCR、克隆测序检测MBLs耐药基因类型及整合子特征。PCR产物克隆测序8株烧伤标本铜绿假单胞菌临床分离株均携带VIM-2基因和第1类整合子,而10株烧伤环境标本铜绿假单胞菌分离株均未携带VIM-2基因和第1类整合子。
     为明确细菌耐药性扩散的机制及整合子和MBLs基因定位,通过接合转移实验,把携带整合子阳性的质粒转移到工程菌内,进行质粒和转接合子图谱分析。对接合子耐药表型鉴定,发现烧伤标本铜绿假单胞菌临床分离株对氯霉素、环丙沙星、四环素耐药特性通过质粒转移到受体菌内。而β-内酰胺类、磺胺类及氨基糖苷类耐药特性不能转移。PCR检测铜绿假单胞菌转接合子携带MBLs基因和整合子情况,结果以转接合子为模板没有扩增出MBLs基因和第1类整合子,说明MBLs基因和第1类整合子可能位于染色体上,接合传递试验进一步证实VIM-2基因位于染色体上。
     4.铜绿假单胞菌临床分离株在烧伤病房流行机制的研究
     4.1铜绿假单胞菌临床分离株质粒指纹图谱分析
     不同地区耐药菌株有着不同的质粒谱型。不同菌株之间耐药R质粒存在着一定的相互联系,它们的质粒谱型提示着不同地区、医院和病房耐药质粒的流行变化趋势。实验采用碱裂解法和质粒试剂盒提取方法,对18株铜绿假单胞菌临床分离株进行质粒抽提和质粒图谱分析。研究结果显示:8株烧伤标本铜绿假单胞菌临床分离株质粒图谱复杂,携带7个、大小约为1.0~60kb的天然质粒。而10株烧伤环境标本铜绿假单胞菌分离株质粒图谱单一,携带3~5个、大小约为1.0~60kb的天然质粒。18株细菌具有一个共同大小为60kb的质粒。
     4.2铜绿假单胞菌临床分离株脉冲场凝胶电泳分析
     脉冲场凝胶电泳分析是目前公认的分子流行病学调查首选的方法。结果显示8株烧伤标本铜绿假单胞菌临床分离株在10~800kb间产生12~18条大小不同的DNA酶切片段区带,分离株显示三种基因型的克隆株,克隆株分别来自三个不同烧伤病房。铜绿假单胞菌烧伤环境标本分离株表现出相同的基因型,均为同一克隆株。证明了吉林地区烧伤病房存在铜绿假单胞菌克隆株播散及流行。
     4.3铜绿假单胞菌临床分离株同源性分析
     提取18株铜绿假单胞菌分离株完整的基因组DNA,进行随机引物扩增多态性分析。烧伤标本铜绿假单胞菌分离株表现出三种基因型:PA1、PA2和PA3为同一克隆株;PA4、PA5和PA6为同一克隆株;PA7和PA8为同一克隆株。烧伤环境标本铜绿假单胞菌分离株表现出相同的基因型,证明了PA9~PA18来自五个不同部位标本,均为同一克隆株。
     研究结果揭示了铜绿假单胞菌临床分离株对碳青霉烯类抗菌药物耐药机制及耐药性传递方面的分子流行病学机制,为进一步更好地控制烧伤病房铜绿假单胞菌的流行提供重要的实验依据。
Pseudomonas aeruginosa (PA) is one of the most common clinical conditioned pathogens,in particular, it plays a very important role in hospital-acquired infections. Carbapenem,anantimicrobial drug, plays a major part in the clinical anti-PA infection treatment. However,with its widespread use, PA strains resistant to i carbapenem are increasing and spreading,which have led to a serious threat to the clinical infection control. Moreover, the prevalence ofthe bacteria has showed a trend to spread throughout the world. Resistance mechanisms of PAinclude the generation of antibiotics inactivated enzymes or modified enzymes, the outermembrane with low permeability, the lack of outer membrane protein, biomembranceformation and active efflux, etc.
     The generation of metallo-β-lactamases (MBL), also known as metalloenzyme, is one ofthe most important mechanisms through which PA is resistant to carbapenem antibacterialdrugs. MBL, classified as an enzyme in Class B based on Ambler molecular structureclassification and Group3based on Bush functional classification, is a group of enzymes thattheir active sites are metal ions and they can play a catalytic activity only depending on thepresence of metal ions. MBL can hydrolyze a large group of beta-lactam antimicrobial agentsincluding carbapenems, and its activity can be inhibited by EDTA, an ion chelate,phenanthroline and mercapto compounds, but not by clavulanic acid, sulbactam and othercommon beta-lactamase inhibitor.
     There was an outbreak of epidemic PA infection among inpatients in burn wards of ahospital in Jilin City from October to December in2006. In order to explore the cause and themechanism of the outbreak of multi-drug resistance of PA, the samples from the burning partsof the burn patients and the environment of the burn wards were collected. The conventionalmethods were used to separate18strains of PA from the samples. Then, on the basis of testingthe antibiotic susceptibility, the expression of outer membrane protein (OprD2) in bacterial cellwall was measured, the researcher detected the resistance genes of bacteria carrying the MBL,the sub-types and location analysis of integron by means of PCR, cloning and sequencingtechnology, transformation and conjugal transfer experiments. Finally, the researcher analyzedthe epidemic mechanism of PA strains with the plasmid profiles, pulsed-field gelelectrophoresis and randomly primer polymorphic DNA assay.
