非贵金属改性层状钙钛矿光催化剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
借助光催化剂,利用太阳能光催化分解水产氢可以同时解决能源短缺与环境污染两大问题,氢能产生过程无需外加能量,氢燃烧供能产物是水,不会造成环境污染,并能利用自然的太阳能,是非常理想的产能途径。要实现该过程,光催化剂是问题的关键,研制出能响应可见光,具有高效光催化分解水制氢催化剂才能有效将太阳能转换为氢能。目前光催化剂研究的重点在于催化剂的可见光响应及高效,本论文制备了改性层状钙钛矿型K_2La_2Ti_3O_(10)基光催化剂,用于光催化分解水制氢反应。考察了催化剂的溶胶-凝胶和水热制备法,溶胶-凝胶法中的焙烧温度,焙烧时间及焙烧方法对催化剂活性的影响;对催化剂进行离子掺杂和助剂负载,考察了掺杂离子种类和浓度以及负载助剂浓度对催化活性的影响;对牺牲剂体系进行筛选;探讨了催化剂的能带结构与催化剂活性间的关系,并研究了光催化过程的机理。
     1.采用溶胶-凝胶法制备的样品具有介孔Ruddlesden-Popper型层状钙钛矿结构,孔隙度较大,是较优良的光解水制氢催化剂。950℃下焙烧2小时得到的样品具有完整的K_2La_2Ti_3O_(10)钙钛矿晶体结构,光催化分解水活性较高。焙烧温度低于950℃和焙烧时间较短,都不能形成完整的K_2La_2Ti_3O_(10)晶体结构,焙烧时间过长会使样品中晶体烧结,孔隙度减小,催化活性降低。
     2.冷等离子体焙烧处理,在样品中形成了较多的晶格缺陷,为电子-空穴的复合提供了活性位,样品的催化活性低于传统高温焙烧样品。
     3.过渡金属阳离子的掺杂,可以在半导体带隙中引入杂质能级,降低产生光生电子所需能量,使催化剂对可见光响应,有利于提高催化剂活性。Fe~(3+)离子掺杂的光催化剂活性最高,Fe~(3+)离子进入晶格中取代部分Ti~(4+)离子,在催化剂晶格中产生点缺陷,但不改变基质的钙钛矿晶型结构。
     4. Fe~(3+)离子的掺杂有利于样品(110)晶面的完整,随着Fe~(3+)离子浓度的增加,晶相强度逐渐降低,掺杂浓度有一个最佳值Fe∶La=0.05∶1(分子比),过量的Fe~(3+)离子会在晶体中形成大量点缺陷,为电子-空穴的复合提供活性位,导致催化剂活性下降。掺杂Fe~(3+)离子后,催化剂的光吸收边红移至可见光区,且随着Fe~(3+)离子浓度的增加,对光的吸收程度升高。
     5.贵金属Pt助剂的负载能促进电荷分离,大大提高催化剂的活性,用传统浸渍-H2还原法负载Pt的催化剂样品活性比浸渍-H2等离子体还原法和在线光沉积法制备样品的活性高。Pt的负载导致样品衍射峰强度显著降低,可能是Pt在晶体表面覆盖造成。
     6.层状钙钛矿型K_2La_2Ti_3O_(10)基催化剂在甲醇牺牲剂体系中光催化活性最高。
     7.助剂负载能促进电荷分离,提高催化剂活性。用浸渍法在基质表面负载p-型Ni/NiO核/壳结构(NiO_x),有利于电子的快速传递;与n-型K_2La_2Ti_3O_(10)半导体基质形成p-n异质结,能促进电荷的分离,提高催化活性。NiO_x的负载量有最佳值,3wt%NiO_x负载的Fe-K_2La_2Ti_3O_(10)催化剂光解水活性最高,6h累积产氢量可达约600μmol/g,过多NiO_x的负载会导致催化剂基质表面被过多遮蔽,光吸收表面减少,对光的吸收利用率减小,催化活性降低。
     8. NiO负载后进行的还原-重氧化处理,使催化剂中存在Ni0和Ni2+两种状态,促进电子-空穴分离,同时有利于H+的还原。
     9. Fe~(3+)离子掺杂与NiO_x负载催化剂具有直接禁带,催化剂的吸收边拓展至可见光区,Fe-K_2La_2Ti_3O_(10)的吸收带边为458nm,NiO_x/Fe-K_2La_2Ti_3O_(10)的带边为434nm。NiO_x的负载在半导体基质上引入受主杂质,有利于光生电子向催化剂表面的迁移,促进H+在表面活性位的还原,减少电子-空穴的复合几率。
     10. XPS表征结果显示,催化剂表面负载的Ni0是H+还原为H2的表面活性反应位,NiO也可能参与了H+还原产氢反应的给电子过程。
     11.催化剂中存在表面吸附氧(酸性羟基)和晶格氧两种形态,反应后催化剂中晶格氧数量增加,表明在反应过程中,表面的吸附氧可能转变成了晶格氧。
     12.原位红外实验显示,层状钙钛矿型K_2La_2Ti_3O_(10)基催化剂中,层板上的Ti是甲醇的活性吸附位,甲醇以自由羟基形式饱和吸附在催化剂上,水在催化剂上以表面吸附水形式存在,基本不产生强烈的氢键。紫外光照射反应后,甲醇羟基被消耗,氧化为甲醛直至甲酸,由此推测甲醇牺牲剂存在时光催化分解水制氢机理。
     本论文创新之处:
     1.研制出可见光响应、较高效的非贵金属改性层状钙钛矿型光催化剂NiO_x/Fe-K_2La_2Ti_3O_(10),用于光催化分解水反应,能有效产氢,6h累积产氢量可达600μmol/g。
     2.考察了对催化剂进行过渡金属阳离子掺杂及非贵金属NiO_x负载与基质形成p-n结等改性过程对催化剂活性的影响,并分析了改性与催化剂能带结构及光物理性质的改善之间的关系,探讨催化剂的能带结构与催化剂活性间的关系。
     3.采用原位红外技术在线考察了催化剂上吸附物种的变化,研究了甲醇及水在催化剂表面的吸附情况,并提出甲醇牺牲剂存在时光催化制氢反应的机理。
It’s a perfect route to produce hydrogen from photocatalytic water splitting withphotocatalysts under solar irradiation. In the process, no other extra energy is needed forhydrogen prouduction, and the resultant of the energy supply course of hydrogen combustionis clean water. It can resolve both problems about energy shortage and environmentalpollution, moreover, the natural solar energy is used effectively. For implement of the processsuccessfully, the photocatalyst is the key question, a visible light responsed and high efficientphotocatalyst is necessary for hydrogen generation from water splitting under solar irradiation.At present, the emphases of studies are the response to visible light and high efficiency ofphotocatalysts. In this paper, modified layer perovskite K_2La_2Ti_3O_(10)-based photocatalystswere synthesized, and the photocatalysts were used in the reactions of hydrogen productionfrom water splitting. The sol-gel and hydrothermal preparation methods, the influence ofcalcination means, calcination temperature and calcination time in sol-gel method for catalyticactivity were studied. The photocatalyst was modified with ion doping and cocatalyst loading,the effect of doped ion species, the concentration of doped ion and loaded cocatalyst onphotocatalytic activity was investigated. The sacrificial agent systems were selected also. Therelationship between the band structure of photocatalyst and its photocatalytic activity wasdiscussed, and then the mechanism of the photocatalytic process was proposed. The mainresults are summarized as follows:
