TiO_2光催化陶瓷的高温烧结制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(TiO_2)具有活性高、稳定性好、无毒和成本低等优点,是目前研究最为广泛的光催化剂之一。负载型TiO_2是实现其应用的有效途径,但由于TiO_2本身能分解有机物,所以不能直接将其通过高分子材料粘合而负载到其它材料上。采用适当的固定化方法将TiO_2固定在玻璃、陶瓷和金属等基材表面,是实现其光催化性能的关键。利用TiO_2的光催化活性和光诱导亲水性,可制备具有抗菌除臭、净化空气和自清洁功能的光催化陶瓷。但是光催化活性(低煅烧温度下较好)和涂层附着力(高煅烧温度下较好)之间的矛盾是制约其实际应用的主要原因。本论文对锐钛矿型TiO_2的高温稳定条件与制备及其在陶瓷上的应用进行了比较深入的研究,创新性地提出利用磷酸钛在釉中的分解反应实现在高温烧结条件下制备TiO_2光催化陶瓷的目标。
     SiO_2~(3-)改性和PO_4改性是提高纳米锐钛矿型TiO_2粉体热稳定性的有效途径。通过溶胶-凝胶法引入SiO_2、浸渍法或机械混合法引入KH_2PO_4和水解沉淀法引入磷酸都能使TiO_2的相变起始温度由550℃提高到950℃以上。
     通过掺入碳酸盐和硅酸盐研究氧化物对TiO_2晶相结构的影响。结果表明:在低温时,Li_2O、Na_2O、K_2O、MgO、CaO、ZnO、BaO、B_2O_3、Al_2O_3等陶瓷常用成分对锐钛矿相晶粒长大和TiO_2相变主要起到阻碍作用。
     将TiO_2与釉料混合,研究TiO_2在釉中的相变行为。结果表明:水解法制备的TiO_2粉体和Degussa P25TiO_2粉体在釉中的相变发生温度和相变完成温度都分别低于釉的始熔温度和熔融温度,而在熔融石英粉中的相变与它们单独时差异不大。低共熔液相是破坏锐钛矿相热稳定性的主要原因。SiO_2改性和5wt%KH_2PO_4改性的TiO_2在熔融石英粉和釉中的相变与纯的TiO_2相似。相比KH_2PO_4改性的TiO_2,磷酸改性的TiO_2在釉中具有更好的热稳定性。
     当用P/Ti摩尔比为1:2的磷酸改性TiO_2涂覆在陶瓷釉面上制备光催化陶瓷时,底釉和烧成制度对釉面表层中的TiO_2晶相结构影响不大,但对釉面的表面形貌和光催化活性具有重要的影响。此外,提高烧成温度,有利于提高涂层的光泽度和耐磨性,但会导致光催化性能和光诱导亲水性能下降。
     分别将3种不同P/Ti摩尔比的磷酸钛前驱体与低温熔块(G2)混合并在不同温度下快速烧成。3种情况下都有TiO_2生成,但TiO_2的相变行为不一样。当摩尔比为1:1时,1000℃下TiO_2大部分为锐钛矿相,只有少量的金红石相。不同摩尔比的磷酸钛与Na_2CO_3的分解反应过程各不一样,当摩尔比为1:1时TiO_2主要存在于初级分解产物,而当摩尔比为2:1和4:1时TiO_2主要存在于次级分解产物。显微结构分析表明:磷酸盐对TiO_2颗粒具有一定的粘附作用,这有效地阻碍了TiO_2颗粒间的接触并对其相变起到抑制的作用。磷酸钛与Na~+的反应可视为磷酸钛与釉反应的前期,当烧成温度达到液相产生的温度时,磷酸钛与Na~+反应生成的磷酸钛类化合物会被液相熔融并析出TiO_2。磷酸根对初级分解得到的TiO_2的相变具有更好的抑制作用。
     将P/Ti摩尔比为1:1的磷酸钛前驱体涂覆在陶瓷釉面上并在1000℃下快速烧成,结果表明:直接涂覆在低温釉面上(C2)会导致TiO_2颗粒被玻璃相覆盖,而直接涂覆在高温釉面上(C4)又会导致磷酸钛与釉反应不足使得釉层表面致密化不高。采用在高温釉面上预先涂覆一层薄的低温釉层可避免上述问题。当涂层在1000℃保温3min快速烧成时,尺寸范围为70~130nm的锐钛矿TiO_2颗粒牢固地嵌入在涂层表面。所得涂层表面致密化程度高,光泽度达到77.8%,附着力为5B级,铅笔擦伤硬度>6H,其质量非常接近普通陶瓷釉面。UV光照5h后MO降解率达到97%,UV光照12h后水的接触角降低到9.9°。通过磷酸钛在釉中的分解实现了TiO_2光催化陶瓷的高温烧结制备。
Titanium dioxide (TiO_2) has been widely investigated as a heterogeneous photocatalystsince1972, due to its excellent functionality, long-term stability, low cost, and nontoxicity.Photocatalytic ceramics are expected to play a significant role in air purification andself-cleaning against growing environmental problems utilizing its photocatalytic activity andphotoinduced hydrophilicity. However, the metastable anatase phase tends to transform intostable rutile phase upon heating. Thermal stability of anatase TiO_2is lower when coated on theglazed ceramic surface compared to the powder alone due to the negative influence ofthe glaze.Therefore, to find a compromise between photoactivity (best at the lower firing temperature)and coating adhesion(best inhigher firing temperature) is the main goalofpractical applicationof photocatalytic ceramics. In this research, highly thermal stable anatase TiO_2powders weresynthesized and applied in ceramics. A novel method has been developed for the first time togenerate TiO_2from the decomposition reaction of titanium phosphate in the glaze.