     1. The Isolation Culture and Serological Identification of PA from ClinicalSpecimens of Burned Patients
     There are30beds altogether in the burn center of the hospital in Jilin city, which weredivided into isolation ward and general ward. On October10,2006, its general ward admitted afour-year-old rural child who had been treated due to his leg burning at the local hospitalinitially after the burning, but the affected part became infected and did not recover after thetreatment for a certain time. After he was hospitalized, the pus specimens from the affectedpart were collected and cultivated with the conventional separation method, and then,Viteck system was applied to confirm the infection of PA (named PA1). One week later, thepatient had lung infection and secondary sepsis. PA1was isolated from the blood samples.There were7patients who suffered from the infection in the three general wards from Octoberto December. The pus specimens from the7patients were collected, which were isolated andcultivated with the conventional method, and finally were identified PA infection (named PA2,3,4,5,6,7,8). By serological identification,8strains of PA were the same serotype, namely,06type.
     In order to survey the source of the PA in the burn wards, the environment of the burnwards was monitored. In a wipe way with a sterile cotton swab, specimens from medical staff’sfingers, surfaces of operation desk in the injection room, the treatment room, the handcart, thefaucet in the wash room, the doorknob of the wards, and assistants’ fingers. A sterile syringewas used to extract the soak solution of the medical equipments and a sterile flat was apllied tocollect different4air specimens in the wards. The total specimens were51. The results showedthat1PA strain was isolated in7specimens from the surface of the handcart (14.3%);3PAstrains in5specimens from the surface of faucet (60.0%);3PA strains in5specimens fromthe assistants’ fingers (60.0%);2PA strains in4specimens from the surface of doorknob(50.0%);1PA strain in4air specimens from the4wards (25.0%). There were10strains ofPA totally, which were named PA9~18respectively and confirmed to belong to07,06and011serotype with serological identification.
     2. Investigation of the Resistance in Clinical Isolates of PA
     2.1Detection of Resistance
     The sensitivity of isolates to15antimicrobial drugs was detected by means of K-Bmethod recommended by WHO. Experiments were done by parallel determination of controlstrains and detection strains, and the results were interpreted based on the standard set by theClinical and Laboratory Standards Institute (CLSI,2005). Escherichia coli ATCC25922andPA ATCC27853were taken as the susceptibility quality control strains. At the same time, theMIC determination of beta-lactam antimicrobial agents were done with broth microdilutionmethod, then the results showed that the average resistance rate of8strains of PA to7 antibiotics was100%, including ampicillin, amikacin, gentamicin, tobramycin,sulfamethoxazole, tetracycline, chloramphenicol; the rate to ciprofloxacin was50%; MICs ofticarcillin, ticarcillin/clavulanic acid, cefazolin, cefotaxime and cefepime were greater than256μg/ml, and MICs of cefotaxime and cefepime greater than128μg/ml. But there were somedifferences in MICs of imipenem and aztreonam: a high degree of resistance to imipenemappeared, but the MIC of PA1, PA2, PA3and PA was64μg/ml, and PA5, PA6, PA7and PA8was32μg/ml; a high degree of resistance to aztreonam also was found, that is, the MIC of PA1,PA2, PA3and PA4was64μg/ml, and PA5, PA6, PA7and PA8was8μg/ml; the resistancerate of10isolates from the environment of the burn wards to ampicillin was100%, the rates tothe6antimicrobial agents, including amikacin, gentamicin, tobramycin, complex sulfonamide,tetracyclin and chloramphenicol, all were20%, but the isolates to ciprofloxacin were sensitive.Results from broth micro-dillution method showed that MICs of ticarcillin,ticarcillin/clavulanic acid and cefazolin were less than12μg/ml, and those of imipenem andaztreonam were less than8μg/ml.
     2.2Determination of MBLs Strains
     The double-disk synergy method was applied. Tested bacteria were evenly distributed onMH agar plates, and then two pieces of paper with imipenem (IMP,10μg/ml) were posted inthe flat. An appropriate amount of EDTA was added on one piece of paper, and the paper wasincubated at35℃for16~8h for comparing the size of the inhibition zone on the two pieces ofpaper. The results showed that the inhibition zone on IPM paper with EDTA was significantlyexpanded compared with that on the paper without EDTA, and the inhibition zone more than5mm was taken as the enzyme-producing strains. As a result, the strains of PA isolated fromthe burn patients were all MBLs ones, but none of10strains from the environment of the nurnwards was MBLs strains.
     3. Investigation of the Resistance Mechanisms of Clinical Isolates of PA
     3.1Outer Membrane Protein Detection of the Clinical Isolates of PA
     The cell wall of PA has inner and outer layers, and the outer membrane structure hasunusually low permeability, which plays a major role in multidrug resistance to antimicrobialdrugs. The outer membrane protein OprD2pore is a specific channel for imipenem with smallmolecules to enter the bacteria quickly to achieve a high degree of antibacterial activity.Carbapenem can exert its antibacterial effect when it must penetrate the outer layer firstly andthen combine with the penicillin-binding protein in the inner layer.
     In this experiment, the PA was broken by ultrasonic wave, the cell wall proteins wereextracted, and then, SDS-PAGE and Western blotting were performed. The experimental results revealed the deficiency of OprD2porin protein in8strains of PA, which was related tothe resistance to imipenem; All10strains of PA in the specimens from the environment of theburn ward had OprD2porin protein and they were sensitive to imipenem.