     1. The sample prepared with sol-gel method possess Ruddlesden-Popper typemesoporous layer perovskite structure, the sample has larger porosity and better activity thanthe samples made by other methods. The photocatalyst calcinated in950℃for2hours hascomplete perovskite structure of K_2La_2Ti_3O_(10), and its photocatalytic activity for watersplitting is highest. It can’t form complete perovskite structure of K_2La_2Ti_3O_(10)whether whenthe calcination temperture is lower than950℃or the calcination time is shorter than2hours,however, too long calcination time leads to sintering of crystal and reduced porosity ofsamples, and then the photocatalytic activity is decreased.
     2. There were many lattice defects in the sample calcinated with cold plasma, thedefects provided active sites for the recombination of photoelectrons and holes, the photocatalytic activity of sample was lower than the sample treated with conventional hightemperture calcination.
     3. The doping of transition metal cation could introduce impurity level in the energygap of semiconductor photocatalyst and reduce the needed energy for photoexcitation, thedoped catalysts could response to visible light, and then it was benefit for the enhancement ofphotocatalytic activity. The sample doped with Fe~(3+)ion had the highest photocatalytic activity.In the photocatalyst, Fe~(3+)ion entered into the lattice and substituted Ti~(4+)ion partly, pointdefects were emerged, whereas the perovskite crystal structure of matrix had no change at all.
     4. The doping of Fe~(3+)ion was benefit for the completion of (110) crystal face, theintensity of crystalline phase was reduced with the increase of Fe~(3+)ion concentration, there’san optimum value of doped Fe~(3+)ion, that was Fe:La=0.05:1(molecular ratio). The excessdoped Fe~(3+)ion would form a great quantity of point defect in the crystal, which providedactive sites for the recombination of photo-induced electrons and holes pair and then lead tothe decrease of catalytic activity. After the doping of Fe~(3+)ion, the edge of light absorption hada red shift and extended to visible light region, and with the increase of doped Fe~(3+)ionconcentration, the degree of light absorption rose.
     5. The loading of noble metal Pt cocatalyst promoted the separation of charges and thephotocatalytic activity was increased greatly. The photocatalytic activity of samplesynthetized with traditional impregnation followed with H2reduction method was superior tothat of impregnation followed with H2plasma reduction and in situ photodeposition samples.The loading of Pt led to a remarkable reduction on the diffraction peak intensity of sample,which would be created by the cover of Pt on the crystal surface.
     6. The highest photocatalytic activity of the layer perovskite K_2La_2Ti_3O_(10)-basedphotocatalyst could be obtained in the methanol sacrificial agent system.
     7. The loading of cocatalyst can promote the separation of photo charges and thenincrease the photocatalytic activity. It was benefit for the transfer and separation of photocharges by loading p-type core-shell structure Ni/NiO(NiO_x) on the surface of matrix andforming p-n junction with n-type K_2La_2Ti_3O_(10)semiconductor, and the photocatalytic activitywas promoted.3wt%NiO_xloaded Fe-K_2La_2Ti_3O_(10)photocatalyst had the highest catalyticactivity for water splitting, the accumulated hydrogen production after6hours reaction could reach to about600μmol/g, a masking effect would take place when excess NiO_xwas loadedon the surface of matrix,the light absorption efficiency decreased and the photocatalyticactivity reduced.