     The anatase-to-rutile phase transformation is significantly inhibited by SiO_2orPO3-4modification. The phase transformationstart temperature ofTiO_2increases from550℃toabove950℃when SiO_2was introduced by the sol-gel process, KH_2PO_4was doped byimpregnation technology or mechanical mixing method, and phosphoric acid was introducedby hydrolysis precipitation method.
     Carbonates and silicates were doped inorder to investigatethe role ofoxides inthe crystalstructure of TiO_2. The results reveal that the common components of ceramic, such as Li2O,Na2O, K2O, MgO, CaO, ZnO, BaO, B2O3, and Al2O3,mainly have inhibitory effects to thegrowth of anatase and the phase transformation of TiO_2.
     The mixtures of TiO_2and glaze were obtained for the investigation of the phasetransformation of TiO_2in glazes. The results suggest that the start and finish phasetransformation temperatures of TiO_2synthesized by hydrolysis method and Degussa P25TiO_2in glazes are close to the softening temperature and sphere temperature of the glazes,respectively. However, the phase transformation behaviors of TiO_2in fused silica are similar tothat of alone. The eutectic liquid is essential for the phase transformation behavior of anataseTiO_2in glaze. The phase transformation behaviors of SiO_2-modified TiO_2and5wt%KH_2PO_4-modified TiO_2in fused silica and glazes are similar to that of pure TiO_2. TiO_2modified by phosphoric acid has a higher thermal stability in glazes than that ofKH_2PO_4-modified TiO_2.
     Photocatalytic ceramics were prepared by spin-coating phosphoric acid modified TiO_2 with a P/Ti molar ratio of1:2on the surface of glazed ceramics. Underglaze and firing systemhave little effects on the crystal structure of TiO_2on the surface of glaze layer, but have greateffects on the surface morphology and photoactivity. In addition, the improvement of firingtemperature is favorable for the gloss and abrasion resistance, but unfavorable forphotocatalytic activity and photoinduced hydrophilicity.
     Three titanium phosphate precursors with different P/Ti molar ratios were respectivelymixed with a low temperature frit (G2) and rapidly firing at different temperatures. TiO_2isfound in all three cases, but undergoes different phase transformation behaviors. The anatasephase is stable up to1000℃when titanium phosphate precursor with a P/Ti molar ratio of1:1is used. The reaction between titanium phosphate and sodium carbonate is related to the P/Timolar ratio of titanium phosphate and the relative amount of sodium carbonate. TiO_2is mainlypresent as the primary decomposition product in the case of P/Ti molar ratio of1:1, but mainlythe secondary decomposition product in the case of P/Ti molar ratio of2:1and4:1. From themicroscopic analysis, phosphate compound has a certainadsorptioncapacity for TiO_2particles,whicheffectivelyprevents the contact ofTiO_2particles and inhibits the phase transformationofTiO_2. The reaction process of titanium phosphate and sodium carbonate under the meltingtemperature of glaze can be regarded as an earlier stage of the sintering process of titaniumphosphate and glaze. On further heating, titanium phosphate compounds dissolve in the liquid,so that precipitation of TiO_2occurs. The inhibiting effect of phosphate on the anatase-to-rutilephase transformation is more significant for the primary TiO_2than that of secondary TiO_2.