     3.2Clinical Isolates of PA Carrying the Metal Gene and Class1Integron
     So far five gene types of metalloenzyme of bacteria have been discovered: IMP, VIM,SPM, GIM, and AIM. IMP and VIM are most important, which can be divided into manysubtypes according to the amino acid sequence. By far, at least38kinds of metallic enzymehave been found in PA. The most popular MBL includes IMP-1,7,9,10,11and13; VIMincludes VIM-1,2,3,4and7; SPM, GIM and AIM only one type, namely, SPM-1, GIM-1andAIM-1. Most of these genes appear on integron and new types of these genes continuouslyappear with the application of carbapenem antimicrobial drugs. Integron can not only spread inbacteria through site-specific recombination but also capture the drug-resistant gene efficiently,so it plays a great part in horizontal transmission of resistance among bacteria.
     In this experiment, IMP, VIM, the SPM and GIM gene primers were designed, and PCR,cloning and sequencing technology were applied to detect the gene types of MBLs resistancegenes and the characteristics of integron. The results from PCR product cloning andsequencing showed eight strains carrying VIM-2gene and class1integron.
     In order to make clear the diffusion mechanism of bacterial resistance, and the genelocation of integron and MBLs, the analysis on the plasmids and zygote mapping was carriedout through transferring the plasmid with positive integron into the engineered bacteria.Zygote resistance profile identification revealed that the resistance of PA to chloramphenicol,ciprofloxacin, and tetracycline could be transferred to recipient strains through plasmid, whilethe resistance to Beta-lactamase, sulfonamides and aminoglycoside could not be transferred.PCR was applied to detect the transfer of the zygote carring MBLs genes and integron in PA.As a result, the MBLs genes and class1integron were not amplified on the template of zygote,indicating that the MBLs genes and class1integron might be located on the chromosome, Thetransformation and conjugal transfer experiments further confirmed that VIM-2gene was onthe chromosome.
     4. Investigation of Epidemic Mechanism of Clinical Isolates of PA in theBurn Wards
     4.1The Analysis of Plasmid Fingerprinting Spectrum of Clinical Isolates of PA
     There are plasmid profiles for resistant strains in different regions, resistance R plasmidsbetween different strains are mutually related to some extent, and the plasmid profiles mayreveal the popular trends of resistance plasmid in different regions, hospitals and wards. In this experiment, the alkaline lysis method and plasmid extraction kit were used to extract theplasmids of the18clinical isolates and analyze the plasmid profile. The results indicated thatthe plasmid profiles of the8strains of PA in specimens from the burned patientswerecomplicated, and the strains carried7natural plasmids with various numbers and size inabout1.0~60kb, while the plasmid profiles of the10strains of PA in specimens from theenvironment of burn wards were simple and the strains carried3-5natural plasmids with1.0~60kb, and The18bacteria all had the same plasmid with the size in60kb.
     4.2The Analysis of Pulsed Field Gel Electrophoresis in Clinical Isolates of PA
     The analysis of pulsed field gel electrophoresis is the first choice currently accepted formolecular epidemiological investigations. The results indicated that12-18DNA fragmentszones with different sizes in10~800kb were found in the8isolates genome of PA in specimensfrom the burned patients and the isolates showed clone isolates with three kinds of gene types,and the clone isolates came from three different burn wards respectively, while the same genetype was found in the isolates of PA in specimens from the environment of the burn wards andall of them were identical cloning strains, proving that cloning isolates of PA are spread andprevalent in many burn wards of Jilin region.
     4.3Homology analysis of Isolates of PA in Clinic
     Complete genomic DNA of18PA isolates was extracted and the random primersamplified polymorphism analysis was completed. Three genotypes were found in PA isolatesin specimens from the burned patients: PA1, PA2and PA3, which were the identical cloningisolate; PA4, PA5and PA6, which were the identical cloning isolate; PA7and PA8, which werethe identical cloning isolate. The same gene type was found in the isolates of PA in specimensfrom the environment of the burn wards, indicating that PA9~PA18from the different placesare the identical cloned strain.
     The results reveal the resistance mechanism of clinical PA isolates to carbapenemantimicrobial agents and the molecular epidemiological mechanism in the resistancetransmission, which may provide experimental evidences for the efficent control of theprvalence of PA in burn wards.
引文
[1]张凤华,王大利,王晶,等. ICU铜绿假单胞菌肺部感染的临床分析[J].中华医院感染学杂志,2010,20(6):875-877.
    [2]肖永红.2008年度ICU细菌耐药性监测[J].中华医院感染学杂志,2010,20(16):2384-2388.
    [3] http:www.mhlw.go.jp/shingi/2007/03/dl/s0315-4h.pdf [E]
    [4] Wisplinghoff H, Bischoff T, Tallent SM, et al. Nosocomial bloodstream infections in UShospitals, analysis of24,179cases from a prospective nationwide surveillance study.Clin Infect Dis,2004,39(7):309–317.
    [5]王贵年.铜绿假单胞菌产金属β-内酰胺酶的临床调查研究[D].大连:大连医科大学,2008.
    [6]陶晶,张俊丽,瞿婷婷.铜绿假单胞菌金属β-内酰胺酶分布及产金属酶检测方法比较[J].检验医学,2009,2(1):28-30.
    [7] Watanabe M, Iyobe S, Inoue M, et al. Transferable imipenem resistance in Pseudomonasaeruginosa[J]. Antimicrob Agents Chemother,1991,35(1):147-151.
    [8] Tassios PT, Gennimata V, Spaliara-Kalogeropoulou L, et al. Multiresistant Pseudomonasaeruginosa serogroup O,11outbreak in an intensive care unit[J]. Clin Microbiol Infect,1997,3(5):621–628.