     8. Two states of Ni0and Ni2+existed in the photocatalyst after the reduction-reoxidationtreatment of NiO loaded photocatalyst, which promoted the seperation of electrons and holesand made for the reduction of H+.
     9. Both photocatalysts doping with Fe~(3+)ion and loading with NiO_xpossessed directband gap, the absorption edge of photocatalysts were extended to visible light region. Theloading of NiO_xintroduced acceptor impurity into the semiconductor matrix, which was infavour of transport of photo-induced electrons and promoted the reduction of H+on thesurface active sites of photocatalyst, the recombination probability of electrons and holes wasreduced.
     10. The results of XPS characterization showed that the loaded Ni0on the surface wasthe active site for the reduction of H+, NiO may took part in the electrons supplement in thereaction of hydrogen production reduced from H+.
     11. Two states of surface adsorption oxygen(acidic hydroxyl) and lattice oxygen existedin the photocatalysts, the quantity of lattice oxygen in the photocatalyst increased afterreaction, suggested that the surface adsorption oxygen converted to lattice oxygen possiblyduring the reaction.
     12. Associated with in-situ FTIR characterization results, in the layer perovskiteK_2La_2Ti_3O_(10)-based photocatalyst, the Ti on the laminate was the active adsorption sites formethanol, the saturation adsorption state of methanol on the photocatalys was free hydroxideradical, water adsorbed on the photocatalyst with surface adsorbed water state, there’sscarcely no strong hydrogen bond exist. After UV irradiation, the photocatalytic reactionhappened, the hydroxide radical of methanol were consumed and oxidated to formaldehydeand up to formic acid, the mechanism of photocatalytic hydrogen generation with methanolsacrificial agent was proposed therefrom. The distinguishing features of this dissertation are as follows:
     1. The visible light response and effective non-noble metal modified layer perovskiteNiO_x/Fe-K_2La_2Ti_3O_(10)photocatalyst was prepared, the accumulated hydrogen production after6hours reaction could reach to about600μmol/g with the photocatalyst from water splitting.
     2. The influence of modification with transition metal doping and the forming of p-nconjunction between loaded non-noble metal NiO_xand matrix on the photocatalytic activitywere investigated, the relationship between the modification and the improvement of materialband structure and photophysical property were analyzed, the relationship between the bandstructure of photocatalyst and the catalytic activity was discussed also.
     3. The adsorbed species and the change of these adsorbed species were studied within-situ FTIR characterization, the adsorbed states of methanol and water on photocatalystsurface and the mechanism of photocatalytic hydrogen generation reaction with methanolsacrificial agent were brought forward.
引文
[1]王颜,葛文,张兵兵,等.石油补充与替代能源的研究进展[J].化工进展,2010,29(S1):21-23
    [2] Idaho Operations Office. FreedomCAR battery test manual for power-assist hybridelectric vehicles[R/OL]. DOE:2003,10: DOE/ID-11069. http://wenku.baidu.com/view/9d941ec108a1284ac850434f.html
    [3] Department of Energy. Request for Information (RFI) on the Department ofEnergy’s Plan to Restructure FutureGen[R/OL].(2008-01-30)[2008-12-25].www.coal.org/Userfiles/File/FG_RFI_-_01-30-08.pdf
    [4] Gust D., Moore T.A., Moore A.L. Mimicking photosynthetic solar energytransduction[J]. Acc. Chem. Res.,2001,34(1):40-48
    [5] Guldi D.M. Biomimetic assemblies of carbon nanostructures for photochemicalenergy conversion[J]. J. Phys. Chem. B,2005,109(23):11432-11441
    [6] Wasielewski M.R. Energy, charge, and spin transport in molecules andself-assembled nanostructures inspired by photosynthesis[J]. J. Org. Chem.,2006,71(14):5051-5066
    [7] Gust D., Moore T.A., Moore A.L. Photochemistry of supramolecularsystemscontaining C60[J]. J. Photochem. Photobiol. B-Biol.,2000,58(2-3):63-71
    [8] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductorelectrode[J]. Nature,1972,238(5358):37-38
    [9] Arbour C., Sharma D.K., Langford C.H. Electron Trapping in Colloidal TiO2Photocatalysts:20ps to10ns Kinetics[A]. Hartmut Yersin, Arnd Vogler.Photochemistry and Photophysics of Coordination Compounds[C].Berlin:SpringerBerlin Heidelberg,1987:277-283
    [10] Colombo D.P.J., Bowman R.M. Femtosecond diffuse reflectance spectroscopy ofTiO2powders[J]. J. Phys. Chem.,1995,99(30):11752-11756
    [11] Serpone N., Lawless D., Khairutdinov R.,et al. Subnanosecond relaxationdynamics in TiO2colloidal sols (Particle Sizes Rp=1-13.4nm). Relevance toeterogeneous photocatalysis[J]. J. Phys. Chem.,1995,99(45):16655-16661