     Photocatalytic ceramics were prepared by spin-coating titanium phosphate precursor witha P/Ti molar ratio of1:1onthe surface ofglazed ceramics and rapidly sintering at1000℃. TiO_2particles are covered by the matrix if directly coated on the low temperature glaze (C2),whereas TiO_2particles are immobilizing on the surface of glaze with low densification ifdirectly coated on the high temperature glaze (C4). The problem can be avoided by previouslycoating a thin G2layer on the surface of C4. Anatase TiO_2particles with a size range of about70-130nm are firmly embedded on the coating when rapidly sintered at1000℃for3min. Thedensified coating has a high gloss of77.8%, a good adhesion of rank5B, and a high pencilscratchhardness over6H, which has a veryclose qualityas compared to the surface ofordinaryglazed ceramics. Photocatalytic degradationofMO accomplishes97%after5hUV irradiation, and water contact angle ofthe surface decreases dramatically to9.9°after12h UV irradiation.High temperature sintering preparation of photocatalytic ceramics is achieved by thedecomposition of titanium phosphate in the glaze.
引文
[1] Fujishima A., Honda K. Photolysis-decomposition of water at the surface of an irradiatedsemiconductor[J]. Nature,1972,238(5385):37-38.
    [2] O’regan B., Grftzeli M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films[J]. Nature,1991,353737-740.
    [3] Bach U., Lupo D., Comte P., et al. Solid-state dye-sensitized mesoporous TiO2solar cellswith high photon-to-electron conversion efficiencies[J]. Nature,1998,395(6702):583-585.
    [4] Yu J. C., Yu J., Ho W., et al. Effects of F-doping on the photocatalytic activity andmicrostructures of nanocrystalline TiO2powders[J]. ChemistryOf Materials,2002,14(9):3808-3816.
    [5] Ohno T., Mitsui T., Matsumura M. Photocatalytic activity of S-doped TiO2photocatalystunder visible light[J]. Chemistry Letters,2003,32(4):364-365.
    [6] Ito S., Zakeeruddin S. M., Humphry‐Baker R., et al. High Efficiency Organic DyeSensitized Solar Cells Controlled by Nanocrystalline TiO2Electrode Thickness[J].Advanced Materials,2006,18(9):1202-1205.
    [7] Matsumoto T., Iyi N., Kaneko Y., et al. High visible-light photocatalytic activity ofnitrogen-doped titania prepared from layered titania/isostearate nanocomposite[J].Catalysis Today,2007,120(2):226-232.
    [8] Shen H., Mi L., Xu P., et al. Visible-light photocatalysis of nitrogen-doped TiO2nanoparticulate films prepared by low-energy ion implantation[J]. Applied SurfaceScience,2007,253(17):7024-7028.
    [9] Irie H., Miura S., Kamiya K., et al. Efficient visible light-sensitive photocatalysts: GraftingCu (II) ions onto TiO2and WO3photocatalysts[J]. ChemicalPhysics Letters,2008,457(1):202-205.
    [10] Carey J. H., Oliver B. G. Intensity effects in the electrochemical photolysis of water at theTiO2electrode[J].1976,259554-556.
    [11] Paz Y. Application of TiO2photocatalysis for air treatment: Patents’ overview[J]. AppliedCatalysis B: Environmental,2010,99(3):448-460.
    [12] Hoffmann M. R., Martin S. T., Choi W., et al. Environmental applications ofsemiconductor photocatalysis[J]. Chemical Reviews,1995,95(1):69-96.
    [13] Hashimoto K., Irie H., Fujishima A. TiO2Photocatalysis: A Historical Overview andFuture Prospects[J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART1REGULAR PAPERS SHORT NOTES AND REVIEW PAPERS,2005,44(12):8269-8285.
    [14] Ochiai T., Fujishima A. Photoelectrochemical properties of TiO2photocatalyst and itsapplications for environmental purification[J]. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2012,13(4):247-262.
    [15] Mills A., Davies R. H., WorsleyD. Water purificationbysemiconductor photocatalysis[J].Chemical Society Reviews,1993,22(6):417-425.
    [16] Chen D., K Ray A. Removal of toxic metal ions from wastewater by semiconductorphotocatalysis[J]. Chemical Engineering Science,2001,56(4):1561-1570.
    [17] Robertson P. K. Semiconductor photocatalysis: an environmentally acceptable alternativeproduction technique and effluent treatment process[J]. Journal of Cleaner Production,1996,4(3):203-212.
    [18] ZouZ., Ye J., Sayama K., et al. Direct splitting ofwater under visible light irradiationwithan oxide semiconductor photocatalyst[J]. Nature,2001,414(6864):625-627.
    [19] FoxM. A., Dulay M. T. Heterogeneous photocatalysis[J]. Chemical Reviews,1993,93(1):341-357.
    [20] Zhang P., Yu G., Jiang Z. Review of semiconductor photocatalyst and its modification[J].Advances in Environmental Science,1997,5(3):1-10.
    [21] Sayama K., Mukasa K., Abe R., et al. A new photocatalytic water splitting system undervisible light irradiation mimicking a Z-scheme mechanism in photosynthesis[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2002,148(1):71-77.