    [9] Hirakata Y, Izumikawa K,Yamaguchi T, et al. Rapid detection and evaluation of clinicalcharacterizatics of emerging multiple-drug-resistant Gram-negative rods carrying themetallo-beta-lactamase gene blaIMP[J]. Antimicrob Agents Chemother,1998,42(5):2006-2011.
    [10] Giakkoupi P, Petrikkos G, Tzouvelekis LS, et al. Spread of integron-associatedVIM-type metallo-beta-lactamase genes among imipenem-nonsusceptiblePseudomonas aeruginosa strains in Greek hospitals[J]. J Clin Microbiol,2003,412,41(2):822-825.
    [11] Lee K, Lee WG, Uh Y, et al. VIM-and IMP-type metallo-beta-lactamase-producingPseudomonas spp. and Acinetobacter spp. in Korean hospitals[J]. Emerg Infect Dis,2003,9(7):868-871.
    [12]李德周,潘发愤.铜绿假单胞菌对碳青霉烯类抗生素的耐药机制研究进展[J].中国微生态学杂志,2008,6(3):124-126.
    [13]魏志华.多药耐药铜绿假单胞菌MexAB-OprM主动外排系统的耐药作用及其调控基因mexR的突变情况[D].安徽:安徽医科大学,2010.
    [14]熊薇,王洪波,徐敏,等.铜绿假单胞菌外膜蛋白OprD2缺失和金属β-内酰胺酶与亚胺培南耐药的关系[J].中华医院感染学杂志,2007,17(10):1193-1197.
    [15]魏树全.泛耐药铜绿假单胞菌体外耐药模型构建及其耐药机制的研究[D].广州:广州医学院,2009.
    [16] Wang J., Zhou J., Qu T., et al. Molecular epidemiology and mechanisms of carbapenemresistance in Pseudomonas aeruginosa isolates from Chinese hospitals[J]. Int Jantimicrob Agents,2010,35(5):486-491.
    [17]安乐,王艳艳,唐克,等.铜绿假单胞菌主动外排系统与耐药性关系的研究[J].北华大学学报(自然科学版),2011,12(1):43-46.
    [18] Alibert-Franco S, Pradines B, Mahamoud A, et al. Efflux mechanism, an attractivetarget to combat multidrug resistant Plasmodium falciparum and Pseudomonasaeruginosa[J]. Curr Med Chem,2009,16,301–317.
    [19]Jeannot K, Elsen S, K hler T, et al. Resistance and virulence of Pseudomonasaeruginosa clinical strains overproducing the MexCD-OprJ efflux pump[J]. AntimicrobAgents Chemother,2008,52(7):2455-2458.
    [20] Pitout J., Revathi G., Chow B., et al. Metallo-beta-lactamase-producing Pseudomonasaeruginosa isolated from a large tertiary centre in Kenya[J]. Clin Microbiol Infect.2008,14(8):755-759.
    [21] Aloush V, Navon-Venezia S, Sei gm an-Igra Y, et al. Multidrug resistant Pseudomonasaeruginosa: risk factors and clinical impact[J]. Antimicrob.Agents Chemother,2006,50(1):43-48.
    [22] Tattawasart U, Maillard J, Furr JR, et al. Outer membrane changes in Pseudomonasstatzeir resistant to chlorhexidine diacetate and cetylpyridinium chloride[J]. Int Jantimicrob Agents,2000,16:233-238.
    [23] Ikonomidis A., Tsakris A., Kantzanou M., et al. Efflux system overexpression anddecreased OprD contribute to the carbapenem heterogeneity in Pseudomonasaeruginosa[J]. FEMS microbiology letters,2008,279(1):36-39.
    [24] Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistantPseudomonas aeruginosa: comparison of risks associated with differentantipseudomonal agents[J]. Antimicrob Agents Chemother,1999,43(35):1379–1382.
    [25] Rodriguez-Martinez JM, Poirel L, Nordmann P. Molecular epidemiology andmechanisms of carbapenem resistance in Pseudomonas aeruginosa[J]. AntimicrobAgents Chemother,2009,53(11):4783-4788.
    [26] Ikonomidis A, Tsakris A, Kantzanou M, et al. Efflux system over expression anddecreased OprD contribute to the carbapenem heterogeneity in Pseudomonasaeruginosa[J]. FEMS Microbiol Lett,2008,279(1):36-39.
    [27] Santella G, Pollini S, Docquier JD, et al. Carbapenem resistance in Pseudomonasaeruginosa isolates: an example of interaction between different mechanisms[J]. RevPanam Salud Publica.2011,30(6):545-8.
    [28]衣美英,王鹏远,黄汉菊,等.外排泵高表达和外膜蛋白缺失在铜绿假单胞菌对碳青霉烯耐药中的作用[J].中华医学杂志,2006,86(7):457-46.
    [29]孙震,殷俊,高伟.耐亚胺培南铜绿假单胞菌的耐药机制研究[J].中国抗生素杂志,2009,34(1):52-56.
    [30]李良,张焕萍,王秋婷.铜绿假单胞菌主动外排系统MexAB-OprM与碳青霉烯类药物耐药的关系研究[J].中国卫生检验杂志,2010,20(2):243-245.
    [31]张建芳,冯群岭,樊新,等.临床分离铜绿假单胞菌株的碳青霉烯类耐药机制研究[J].解放军医学杂志,2008,33(8):977-980.
    [32]叶晓林,王沼丹,杨晓波.铜绿假单胞菌对喹诺酮类药物耐药作用的研究[J].药物研究,2010,19(2):20-21.
    [33]钱远宇.多药耐药铜绿假单胞菌感染的临床治疗[J].临床药物治疗杂志,2010,8(3):25-28.