    [12] Sant P.A., Kamat P.V. Inter-Particle electron transfer between size-quantized CdSand TiO2semiconductor nanoclusters[J]. Phys. Chem.Chem. Phys.,2002,4(2):198-203
    [13] Chen X.B., Shen S.H., Guo L.J.,et al. Semiconductor-based photocatalytichydrogen generation[J]. Chemical Reviews,2010,110(11):6503-6570
    [14] Maeda K. Photocatalytic water splitting using semiconductor particles: Historyand recent developments[J]. J. Photochem. Photobiol. C,2011,12(4):237-268
    [15] Shen S.H., Shi J.W., Guo P.H.,et al. Visible-light-driven photocatalytic watersplitting on nanostructured semiconducting materials[J]. Int. J. Nanotechnology,2011,8(6-7):523-591
    [16] Abe R. Recent progress on photocatalytic and photoelectrochemical water splittingunder visible light irradiation[J]. J. Photochem. Photobiol. C,2010,11(4):179-209
    [17] Kitano M., Hara M. Heterogeneous photocatalytic cleavage of water[J]. J.Materials Chemistry,2010,20(4):627-641
    [18] Maeda K., Domen K. Photocatalytic water splitting: recent progress and futurechallenges[J]. J. Phys. Chem. Lett.,2010,1(18):2655-2661
    [19] Tong H., Ouyang S.X., Bi Y.P.,et al. Nano-photocatalytic materials: possibilitiesand challenges[J]. Advanced Materials,2012,24(2):229-251
    [20] Kudo A. Z-scheme photocatalyst systems for water splitting under visible lightirradiation[J]. MRS Bulletin,2011,36(1):32-38
    [21] Linic S., Christopher P., Ingram D.B. Plasmonic–metal nanostructures for efficientconversion of solar to chemical energy[J]. Nature Materials,2011,10(12):911-921
    [22] Osterloh F.E., Parkinson B.A. Recent developments in solar water-splittingphotocatalysis[J]. MRS Bulletin,2011,36(1):17-22
    [23] Kubacka A., Fernandez-Garcia M., Colon G. Advanced nanoarchitectures for solarphotocatalytic applications[J]. Chemical Reviews,2012,112(3):1555-1614
    [24] Jiang L., Wang Q.Z., Li C.L.,et al. ZrW2O8photocatalyst and its visible-lightsensitization via sulfur anion doping for water splitting[J]. Int. J. HydrogenEnergy,2010,35(13):7043-7050
    [25] Wang X.C., Blechert S., Antonietti M. Polymeric graphitic carbon nitride forheterogeneous photocatalysis[J]. ACS Catalysis,2012,2(8):1596-1606
    [26] Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2surfaces: Principles,mechanisms, and selected results[J]. Chem. Rev.,1995,95(3):735-758
    [27] Serpone N., Sauve G., Koch H.,et al. Standardization protocol of processefficiencies and activation parameters in heterogeneous photocatalysis: relativephotonic efficiencies ζΓ[J]. J. Photochem. Photobiol A,1996,94(2-3):191-203
    [28] Matsumura M., Hiramoto M., Tsubomura H. Photoelectrolysis of water undervisible light with doped SrTiO3electrodes[J]. J. Electrochem.Soc.,1983,130(2):326-330
    [29] Tachikawa T., Takai Y., Tojo S.,et al. Visible light-induced degradation ofethylene glycol on nitrogen-doped TiO2powders[J]. J. Phys. Chem. B,2006,110(26):13158-13165
    [30] Takata T., Domen K. Defect engineering of photocatalysts by doping of aliovalentmetal cations for efficient water splitting[J]. J. Phys. Chem. C,2009,113(45):19386-19388
    [31] Korzhak A.V., Raevskaya A.E., Stroyuk A.L.,et al. Molecular hydrogenevolution: Photocatalytic activity of mesoporous TiO2-containing metalcomposites[A].Veziroglu T.N., Zaginaichenko S.Y., Schur D.V.,et al. Hydrogenmaterials science and chemistry of carbon nanomaterials[C]. Ukraine: SpringerNetherlands,2007:587-597
    [32] Yoong L.S., Chong F.K., Dutta B.K. Development of copper-doped TiO2photocatalyst for hydrogen production under visible light[J]. Energy,2009,34(10):1652-1661
    [33] Zhang H.J., Chen G., Li X.,et al. Electronic structure and water splitting undervisible light irradiation of BiTa1-xCuxO4(x=0.00-0.04) photocatalysts[J]. Int. J.Hydrogen Energy,2009,34(9):3631-3638
    [34] Sun J.X., Chen G., Pei J.,et al. A novel Bi1.5Zn1-xCuxTa1.5O7photocatalyst: Watersplitting properties under visible light and its electronic structures[J]. Int. J.Hydrogen Energy,2012,37(17):12960-12966
    [35] Xu S.P., Ng J.W., Zhang X.W.,et al. Fabrication and comparison of highly efficientCu incorporated TiO2photocatalyst for hydrogen generation from water[J]. Int. J.Hydrogen Energy,2010,35(11):5254-5261
    [36] Zhang W., Xu R. Surface engineered active photocatalysts without noble metals:CuS-ZnxCd1-xS nanospheres by one-step synthesis[J]. Int. J Hydrogen Energy,2009,34(20):8495-8503
    [37] Kumar V., Govind, Uma S. Investigation of cation (Sn2+) and anion (N3)substitution in favor of visible light photocatalytic activity in the layeredperovskite K2La2Ti3O10[J]. J. Hazardous Materials,2011,189(1-2):502-508