    [22] Choi Y., Umebayashi T., Yoshikawa M. Fabrication and characterization of C-dopedanatase TiO2photocatalysts[J]. Journal Of Materials Science,2004,39(5):1837-1839.
    [23] Wang Y., Cheng H., Hao Y., et al. Preparation, characterization and photoelectrochemicalbehaviors of Fe (III)-doped TiO2nanoparticles[J]. Journal Of Materials Science,1999,34(15):3721-3729.
    [24] Porter J. F., Li Y.-G., Chan C. K. The effect of calcination on the microstructuralcharacteristics and photoreactivityof Degussa P-25TiO2[J]. Journal Of Materials Science,1999,34(7):1523-1531.
    [25] Li X., Xiong R., Wei G. S–N Co-doped TiO2photocatalysts with visible-light activityprepared by sol–gel method[J]. Catalysis Letters,2008,125(1-2):104-109.
    [26] Mathews N., Jacome M., Morales E. R., et al. Structural and spectroscopic study of the Fedoped TiO2thin films for applications in photocatalysis[J]. physica status solidi (c),2009,6(S1): S219-S223.
    [27] Kumar S. G., Devi L. G. Review on modified TiO2photocatalysis under UV/visible light:selected results and related mechanisms on interfacial charge carrier transfer dynamics[J].The Journal of Physical Chemistry A,2011,115(46):13211-13241.
    [28] Chen Y., Dionysiou D. D. Effect of calcination temperature on the photocatalytic activityand adhesion of TiO2films prepared by the P-25powder-modified sol–gel method[J].Journal of Molecular Catalysis A: Chemical,2006,244(1):73-82.
    [29] Li H., Bian Z., Zhu J., et al. Mesoporous Au/TiO2nanocomposites with enhancedphotocatalytic activity[J]. Journal Of The American Chemical Society,2007,129(15):4538-4539.
    [30] Marcos P. S., Marto J., Trindade T., et al. Screen-printing of TiO2photocatalytic layers onglazed ceramic tiles[J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,197(2–3):125-131.
    [31] Bondioli F., Taurino R., Ferrari A. M. Functionalization of ceramic tile surface by sol–geltechnique[J]. Journal Of Colloid And Interface Science,2009,334(2):195-201.
    [32] Zeng Z., Peng C., Hong Y., et al. Fabrication of a Photocatalytic Ceramic by Doping Si-,P-, and Zr-Modified TiO2Nanopowders in Glaze[J]. Journal of the American CeramicSociety,2010,93(10):2948-2951.
    [33] Hofer M., Penner D. Thermally stable and photocatalytically active titania for ceramicsurfaces[J]. Journal Of The European Ceramic Society,2011,31(15):2887-2896.
    [34] Carneiro J., Teixeira V., Azevedo S., et al. Development of photocatalytic ceramicmaterials throughthe deposition of TiO2nanoparticles layers[J]. Journal of Nano Research,2012,18165-176.
    [35] Lee C.-S., Kim J., Son J., et al. Photocatalytic functional coatings of TiO2thin films onpolymer substrate by plasma enhanced atomic layer deposition[J]. Applied Catalysis B:Environmental,2009,91(3):628-633.
    [36] Lee J. A., Krogman K. C., Ma M., et al. Highly Reactive Multilayer‐Assembled TiO2Coating on Electrospun Polymer Nanofibers[J]. Advanced Materials,2009,21(12):1252-1256.
    [37] Kajitvichyanukul P., Amornchat P. Effects of diethylene glycol on TiO2thin filmproperties prepared bysol–gelprocess[J]. Science And Technologyof Advanced Materials,2005,6(3):344-347.
    [38] Park S., DiMasi E., Kim Y.-I., et al. The preparation and characterization ofphotocatalytically active TiO2thin films and nanoparticles usingSuccessive-Ionic-Layer-Adsorption-and-Reaction[J]. Thin Solid Films,2006,515(4):1250-1254.
    [39] Habibi M. H., Nasr-Esfahani M., Egerton T. A. Preparation, characterization andphotocatalytic activity of TiO2/Methylcellulose nanocomposite films derived fromnanopowder TiO2and modified sol–gel titania[J]. Journal Of Materials Science,2007,42(15):6027-6035.
    [40] Liang S., Chen M., Xue Q. Deposition behaviors and patterning of TiO2thin films ondifferent SAMs surfaces from titanium sulfate aqueous solution[J]. Colloids and SurfacesA: Physicochemical and Engineering Aspects,2008,324(1):137-142.
    [41] Tsuge Y., Kim J., Sone Y., et al. Fabrication of transparent TiO2film with high adhesionby using self-assembly methods: Application to super-hydrophilic film[J]. Thin SolidFilms,2008,516(9):2463-2468.
    [42] Linsebigler A. L., Lu G., Yates Jr J. T. Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results[J]. Chemical Reviews,1995,95(3):735-758.