    [34]唐跃华,梁玉全,董少琛,等.铜绿假单胞菌对氨基糖苷类抗生素耐药状况及相关耐药基因检测[J].国际检验医学杂志,2006,27(8):677-690.
    [35]张连波,高庆国,张广.铜绿假单胞菌生物被膜研究进展[J].中国实验诊断学,2009,1(2):235-337.
    [36]裴保香,秦攀,罗燕萍.铜绿假单胞菌耐药性与抗菌药物用量变化的相关性分析[J].中华医院感染学杂志,2010,20(7):993-995.
    [37]魏志华,沈继录,徐元宏.多药耐药铜绿假单胞菌MexAB2OprM主动外排系统的耐药作用[J].中华医院感染学杂志,2010,20(9):1205-1206.
    [38]邓芳,徐元宏,沈继龙. MexAB-OprM主动外排系统在全耐药铜绿假单胞菌耐药中的作用及机制[J].临床输血与检验,2010,12(1):6-10.
    [39] Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pumpinhibitors in the clinica vision for applied use[J]. Biochem Pharmacol,2006,71(7):910-918.
    [40] Altoparlak U, Aktas F, Celebi D, et al. Prevalence of metallo-beta-lactamase amongPseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds andinvitro activities of antibiotic combinations against these isolates[J]. Burns,2005,1(6):707-710.
    [41] Henrichfreise B, Wiegand I, Pfister W, et al. Resistance mechanisms of multiresistantPseudomonas aeruginosa strains from Germany and correlation with hypermutation[J].Antimicrob Agents Chemother,2007,51(11):4062.
    [42] Kriengauykiat J, Porter E, Lomovskaya O, et al. Use of an efflux pump inhibitor todetermine the prevalence of efflux pump mediated fluorquinolone resistance andmultidrug resistance in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother,2005,49(2):565-570.
    [43] Yoshida K, Nakayama K, Kuru N, et al. MexAB-OprM specific efflux pump inhibitorsin Pseudomonas aeruginosa. Part5: Carbon-substituted analogues at the C-2position[J].Bioorg Med Chem Lett.2006,14(6):1993-2004.
    [44]刘辽,杨云霞,万莉红.奥美拉唑对耐氧氟沙星的铜绿假单胞菌主动外排泵的抑制作用[J].华西药学杂志,2007,22(6):616-618.
    [45] Walsh TR, Toleman MA, Poirel L, et al. Metallo-beta-lactamases: the quiet before thestorm?[J]. Clin Microbiol Rev,2005,18(2):306-325.
    [46]刘忆霜,肖春玲.细菌多重耐药外排泵抑制剂研究进展[J].中国抗生素杂志,2007,32(4):211-216.
    [47] Gilbert DN, Moellering RC, Eliopoulos GM, et al. The Sanford Guide to AntimicrobialTherapy[M].2005,35thed. Hyde Park, VT: Antimicrobial Therapy.
    [48] Andrade SS, Jones RN, Gales AC, et al. Increasing prevalence of antimicrobialresistance among Pseudomonas aeruginosa isolates in Latin American medical centres:5year report of the SENTRY Antimicrobial Surveillance Program (1997–2001)[J]. JAntimicrob Chemother,2003,52(1):140–141.
    [49] Bradford PA. Extended-spectrum β-lactamases in the21st century: characterization,epidemiology, detection of this important resistance threat[J]. Clin Microbiol Rev,2001,14(4):933–951.
    [50] Waley SG. β–Lactamase, mechanism of action, p198–228In MiPage. The chemistry ofβ-lactams[M]. Chapman and Hall, London.(1992ed)
    [51] Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamasesand its correlation with molecular structures[J]. Antimicrob Agents Chemother,1995,39(6):1211–1233.
    [52] Mazel D. Integrons: agents of bacterial evolution[J]. Nat Rev Microbiol,2006,4(8):608–620.
    [53] Drawz SM, Bonomo RA. Three decades of β–lactamase inhibitors[J]. Clin MicrobiolRev,2010,23(1):160–201.
    [54] Poirel, L, Naas, T, Nordmann, P. Diversity, epidemiology, genetics of class Dbeta-lactamases[J]. Antimicrob Agents Chemother,2010,54(6):24–38.
    [55] Lister PD. β-Lactamase inhibitor combinations with extended-spectrum penicillins:factors influencing antibacterial activity against enterobacteriaceae and Pseudomonasaeruginosa[J]. Pharmacotherapy,2000,20(9):213S–218S.
    [56] Livermore DM. β-Lactamases in laboratory and clinical resistance[J]. Clin MicrobiolRev,1995,8(4):557–584.
    [57] Tam VH, Schilling AN, LaRocco MT, et al. Prevalence of AmpC over-expression inbloodstream isolates of Pseudomonas aeruginosa[J]. Clin Microbiol Infect,2007,13(6):413–418.
    [58] Rodríguez-Martínez JM, Poirel L, Nordmann P. Extended spectrum cephalosporinasesin Pseudomonas aeruginosa[J]. AntimicrobAgentsChemother,2009,53(5):1766–1771.
    [59] Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update[J]. ClinMicrobiol Rev,2005,18(2):657–686.
    [60] Tzouvelekis LS, Bonomo RA. SHV-type β-lactamases[J]. Curr Pharm Des,1999,5(6):847–864.
    [61] Dubois V, Arpin C, Noury P, et al. Clinical strain of Pseudomonas aeruginosa carryinga blaTEM–21gene located on a chromosomal interrupted TnA type transposon[J].Antimicrob Agents Chemother,2002,46(8):3624–3626.