    [38] Zhang H.J., Chen G., Li Y.X.,et al. Electronic structure and photocatalyticproperties of copper-doped CaTiO3[J]. Int J Hydrogen Energy,2010,35(7):2713-2716
    [39] Li J.J., Jia L.S., Fang W.P.,et al. Enhancement of activity of LaNi0.7Cu0.3O3forphotocatalytic water splitting by reduction treatment at moderate temperature[J].Int. J. Hydrogen Energy,2010,35(11):5270-5275
    [40] Li J.J., Zeng J.L., Jia L.S.,et al. Investigations on the effect of Cu2+/Cu1+redoxcouples and oxygen vacancies on photocatalytic activity of treatedLaNi1-xCuxO3(x=0.1,0.4,0.5)[J]. Int. J. Hydrogen Energy,2010,35(23):12733-12740
    [41] Kudo A., Niishiro R., Iwase A.,et al. Effects of doping of metal cations onmorphology, activity, and visible light response of photocatalysts[J]. ChemicalPhysics,2007,339(1-3):104-110
    [42] Sun T., Fan J., Liu E.Z.,et al. Fe and Ni co-doped TiO2nanoparticles prepared byalcohol-thermal method: Application in hydrogen evolution by water splittingunder visible light irradiation[J]. Powder Technology,2012,228(1):210-218
    [43] Sun L., Zhao X., Sun H.,et al. Evaluating the C, N and F pairwise codoping effecton the enhanced photoactivity of ZnWO4: The charge compensation mechanism indonor-acceptor pairs[J]. J. Phys. Chem. C,2011,115(31):15516-15524
    [44] Liu M.Y., You W.S., Lei Z.B.,et al. Photocatalytic water splitting to hydrogenover a visible light-driven LaTaON2catalyst[J]. Chinese J. Catalysis,2006,27(7):556-558
    [45] Liu S.H., Syu H.R. One-step fabrication of N-doped mesoporous TiO2nanoparticles by self-assembly for photocatalytic water splitting under visiblelight[J]. Applied Energy,2012,100(1):148-154
    [46] Meng F.K., Li J.T., Hong Z.L.,et al. Photocatalytic generation of hydrogen withvisible-light nitrogen-doped lanthanum titanium oxides[J]. Catalysis Today,2013,199(1):48-52
    [47] Nah Y.C., Paramasivam I., Hahn R.,et al. Nitrogen doping of nanoporous WO3Layers by NH3treatment for increased visible light photoresponse[J].Nanotechnology,2010,21(10):105704
    [48] Wang L., Mukheji A., Lu G. Q.,et al. Photocatalytic hydrogen production fromwater using N-doped Ba5Ta4O15under solar irradiation[J]. J. Phys. Chem. C,2011,115(31):15674-15678
    [49] Babu V.J., Kumar M.K., Nair A.S. Visible light photocatalytic water splitting forhydrogen production form N-TiO2rice grain shaped electrospun nanostructures[J].Int. J. Hydrogen Energy,2012,37(10):8897-8904
    [50] Joshi M.M., Mangrulkar P.A., Tijare S.N.,et al. Visible light inducedphotoreduction of water by N-doped mesoporous titania[J]. Int. J. HydrogenEnergy,2012,37(13):10457-10461
    [51] Wang F.G., Valentin C.D., Pacchioni G. Doping of WO3for photocatalytic watersplitting: Hints from density functional theory[J]. J. Phys. Chem. C,2012,116(16):8901-8909
    [52]杨亚辉,陈启元,李洁.硼掺杂对K2La2Ti3O10光催化分解水制氢活性的影响[J].催化学报,2009,30(2):147-153
    [53]杨亚辉,陈启元,李洁等.硼族元素掺杂对K2La2Ti3O10光催化产氢性能的影响[J].无机化学学报,2009,25(2):256-263
    [54]杨亚辉,陈启元,尹周澜等.Cr掺杂对K2La2Ti3O10光催化活性的影响[J].无机化学学报,2007,23(5):771-777
    [55] Khan Z., Qrueshi M. Tantalum doped BaZrO3for efficient photocatalytichydrogen generation by water splitting[J].Catalysis Communications,2012,28(1):82-85
    [56] Bennett J.W., Grinberg I., Davies P.K.,et al. Pb-free semiconductor ferroelectrics:A theoretical study of Pd-substituted Ba(Ti1-xCex)O3solid solutions[J]. PhysicsReview B,2010,82(18):184106-184110
    [57] Nirmala M., Anukaliani A. Structural and optical properties of an undoped and Mndoped ZnO nanocrysatlline thin film[J]. Photonics Letters of Poland,2010,2(4):189-191
    [58] Chen H.C., Huang C.W., Wu J.C.S.,et al. Theoretical investigation of themetal-doped SrTiO3photocatalysts for water splitting[J]. J. Phys. Chem. C,2012,116(14):7897-7903
    [59] Konta R., Ishii T., Kato H.et al. Photocatalytic activities of noble metal ion dopedSrTiO3under visible light irradiation[J]. J. Phys. Chem. B,2004,108(26):8992-8995
    [60] Kanhere P., Zheng J.W., Chen Z. Visible light driven photocatalytic hydrogenevolution and photophysical properties of Bi3+doped NaTaO3[J]. Int. J. HydrogenEnergy,2012,37(6):4889-4896
    [61] Kanhere P.D., Zheng J.W., Chen Z. Site Specific optical and photocatalyticproperties of Bi-doped NaTaO3[J]. J. Phys. Chem. C,2011,115(23):11846-11853
    [62] Li Z.H., Wang Y.X., Liu J.W.,et al. Photocatalytic hydrogen production fromaqueous methanol solutions under visible light over Na(BixTa1-x)O3solid-solution[J]. Int. J. Hydrogen Energy,2009,34(1):147-152