    [43]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社,2002.
    [44]李新勇,李树本.纳米半导体研究进展[J].化学进展,1996,8(3):231-239.
    [45] Xu A.-W., Gao Y., Liu H.-Q. The Preparation, Characterization, and their PhotocatalyticActivities of Rare-Earth-Doped TiO2Nanoparticles[J]. Journal Of Catalysis,2002,207(2):151-157.
    [46] Venkatachalam N., Palanichamy M., Arabindoo B., et al. Alkaline earth metal dopednanoporous TiO2for enhanced photocatalytic mineralisation of bisphenol-A[J]. CatalysisCommunications,2007,8(7):1088-1093.
    [47] Chen X., Burda C. The electronic origin of the visible-light absorption properties of C-,N-and S-doped TiO2nanomaterials[J]. Journal Of The American Chemical Society,2008,130(15):5018-5019.
    [48] Panagiotopoulou P., Kondarides D. I. Effects of alkali additives on the physicochemicalcharacteristics and chemisorptive properties of Pt/TiO2catalysts[J]. Journal Of Catalysis,2008,260(1):141-149.
    [49] Zaleska A. Doped-TiO2: a review[J]. Recent PatentsonEngineering,2008,2(3):157-164.
    [50] Panagiotopoulou P., Kondarides D. I. Effects of alkali promotion of TiO2on thechemisorptive properties and water–gas shift activityofsupportednoble metalcatalysts[J].Journal Of Catalysis,2009,267(1):57-66.
    [51] Choi Y. S., Kim B. W. Photocatalytic disinfection of E coli in a UV/TiO2‐immobilisedoptical‐fibre reactor[J]. Journal Of Chemical Technology And Biotechnology,2000,75(12):1145-1150.
    [52] Lee J.-C., Kim M.-S., Kim B.-W. Removal of paraquat dissolved in a photoreactor withTiO2immobilized on the glass-tubes of UV lamps[J]. Water Research,2002,36(7):1776-1782.
    [53] Ao C., Lee S. Enhancement effect of TiO2immobilized on activated carbon filter for thephotodegradation of pollutants at typical indoor air level[J]. Applied Catalysis B:Environmental,2003,44(3):191-205.
    [54] Zan L., Peng Z.-H., Xia Y.-L., et al. Novel route to prepare TiO2-coated ceramic and itsphotocatalytic function[J]. Journal Of Materials Science,2004,39(2):761-763.
    [55] Lizama C., Bravo C., Caneo C., et al. Photocatalytic degradation of surfactants withimmobilized TiO2: comparing two reaction systems[J]. Environmental Technology,2005,26(8):909-914.
    [56] Takeuchi M., Deguchi J., Hidaka M., et al. Enhancement ofthe photocatalytic reactivityofTiO2nano-particles by a simple mechanical blending with hydrophobic mordenite (MOR)zeolite[J]. Applied Catalysis B: Environmental,2009,89(3):406-410.
    [57] Hanaor D. A., Sorrell C. C. Review ofthe anatase to rutile phase transformation[J]. JournalOf Materials Science,2011,46(4):855-874.
    [58] Gnaser H., L sch J., Orendorz A., et al. Temperature‐dependent grain growth and phasetransformation in mixed anatase‐rutile nanocrystalline TiO2films[J]. physica statussolidi (a),2011,208(7):1635-1640.
    [59] Banfield J. Thermodynamic analysis of phase stability of nanocrystalline titania[J].Journal Of Materials Chemistry,1998,8(9):2073-2076.
    [60] Wang C.-C., Ying J. Y. Sol-gel synthesis and hydrothermal processing of anatase andrutile titania nanocrystals[J]. Chemistry Of Materials,1999,11(11):3113-3120.
    [61] Chen P.-L., Kuo C.-T., Pan F.-M., et al. Preparation and phase transformation of highlyordered TiO2nanodot arrays on sapphire substrates[J]. Applied Physics Letters,2004,84(19):3888-3890.
    [62] ReidyD. J., Holmes J. D., Nagle C., etal. Ahighlythermallystable anatase phase preparedby doping with zirconia and silica coupled to a mesoporous type synthesis technique[J].Journal Of Materials Chemistry,2005,15(34):3494-3500.
    [63] Reidy D., Holmes J., Morris M. The critical size mechanism for the anatase to rutiletransformation in TiO2and doped-TiO2[J]. Journal Of The European Ceramic Society,2006,26(9):1527-1534.
    [64] Baiju K., Shukla S., Sandhya K., et al. Photocatalytic activity of sol-gel-derivednanocrystalline titania[J]. Journal of Physical Chemistry C,2007,111(21):7612-7622.