    [62] Marchandin H, Jean-Pierre H, De Champs C, et al. Production of a TEM-24plasmid-mediated extended-spectrum β-lactamase by a clinical isolate of Pseudomonasaeruginosa[J]. Antimicrob Agents Chemother,2000,44(1):213–216.
    [63] Pic o RC, Poirel L, Gales AC, et al. Further identification of CTX–M–2extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob AgentsChemother,2009,53(2):2225–2226.
    [64] Empel J, Filczak K, Mrówka A, et al. Outbreak of Pseudomonas aeruginosa infectionswith PER-1extended-spectrum β-lactamase in Warsaw, Poland: further evidence for aninternational clonal complex[J]. J Clin Microbiol,2007,45(4):2829–2834.
    [65] Vahaboglu H, Oztürk R, Aygün G, et al. Widespread detection of PER-1-typeextended-spectrum β–lactamases among nosocomial Acinetobacter and Pseudomonasaeruginosa isolates in Turkey, a nationwide multicenter study[J]. Antimicrob AgentsChemother,1997,41(5):2265–2269.
    [66] Bauernfeind A, Stemplinger I, Jungwirth R, et al. Characterization of β-lactamase geneblaPER–2, which encodes an extended-spectrum class A β-lactamase[J]. AntimicrobAgents Chemother,1996,40(1):616–620.
    [67] Poirel L, Naas T, Guibert M, et al. Molecular and biochemical characterization ofVEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coliintegron gene[J]. Antimicrob Agents Chemother,1999,43(1):573–581.
    [68] Dubois V, Poirel L, Marie C, et al. Molecular characterization of a novel class1integron containing blaGES-1and a fused product of aac3-Ib/aac6′–Ib’ gene cassettesin Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother,2002,46(4):638–645.
    [69] Queenan AM, Bush K. Carbapenemases, the versatile β–lactamases[J]. Clin MicrobiolRev,2007,20(5):440–458.
    [70] Poirel L, Le Thomas I, Naas T, et al. Biochemical sequence analyses of GES–1, a novelclass A extended-spectrum β-lactamase, the class1integron from Klebsiellapneumonia[J]. Antimicrob Agents Chemother,2000,44(2):622–632.
    [71] Mavroidi A, Tzelepi E, Tsakris A, et al. An integron-associated β-lactamase (IBC-2)from Pseudomonas aeruginosa is a variant of the extended-spectrum β-lactamaseIBC-1[J]. J Antimicrob Chemother.2001,48(5):627–630.
    [72] Poirel L, Brinas L, Verlinde A, et al. BEL-1, a novel clavulanic acid-inhibitedextended-spectrum β-lactamase, the class1integron In120in Pseudomonasaeruginosa[J]. Antimicrob Agents Chemother,2005,49(9):3743–3748.
    [73] Poirel L, Girlich D, Naas T, et al. OXA-28, an extendedspectrum variant of OXA–10β–lactamase from Pseudomonas aeruginosa and its plasmid-and integron-locatedgene[J]. Antimicrob Agents Chemother,2001,45(2):447–453.
    [74] Walther-Rasmussen J, H iby N. Class A carbapenemases[J]. J Antimicrob Chemother,2007,60(3):470–482.
    [75] Rossolini GM, Luzzaro F, Migliavacca R, et al. First countrywide survey of acquiredmetallo-β-lactamases in gram-negative pathogens in Italy[J]. Antimicrob AgentsChemother,2008,52(11):4023–4029.
    [76] Nordmann P, Ronco E, Naas T, et al. Characterization of a novel extended-spectrumβ-lactamase from Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother,1993,37(5):962–969.
    [77] Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, anew integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinicalisolate[J]. Antimicrob Agents Chemother,1999,43(4):1584–1590.
    [78] Hu Z, Zhao WH. Identification of plasmid-and integron-borne blaIMP-1and blaIMP-10in clinical isolates of Serratia marcescens[J]. J Med Microbiol,2009,58(8):217–221.
    [79] Zhao WH, Chen G, Ito R, et al. Relevance of resistance levels to carbapenems andintegron-borne blaIMP-1, blaIMP-7, blaIMP-10and blaVIM-2in clinical isolates ofPseudomonas aeruginosa[J]. J Med Microbiol,2009,58(8):1080–1085.
    [80] Zhao WH, Hu ZQ. Beta-lactamases identified in clinical isolates of Pseudomonasaeruginosa[J]. Crit Rev Microbiol,2010,36(3):245-58.
    [81] Shibata N, Doi Y, Yamane K, et al. PCR typing of genetic determinants formetallo-β-lactamases and integrases carried by gram–negative bacteria isolated in Japan,with focus on the class3integron[J]. J Clin Microbiol,2003,41(4):5407–5413.
    [82] Riccio ML, Pallecchi L, Fontana R, et al. In70of plasmid pAX22, a blaVIM-1-containingintegron carrying a new aminoglycoside phosphotransferase gene cassette[J].Antimicrob Agents Chemother,2001,45(2):1249–1253.
    [83] Vourli S, Tsorlini H, Katsifa H, et al. Emergence of Proteus mirabilis carrying the blametallo-β-lactamase gene[J]. Clin Microbiol Infect,2006,12(4):691–694.
    [84] Toleman MA, Simm AM, Murphy TA, et al. Molecular characterization of SPM-1, anovel metallo-β-lactamase isolated in Latin America, report from the SENTRYantimicrobial surveillance programme[J].J Antimicrob Chemother.2002,50(6):673–679.