    [63] Xing C.J., Zhang Y.J., Yan W.,et al. Band structure-controlled solid solution ofCd1xZnxS photocatalyst for hydrogen production by water splitting[J]. Int. J.Hydrogen Energy,2006,31(14):2018-2024
    [64] Liu H., Yuan J., Shangguan W.F.,et al. Visible-light responding BiYWO6solidsolution for stoichiometric photocatalytic water splitting[J]. J. Phys. Chem. C,2008,112(23):8521-8523
    [65] Maeda K., Teramura K., Lu D.L.,et al. Photocatalyst releasing hydrogen fromwater[J]. Nature,2006,440(7082):295
    [66] Kimi M., Yuliati L., Shamsuddin M. Photocatalytic hydrogen production undervisible light over Cd0.1SnxZn0.9-2xS solid solution photocatalysts[J]. Int. J.Hydrogen Energy,2011,36(16):9453-9461
    [67] Zhang X.H., Du Y.C., Zhou C.H.,et al. A simplified method for synthesis ofband-structure-controlled (CuIn)xZn2(1-x)S2solid solution photocatalysts with highactivity of photocatalytic H2evolution under visible-light irradiation[J]. Int. J.Hydrogen Energy,2010,35(13):3313-3321
    [68] Lee Y., Tetrashima H., Shimodaira Y.,et al. Zinc germanium oxynitride as aphotocatalyst for overall water splitting under visible light[J]. J. Phys. Chem. C,2007,111(2):1042-1048
    [69] Maeda K., Sakamoto N., Ikeda T.,et al. Preparation of core-shell-structurednanoparticles (with a noble-metal or metal oxide core and a chromia shell) andtheir application in water splitting by means of visible light[J]. Chem. Eur. J,2010,16(26):7750-7759
    [70] Wang W.Z., Wang L., Shang M.,et al. Enhanced photocatalytic hydrogenevolution under visible light over Cd1-xZnxS solid solution with cubic zinc blendphase[J]. Int. J. Hydrogen Energy,2010,35(1):19-25
    [71] Wang Q.Z., An N., Chen W.,et al. Photocatalytic water splitting into hydrogen andresearch on synergistic of Bi/Sm with solid solution of Bi-Sm-V photocatalyst[J].Int. J. Hydrogen Energy,2012,37(17):12886-12892
    [72] Oshikiri M., Boero M., Ye J.H.,et al. Electronic structures of promisingphotocatalysts InMO4(M=V,Nb, Ta) and BiVO4for water decomposition in thevisible wavelength region[J]. J. Chem. Phys.,2002,117(15):7313-7318
    [73] Kanhere P., Nisar J., Tang Y.X.,et al. Electronic structure, optical properties, andphotocatalytic activities of LaFeO3-NaTaO3solid solution[J]. J. Phys. Chem. C,2012,116(43):22767-22773
    [74] Yi Z. G., Ye J. H. Band gap tuning of Na1-xLaxTa1-xCoxO3solid solutions forvisible light photocatalysis[J]. Appl. Phys. Lett.,2007,91(25):254108-254110
    [75] Yang M., Huang X., Yan S.,et al. Improved hydrogen evolution activities undervisible light irradiation over NaTaO3codoped with lanthanum and chromium[J].Mater. Chem. Phys.,2010,121(3):506-510
    [76] Valle F.D., Ishikawa A., Domen K.,et al. Influence of Zn concentration in theactivity of Cd1-xZnxS solid solutions for water splitting under visible light[J].Catalysis Today,2009,143(1-2):51-56
    [77] Maeda K., Teramura K., Takata T.,et al. Overall water splitting on(Ga1-xZnx)(N1-xOx) solid solution photocatalyst: Relationship between physicalproperties and photocatalytic activity[J]. J. Phys. Chem. B,2005,109(43):20504-20510
    [78] Lee Y., Teramura K., Hara M.,et al. Modification of (Zn1+xGe)(N2Ox) solidsolution as a visible light driven photocatalyst for overall water splitting[J]. Chem.Mater.,2007,19(8):2120-2127
    [79] Wei S.H., Zunger A. Role of metal d states in II-VI semiconductors[J]. Phys. Rev.B,1988,37:8958-8981
    [80] Hu C.C., Teng H. Gallium oxynitride photocatalysts synthesized from Ga(OH)3forwater splitting under visible light irradiation[J]. J. Phys. Chem. C,2010,114(47):20100-20106
    [81] Chen H. Y., Wang L. P., Bai, J. M.,et al. In situ XRD studies of ZnO/GaNmixtures at high pressure and high temperature: Synthesis of Zn-rich(Ga1-xZnx)(N1-xOx) photocatalysts[J]. J. Phys. Chem. C,2010,114(4):1809-1814
    [82] Kou J., Li Z., Guo Y.,et al. Photocatalytic degradation of polycyclic aromatichydrocarbons in Gan:ZnO solid solution-assisted process: Direct hole oxidationmechanism[J]. J. Mol. Catal.A: Chem.,2010,325(1-2):48-54
    [83] Takata T., Hitoki G., Kondo J. N.,et al. Visible-light-driven photocatalyticbehavior of tantalum-oxynitride and nitride[J]. Res. Chem. Intermed.,2007,33(1-2):13-25
    [84] Yashima M., Lee Y., Domen, K. Crystal structure and electron density of tantalumoxynitride, a visible light responsive photocatalyst[J]. Chem. Mater.2007,19(3):588-593
    [85] Hisatomi T., Maeda K., Takanabe K.,et al. Aspects of the water splittingmechanism on (Ga1-xZnx)(N1-xOx) photocatalyst modified with Rh2-yCryO3cocatalyst[J]. J. Phys. Chem. C,2009,113(51):21458-21466