    [65] Li W., Ni C., Lin H., et al. Size dependence of thermal stability of TiO2nanoparticles[J].Journal Of Applied Physics,2004,96(11):6663-6668.
    [66] Ghosh T., Dhabal S., Datta A. On crystallite size dependence of phase stability ofnanocrystalline TiO2[J]. Journal Of Applied Physics,2003,94(7):4577-4582.
    [67] Lee G. H., Zuo J. M. Growth and Phase Transformation of Nanometer‐Sized TitaniumOxide Powders Produced by the Precipitation Method[J]. Journal Of The AmericanCeramic Society,2004,87(3):473-479.
    [68] Huber B., Brodyanski A., Scheib M., et al. Nanocrystalline anatase TiO2thin films:preparation and crystallite size-dependent properties[J]. Thin Solid Films,2005,472(1):114-124.
    [69] Pan X., Ma X. Phase transformations in nanocrystalline TiO2milled in different millingatmospheres[J]. Journal Of Solid State Chemistry,2004,177(11):4098-4103.
    [70] Riyas S., Yasir V. A., Das P. M. Crystal structure transformation of TiO2in presence ofFe2O3and NiO in air atmosphere[J]. Bulletin Of Materials Science,2002,25(4):267-273.
    [71] Robben L., Ismail A. A., Lohmeier S. J., et al. Facile synthesis of highly orderedmesoporous and well crystalline TiO2: Impact of different gas atmosphere and calcinationtemperatures on structural properties[J]. Chemistry Of Materials,2012,24(7):1268-1275.
    [72] Lee D.-W., Ihm S.-K., Lee K.-H. Mesostructure control using a titania-coated silicananosphere framework with extremely high thermal stability[J]. Chemistry Of Materials,2005,17(17):4461-4467.
    [73] Okada K., Yamamoto N., Kameshima Y., et al. Effect of Silica Additive on theAnatase-to-Rutile Phase Transition[J]. Journal of the American Ceramic Society,2001,84(7):1591-1596.
    [74] Schiller R., Weiss C. K., Landfester K. Phase stability and photocatalytic activity ofZr-doped anatase synthesized in miniemulsion[J]. Nanotechnology,2010,21(40):405-603.
    [75] Lee J. E., Oh S.-M., Park D.-W. Synthesis of nano-sized Al doped TiO2powders usingthermal plasma[J]. Thin Solid Films,2004,457(1):230-234.
    [76] Yang J., Huang Y., Ferreira J. M. F. Inhibitory effect of alumina additive on the titaniaphase transformation of a sol--gel-derived powder[J]. Journal Of Materials Science Letters,1997,16(23):1933-1935.
    [77] Chen X., Shen S., Guo L., et al. Semiconductor-based photocatalytic hydrogengeneration[J]. Chemical Reviews,2010,110(11):6503-6570.
    [78] Kato H., Asakura K., Kudo A. Highly efficient water splitting into H2and O2overlanthanum-doped NaTaO3photocatalysts with high crystallinity and surfacenanostructure[J]. Journal Of The American Chemical Society,2003,125(10):3082-3089.
    [79] Kho Y. K., Iwase A., Teoh W. Y., et al. Photocatalytic H2evolution over TiO2nanoparticles. The synergistic effect of anatase and rutile[J]. The Journal of PhysicalChemistry C,2010,114(6):2821-2829.
    [80] Kitano M., Tsujimaru K., Anpo M. Decomposition of water in the separate evolution ofhydrogen and oxygen using visible light-responsive TiO2thin film photocatalysts: Effectof the work function of the substrates on the yield of the reaction[J]. Applied Catalysis A:General,2006,314(2):179-183.
    [81] Shaban Y. A., Khan S. U. Visible light active carbon modified n-TiO2for efficienthydrogen production by photoelectrochemical splitting of water[J]. International JournalOf Hydrogen Energy,2008,33(4):1118-1126.
    [82] Tanaka S.-i., Iwatani T., Hirose N., et al. Effect of hydrogen on the formation of porousTiO2in alkaline solution[J]. Journal Of The Electrochemical Society,2002,149(12):F186-F190.
    [83] Navarro Yerga R. M., álvarez Galván M. C., Del Valle F., et al. Water Splitting onSemiconductor Catalysts under Visible‐Light Irradiation[J]. ChemSusChem,2009,2(6):471-485.
    [84] Han C., Pelaez M., Likodimos V., et al. Innovative visible light-activated sulfur dopedTiO2films for water treatment[J]. Applied Catalysis B: Environmental,2011,107(1):77-87.
    [85] Obee T. N., Brown R. T. TiO2photocatalysis for indoor air applications: effects ofhumidity and trace contaminant levels onthe oxidationrates of formaldehyde, toluene, and1,3-butadiene[J]. Environmental Science&Technology,1995,29(5):1223-1231.