    [85] Sader HS, Reis AO, Silbert S, Gales AC. IMPs, VIMs and SPMs, the diversity ofmetallo-β-lactamases produced by carbapenemresistant Pseudomonas aeruginosa in aBrazilian hospital[J]. Clin Microbiol Infect,2005,11(1):73–76.
    [86] Castanheira M, Toleman MA, Jones RN, et al. Molecular characterization of aβ-lactamase gene, blaGIM–1, encoding a new subclass of metallo-β-lactamase[J].Antimicrob Agents Chemother,2004,48(12):4654–4661.
    [87] Lee K, Lim Y S, Yong D, et al. Evaluation of the Hodge test and the imipenem EDTAdouble-disk synergy test for differrentiating metallo-beta-lactamase producing isolatesof Pseudomonas spp. and Acinetobacter spp[J]. J Clin Microbiol,2003,41(10):4623-4629.
    [88]吕火祥,孙明洪,刘建栋,等.协同法过筛检测金属β-内酰胺酶的研究[J].中华检验医学杂志,2002,25(4):232-235.
    [89] Walsh F., Bracher S., Turner P., et al. Preferential selection of IMP and VIMmetallo-beta-lactamases by imipenem in Pseudomonas aeruginosa[J]. Chemotherapy,2007,53(6):407-409.
    [90] Migliavacca R, Docquier JD, Mugnaioli C, et al. Simple microdilution test for detectionof metallo-beta-lactamase production in Pseudomonas aeruginosa[J]. J Clin Microbiol,2002,40(11):4388-4390.
    [91] NationalCommittee for Clinical Laboratory Standards,2001. Performance Standards forAntimicrobial Susceptibility Testing M100-S11, vol.21, No.1National Committee forClinical Laboratory Standards, Wayne, PA.
    [92] Clinical and Laboratory Standards Institute,2005. Performance Standards forAntimicrobial Susceptibility Testing;15thinformation supplement. CLSI documentM100-S15. Clinical and Laboratory Standards Institute, Wayne, PA.
    [93]李超,黄亮,吴庆,等.多药耐药铜绿假单胞菌产金属β-内酰胺酶的检测[J].中华医院感染学杂志,2009,19(23):3164-3167.
    [94]李明成.产志贺毒素大肠埃希菌多重耐药分子机制的研究[D].长春:吉林大学,2006.
    [95] Tenover F C, Arbeit R D, Goering R V, et al. Interpreting chromosomal DNArestriction patterns produced by pulsed field gel electrophoresis: criteria for bacterialstrain typing [J]. J ClinMicrobiol,1995,33(9):410-419.
    [96]陆惠强,张剑强,李晓萍,等.医院感染铜绿假单胞菌的临床分布及耐药性监测[J].中华医院感染学杂志,2009,19(23):3258-3260.
    [97]鲍红荣.医院铜绿假单胞菌的分布与耐药性变迁分析[J].中华医院感染学杂志,2010,20(4):573-575.
    [98] Dong F., Xu X., Song W., et al. Characterization of multidrug-resistant andmetallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from a paediatricclinic in China[J]. Chinese medical journal,2008,121(17):1611-1616.
    [99] Rodriguez-Martinez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinasesin Pseudomonas aeruginosa[J].Antimicrob Agents Chemother,2009,53(5):1766-1771.
    [100]Cavalcanti FL, Almeida AC, Vilela MA, et al. Changing the epidemiology ofcarbapenem-resistant Pseudomonas aeruginosa in a Brazilian teaching hospital: thereplacement of S o Paulo metallo-β-lactamase-producing isolates[J]. Mem InstOswaldo Cruz,2012,107(3):420-423.
    [101] Zhang J., Chen B., Xin X., et al. Carbapenem Resistance Mechanism and Risk Factorsof Pseudomonas aeruginosa Clinical Isolates from a University Hospital in Xi'an,China[J]. Microbial drug resist,2009,15(1):41-45.
    [102]倪朝辉.产超广谱β-内酰胺酶革兰阴性菌分子耐药机制研究[D].长春:吉林大学,2007.
    [103] Hocquet D, Berthelot P, Roussel-Delvallez M, et al. Pseudomonas aeruginosa mayaccumulate drug resistance mechanisms without losing its ability to cause blood-streaminfections[J]. Antimicrob Agents Chemother,2007,51(10):3531-3536.
    [104] Deshpande LM, Fritsche TR, Jones RN. Molecular epidemiology of selectedmultidrug-resistant bacteria: a global report from the SENTRY AntimicrobialSurveillance Program[J]. Diagn Microbiol Infect Dis,2004,49(4):231–236.
    [105]孙珍,向军,宋菲,等.烧伤病房铜绿假单胞菌的流行性分析[J].中华医院感染学杂志,2011,21(18):3774-3776.
    [106] Sekiguchi J., Teruya K., Horii K., et al. Molecular epidemiology of outbreaks andcontainment of drug-resistant Pseudomonas aeruginosa in a Tokyo hospital[J]. J InfectChemother,2007,13(6):418-422.
    [107] Poirel L, Naas T, Nicolas D et al. Characterization of VIM-2, acarbapenem-hydrolyzing metallo-beta-lactamase and its plasmid and integron-bornegene from a Pseudomonas aeruginosa clinical isolate in France[J]. AntimicrobAgentsChemother,2000,44(4):891–897.
    [108] Pagniez G., Radice M., Cuirolo A., et al. Prevalence of metallo-beta-lactamase incarbapenem resistant Pseudomonas aeruginosa at a university hospital of Buenos AiresCity[J]. Revista Argentina de microbiologia,2006,38(1):33-37.