    [86] Maeda K., Masuda H., Domen K. Effect of electrolyte addition on activity of(Ga1-xZnx)(N1-xOx) photocatalyst for overall water splitting under visible light[J].Catalysis Today,2009,147(3-4):173-178
    [87] Chen H.Y., Wen W., Wang Q.,et al. Preparation of (Ga1-xZnx)(N1-xOx)photocatalysts from the reaction of NH3with Ga2O3/ZnO and ZnGa2O4: In situtime-resolved XRD and XAFS studies[J]. J. Phys. Chem. C,2009,113(9):3650-3659
    [88] Hirai T., Maeda K., Yoshida M.,et al. Origin of visible light absorption inGaN-rich (Ga1-xZnx)(N1-xOx) photocatalysts[J]. J. Phys. Chem. C,2007,111(51):18853-18855
    [89] Sato J., Saito N., Yamada Y.,et al. RuO2-Loaded β-Ge3N4as a Non-OxidePhotocatalyst for Overall Water Splitting[J]. J. Am. Chem. Soc.,2005,127(12):4150-4151
    [90] Dhanasekaran P., Salunke H.G., Gupta N.M. Visible-light-induced photosplittingof water over γ′-Fe4N and γ′-Fe4N/α-Fe2O3Nanocatalysts[J]. J. Phys. Chem. C,2012,116(22):12156-12164
    [91] Goettmann F., Fischer A., Antonietti M.,et al. Chemical synthesis of mesoporouscarbon nitrides using hard templates and their use as a metal-free catalyst forFriedel-Crafts reaction of Benzene[J]. Angew. Chem., Int. Ed.2006,45(27):4467-4471
    [92] Goettmann F., Fischer A., Antonietti M.,et al. Metal-free catalysis of sustainableFriedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoidthe use of metal chlorides and halogenated compounds[J]. Chem.Commun.,2006,(43):4530-4532
    [93] Liu Y.L., Guo L.J., Yan W.,et al. A composite visible-light photocatalyst forhydrogen production[J]. J. Power Sources,2006,159(2):1300-1304
    [94] Jing D.W., Guo L.J. Efficient Hydrogen Production by a CompositeCdS/Mesoporous Zirconium Titanium Phosphate Photocatalyst under VisibleLight[J]. J. Phys. Chem. C,2007,111(36):13437-13441
    [95] Fan X.R., Lin B.Z., Liu H.,et al. Remarkable promotion of photocatalytichydrogen evolution from water on TiO2-pillared titanoniobate[J]. Int. J. HydrogenEnergy,2013,38(2):832-839
    [96] Yu Y.G., Chen G., Wang G.,et al. Visible-light-driven ZnIn2S4/CdIn2S4compositephotocatalyst with enhanced performance for photocatalytic H2evolution[J]. Int. J.Hydrogen Energy,2013,38(3):1278-1285
    [97] Tsuji I., Kato H., Kudo A. Photocatalytic hydrogen evolution onZnSeCuInS2-AgInS2solid solution photocatalysts with wide visible lightabsorption bands[J]. Chem Mater,2006,18(7):1969-1975
    [98] Lee J.S., Hwang D.W., Kirn H.G.,et al. Photocatalytic hydrogen production fromwater over M-doped La2Ti2O7(M=Cr, Fe) under visible light irradiation(λ>420nm)[J]. J. Phys. Chem. B,2005,109(6):2093-2102
    [99] Li Y.X., Chen G., Wang Q.,et al. Hierarchical ZnS-In2S3-CuS nanospheres withnanoporous structure: facile synthesis, growth mechanism, and excellentphotocatalytic activity[J]. Adv. Funct. Mater.,2010,20(19):3390-3398
    [100] Ku Y., Lin C.N., Hou W.M. Characterization of coupled NiO/TiO2photocatalystfor the photocatalytic reduction of Cr(VI) in aqueous solution[J]. J. Mol. Catal. A:Chemical,2011,349(1-2):20-27
    [101] Chen C.J., Liao C.H., Hsu K.C.,et al. P–N junction mechanism on improvedNiO/TiO2photocatalyst[J]. Catal. Commun.,2011,12(14):1307-1310
    [102] Guo J., Fu W., Yang Q.,et al. A NiO/TiO2junction electrode constructed usingself-organized TiO2nanotube arrays for highly efficient photoelectrocatalyticvisible light activations[J]. J. Physics D: Applied Physics,2010,43(24):245202
    [103] Halliday D., Resnick R., Walker J. Fundamentals of Physics[M], USA: JohnWiley&Sons,2008:23-25
    [104] Mohammadi M.R., Fray D.J. Mesoporous and nanocrystalline sol-gel derivedNiTiO3at the low temperature: Controlling the structure, size and surface area byNi:Ti molar ratio[J]. Solid State Sci.,2010,12(9):1629-1640
    [105] Sreethawong T., Suzuki Y., Yoshikawa S. Photocatalytic evolution of hydrogenover mesoporous TiO2supported NiO photocatalyst prepared by single-stepsol-gel process with surfactant template[J]. Int. J. Hydrogen Energy,2005,30(10):1053-1062
    [106] Bokhimi X., Morales A., Novaro O. Effect of copper precursor on the stabilizationof titania phases, and the optical properties of Cu/TiO2prepared with the sol-geltechnique[J]. Chem. Mater.,1997,9(11):2616-2620
    [107] Chen S.F., Zhao W., Liu W.,et al. Preparation, characterization and activityevaluation of p-n junction photocatalyst p-ZnO/n-TiO2[J]. Appl. Sur. Sci.,2008,255(5):2478-2484
    [108]李长玉,刘守新,马跃.可见光响应Cu-Cu2+1O复合材料的水热法一步合成[J].物理化学学报,2009,25(8):1555-1560
    [109] Bard A.J. Photoelectrochemistry and heterogeneous photocatalysis atsemiconductors[J]. J. Photochem.,1979,10:59-75
    [110] Michael G. The artificial leaf, bio-mimetic photocatalysis[J]. Cattech.1999;3(1):4-17.