    [86] Ao C., Lee S. Indoor air purification by photocatalyst TiO2immobilized on an activatedcarbon filter installed in an air cleaner[J]. Chemical Engineering Science,2005,60(1):103-109.
    [87] Ao C., Lee S., Yu J. C. Photocatalyst TiO2supported on glass fiber for indoor airpurification: effect of NO on the photodegradation of CO and NO2[J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2003,156(1):171-177.
    [88] Tsai T. M., Chang H. H., Chang K. C., et al. A comparative study of the bactericidal effectof photocatalytic oxidation by TiO2on antibiotic‐resistant and antibiotic‐sensitivebacteria[J]. Journal Of Chemical Technology And Biotechnology,2010,85(12):1642-1653.
    [89] Fu G., Vary P. S., Lin C.-T. Anatase TiO2nanocomposites for antimicrobial coatings[J].The Journal of Physical Chemistry B,2005,109(18):8889-8898.
    [90] Keleher J., Bashant J., Heldt N., et al. Photo-catalytic preparation of silver-coated TiO2particles for antibacterial applications[J]. World Journal of Microbiology andBiotechnology,2002,18(2):133-139.
    [91] Armelao L., Barreca D., Bottaro G., et al. Photocatalytic and antibacterial activity of TiO2and Au/TiO2nanosystems[J]. Nanotechnology,2007,18(37):375-709.
    [92] Gan W. Y., Lam S. W., Chiang K., et al. Novel TiO2thin film with non-UV activatedsuperwetting and antifogging behaviours[J]. Journal Of Materials Chemistry,2007,17(10):952-954.
    [93] Zeman P., Takabayashi S. Self-cleaning and antifogging effects of TiO2films prepared byradio frequency magnetron sputtering[J]. Journal of Vacuum Science&Technology A:Vacuum, Surfaces, and Films,2002,20(2):388-393.
    [94] Lai Y., Tang Y., Gong J., et al. Transparent superhydrophobic/superhydrophilicTiO2-based coatings for self-cleaning and anti-fogging[J]. JournalOfMaterials Chemistry,2012,22(15):7420-7426.
    [95] Guan K. Relationship between photocatalytic activity, hydrophilicity and self-cleaningeffect of TiO2/SiO2films[J]. Surface and Coatings Technology,2005,191(2):155-160.
    [96] Bozzi A., Yuranova T., Guasaquillo I., et al. Self-cleaning of modified cotton textiles byTiO2at low temperatures under daylight irradiation[J]. Journal of Photochemistry andPhotobiology A: Chemistry,2005,174(2):156-164.
    [97] Montazer M., Seifollahzadeh S. Enhanced Self‐cleaning, Antibacterial and UVProtection Properties of Nano TiO2Treated Textile through Enzymatic Pretreatment[J].Photochemistry And Photobiology,2011,87(4):877-883.
    [98] YaghoubiH., Taghavinia N., AlamdariE. K. Self cleaning TiO2coating onpolycarbonate:Surface treatment, photocatalytic and nanomechanical properties[J]. Surface and CoatingsTechnology,2010,204(9):1562-1568.
    [99] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science,2001,293(5528):269-271.
    [100] Khan S. U., Al-Shahry M., Ingler W. B. Efficient photochemical water splitting by achemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245.
    [101] Nakata K., Fujishima A. TiO2photocatalysis: Design and applications[J]. Journal ofPhotochemistry and Photobiology C: Photochemistry Reviews,2012,13(3):169-189.
    [102]渡部俊也;小岛荣一;则本圭一郎.具有光催化功能的多功能材料及其制造方法[P].日本,1994.
    [103] Guinier A. X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies[M].Courier Dover Publications,1994.
    [104] Spurr R. A., Myers H. Quantitative analysis of anatase-rutile mixtures with an X-raydiffractometer[J]. Analytical Chemistry,1957,29(5):760-762.
    [105] Zhang J., Li M., Feng Z., et al. UV Raman spectroscopic study on TiO2. I. Phasetransformationat the surface and in the bulk[J]. The JournalofPhysical ChemistryB,2006,110(2):927-935.
    [106] Watanabe S., Ma X., Song C. Characterization of structural and surface properties ofnanocrystalline TiO2CeO2mixed oxides byXRD, XPS, TPR, and TPD[J].The JournalofPhysical Chemistry C,2009,113(32):14249-14257.
    [107] Hirano M., Ota K., Iwata H. Direct formation of anatase (TiO2)/silica (SiO2) compositenanoparticles with high phase stability of1300C from acidic solution by hydrolysis underhydrothermal condition[J]. Chemistry Of Materials,2004,16(19):3725-3732.