    [109] Crespo M., Woodford N., Sinclair A., et al. Outbreak of carbapenem-resistantPseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in atertiary care center in Cali, Colombia[J]. J clin microbiol,2004,42(11):5094-101.
    [110] Landman D., Quale J., Mayorga D., et al. City wide clonal outbreak of multiresistantAcinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: thepreantibiotic era has returned[J]. Archives of internal medicine,2002,162(13):1515-1520.
    [111]王文奎,韩立中,杨莉,等.2004-2006年瑞金医院烧伤病房病原菌分布及分子流行病学分析[J].中华烧伤杂志,2009,25(2):94-97.
    [112]周秀珍,孙继梅,刘建华.连续十年铜绿假单胞菌对碳青霉烯类抗生素耐药率分析[J].用药分析,2010,13(13):1467-1469.
    [113]陆惠强,张剑强,李晓萍,等.医院感染铜绿假单胞菌的临床分布及耐药性监测[J].中华医院感染学杂志,2009,19(23):3258-3260.
    [114] Henrichfreise B, Wiegand I, Luhmer-Becker I, et al. Development of resistance inwild-type and hypermutable Pseudomonas aeruginosa strains exposed to clinicalpharmacokinetic profiles of meropenem and ceftazidime simulated in vitro[J].Antimicrob Agents Chemother,2007,51(10):3642-3649.
    [115] Lin SP, Liu MF, Lin CF, et al. Phenotypic detection and polymerase chain reactionscreening of extended-spectrum β-lactamases produced by Pseudomonas aeruginosaisolates[J]. J Microbiol Immunol Infect,2012,45(3):200-207.
    [116] Yoneyama H, Nakae T. Mechanism of efficient elimination of protein D2in outermembrane of imipenem-resistant Pseudomonas aeruginosa[J]. Antimicrob AgentsChemother,1993,37(11):2385-2390.
    [117] Harris AD, Smith D, Johnson JA, et al. Risk factors for imipenem-resistantPseudomonas aeruginosa among hospitalized patients[J]. Clin Infect Dis,2002,34(3):340–345.
    [118] Yan JJ, Hsueh PR, Lu JJ, et al. Characterization of acquired β-lactamases and theirgenetic support in multidrug–resistant Pseudomonas aeruginosa isolates in Taiwan, theprevalence of unusual integrons[J]. J Antimicrob Chemother,2006,58(4):530–536.
    [119]吕婉飞,张媛媛,汪丽,等.铜绿假单胞菌的临床分布与耐药性变迁[J].中华医院感染学杂志,2009,19(23):3263-3265.
    [120] Poirel L, Lambert T, Turkoglu S, et al. Characterization of class1integrons fromPseudomonas aeruginosa that contain the blaVIM-2carbapenem-hydrolyzingbeta-lactamase gene and of two novel aminoglycoside resistance gene cassettes[J].Antimicrob Agents Chemother,2001,45(2):546–552.
    [121] Lautenbach E, Weiner MG, Nachamkin I, et al. Imipenem resistance amongPseudomonas aeruginosa isolates: risk factors for infection and impact of resistance onclinical and economic outcomes[J]. Infect Control Hosp Epidemiol,2006,27(12):893–900.
    [122] Lin D, Foley SL, Qi Y, et al. Characterization of antimicrobial resistance ofPseudomonas aeruginosa isolated from canine infections[J]. J Appl Microbiol,2012,113(1):16-23.
    [123] Lagatolla C., Tonin E., Monti-Bragadin C., et al. Endemic carbapenem-resistantPseudomonas aeruginosa with acquired metallo-beta-lactamase determinants inEuropean hospital[J]. Emerg Infect Dis,2004,10(3):535-538.
    [124] Wolter D., Acquazzino D., Goering R., et al. Emergence of carbapenem resistance inPseudomonas aeruginosa isolates from a patient with cystic fibrosis in the absence ofcarbapenem therapy[J]. Clin Infect Dis,2008,46(12):137-141.
    [125] Yum JH, Yong D, Lee K. A new integron carrying VIM-2metallo-beta-lactamasegene cassette in a Serratia marcescens isolate[J]. Diagn Microbiol Infect Dis,2002,42(3):217–219.
    [126] Betjes MG. Prevention of catheter-related bloodstream infection on hemodialysis[J].Nat Rev Nephro,2011,7(5):257-265.
    [127] Kohlenberg A., Weitzel-Kage D., van der Linden P., et al. Outbreak ofcarbapenem-resistant Pseudomonas aeruginosa infection in a surgical intensive careunit[J]. J Hosp Infect,2010,74(4):350-357.
    [128] Eagye KJ, Banevicius MA, Nicolau DP. Pseudomonas aeruginosa is not just in theintensive care unit any more: Implications for empirical therapy[J]. Crit Care Med,2012,40(4):1329-32.
    [129]文细毛,任南,吴安华,等.864例次耐亚胺培南铜绿假单胞菌医院感染特征分析[J].中华医院感染学杂志,2010,20(16):2416-2418.
    [130] Altoparlak U, Aktas F, Celebi D, et al. Prevalence of metallo-beta-lactamase amongPseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds andinvitro activities of antibiotic combinations against these isolates[J]. Burns,2005,31(6):707-710.
    [131] Landman D, Babu E, Shah N, et al. Transmission of carbapenem-resistant pathogens inNew York City hospitals: progress and frustration[J]. J Antimicrob Chemother,2012,67(6):1427-1431.
    [132]陈键.老年住院患者产金属酶耐亚胺培南铜绿假单胞菌的耐药监测[J].中华医院感染学杂志,2012,22(11):2434-2436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700