    [108] Kang C., Jing L., Guo T., et al. Mesoporous SiO2-modified nanocrystalline TiO2withhigh anatase thermal stability and large surface area as efficient photocatalyst[J]. TheJournal of Physical Chemistry C,2008,113(3):1006-1013.
    [109] Guo J., Jin T., Zhang S., et al. TiO22/SO4: an efficient and convenient catalyst forpreparation of aromatic oximes[J]. Green Chemistry,2001,3(4):193-195.
    [110] Periyat P., Pillai S. C., McCormack D. E., et al. Improved high-temperature stability andsun-light-driven photocatalytic activity of sulfur-doped anatase TiO2[J]. The Journal ofPhysical Chemistry C,2008,112(20):7644-7652.
    [111] Elghniji K., Soro J., Rossignol S., et al. A simple route for the preparation of P-modifiedTiO2: Effect of phosphorus on thermal stability and photocatalytic activity[J]. Journal ofthe Taiwan Institute of Chemical Engineers,2012,43(1):132-139.
    [112] K r si L., Papp S., Bertóti I., et al. Surface and bulk composition, structure, andphotocatalytic activity of phosphate-modified TiO2[J]. Chemistry Of Materials,2007,19(19):4811-4819.
    [113] Criado J., RealC. Mechanism ofthe inhibiting effect ofphosphate onthe anatase→rutiletransformation induced by thermal and mechanical treatment of TiO2[J]. J Chem Soc,Faraday Trans1,1983,79(12):2765-2771.
    [114] Yu H.-F. Photocatalytic abilities of gel-derived P-doped TiO2[J]. Journal Of Physics AndChemistry Of Solids,2007,68(4):600-607.
    [115] Yu J. C., Zhang L., Zheng Z., et al. Synthesis and characterization of phosphatedmesoporous titanium dioxide with high photocatalytic activity[J]. Chemistry Of Materials,2003,15(11):2280-2286.
    [116] ChenL., Huang C., TsaiF. Characterizationand photocatalytic activityofK+-dopedTiO2photocatalysts[J]. Journal of Molecular Catalysis A: Chemical,2007,265(1–2):133-140.
    [117] Zhang H., Banfield J. F. Kinetics of Crystallization and Crystal Growth ofNanocrystalline Anatase in Nanometer-Sized Amorphous Titania[J]. Chemistry OfMaterials,2002,14(10):4145-4154.
    [118] Nam H., Amemiya T., Murabayashi M., et al. The influence of Na+on the crystallite sizeof TiO2and the photocatalytic activity[J]. Research On Chemical Intermediates,2005,31(4-6):365-370.
    [119] Bessekhouad Y., Robert D., Weber J., et al. Effect of alkaline-doped TiO2onphotocatalytic efficiency[J]. Journal of Photochemistry and Photobiology A: Chemistry,2004,167(1):49-57.
    [120] Vargas S., Arroyo R., Haro E., et al. Effects of cationic dopants on the phase transitiontemperature of titania prepared by the sol-gel method[J]. Journal Of Materials Research,1999,14(10):3932-3937.
    [121] Rachel A., Subrahmanyam M., Boule P. Comparison of photocatalytic efficiencies ofTiO2in suspended and immobilised form for the photocatalytic degradation ofnitrobenzenesulfonic acids[J]. Applied Catalysis B: Environmental,2002,37(4):301-308.
    [122] Chase Jr M., Davies C., DowneyJr J., et al. JANAF thermochemicaltables[J]. JournalOfPhysical And Chemical Reference Data,1856,14(Suppl1):
    [123] Chukova O., Nedilko S., Zayets S., et al. Luminescent spectroscopy of sodium titaniumorthophosphate crystals doped with samarium and praseodymium ions[J]. OpticalMaterials,2008,30(5):684-686.
    [124] de Fátima Gimenez I., Mazali I., Alves O. Application of Raman spectroscopy to thestudy of the phase composition of phosphate based glass-ceramics[J]. Journal Of PhysicsAnd Chemistry Of Solids,2001,62(7):1251-1255.
    [125]卜凡晴,张旭东,何文, et al.磷酸钛的研究进展[J].山东轻工业学院学报,2010,24(001):28-32.
    [126]邓岩松,吴建辉,吴跃辉.合成非晶态磷酸钛钠盐研究[J].江西化工,2004,(3):117-118.
    [127]苏鹏,黄进文,吴文伟, et al. NaTi2(PO4)3纳米晶的室温固相合成及表征[J].应用化工,2010,39(009):1313-1315.
    [128] Bamberger C. E., Begun G. M., Cavin O. Synthesis and characterization ofsodium-titanium phosphates, Na4(TiO)(PO4)2, Na (TiO) PO4, and NaTi2(PO4)3[J]. JournalOf Solid State Chemistry,1988,73(2):317-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700