    [111] Abe R., Sayama K., Sugihara H. Development of new photocatalytic watersplitting into H2and O2using two different semiconductor photocatalysts and ashuttle redox mediator IO3-/I-[J]. J. Phys. Chem. B,2005,109(33):16052-16061
    [112] Higashi M., Abe R., Ishikawa A.,et al. Z-scheme overall water splitting onmodified-TaON photocatalysts under visible light (λ<500nm)[J]. Chem. Lett.,2008,37(2):138-139
    [113] Higashi M., Abe R., Teramura K.,et al. Two step water splitting into H2and O2under visible light by ATaO2N(A=Ca, Sr, Ba) and WO3with IO3-/I-shuttle redoxmediator[J]. Chem. Phys. Lett.,2008,452(1-3):120-123
    [114] Kudo A., Miseki Y. Heterogeneous photocatalyst materials for water splitting[J].Chem. Soc. Rev.,2009,38(1):253-278
    [115] Fujihara K., Ohno T., Matsumura M. Splitting of water by electrochemicalcombination of two photocatalytic reactions on TiO2particles[J]. J. Chem. Soc.,Faraday Trans.1998,94(24):3705-3709
    [116] Sayama, K., Mukasa, K., Abe, R.,et al. Stoichiometric water splitting into H2andO2using a mixture of two different photocatalysts and an IO3-/I-shuttle redoxmediator under visible light irradiation[J]. Chem. Commun.,2001,(23):2416-2417
    [117] Sayama K., Mukasa K., Abe R.,et al. A new photocatalytic water splitting systemunder visible light irradiation mimicking a Z-scheme mechanism inphotosynthesis[J]. J Photochem. Photobiol. A Chem.,2002,148(1):71-77
    [118] Abe R., Takata T., Sugihara H.,et al. Photocatalytic overall water splitting undervisible light by TaON and WO3with an IO3-/I-shuttle redox mediator[J]. Chem.Commun.,2005,(30):3829-3831
    [119] Maeda K., Higashi M., Lu D.,et al. Efficient nonsacrificial water splitting throughtwo-step photoexcitation by visible light using a modified oxynitride as a hydrogenevolution photocatalyst[J]. J Am. Chem. Soc.,2010,132(16):5858-5868.
    [120] Kudo A., Omori K., Kato H. A novel aqueous process for preparation of crystalform-controlled and highly crystalline BiVO4powder from layered vanadates atroom temperature and its photocatalytic and photophysical properties[J]. J. Am.Chem. Soc.,1999,121(49):11459-11467
    [121] Shimodaira Y., Kato H., Kobayashi H.,et al. Photophysical properties andphotocatalytic activities of bismuth molybdates under visible light irradiation[J]. J.Phys. Chem. B,2006,110(36):17790-17797
    [122] Darwent J.R., Mills A. Photo-oxidation of water sensitized by WO3powder[J]. J.Chem. Soc., Faraday Trans.2,1982,78(2)359-367
    [123] Janáky C., Rajeshwar K., Tacconi N.R.de,et al. Tungsten-based oxidesemiconductors for solar hydrogen generation[J]. Catalysis Today,2013,199(1):53-64
    [124] Sasaki Y., Iwase A., Kato H.,et al. The effect of co-catalyst for Z-schemephotocatalysis systems with an Fe3+/Fe2+electron mediator on overall watersplitting under visible light irradiation[J]. J. Catal.,2008,259(1):133-137
    [125] Lo C.C., Huang C.W., Liao C.H.,et al. Novel twin reactor for separate evolution ofhydrogen and oxygen in photocatalytic water splitting[J]. Int. J. Hydrogen Energy,2010,35(4):1523-1529
    [126] Hara S., Yoshimizu M., Tanigawa S.,et al. Hydrogen and oxygen evolutionphotocatalysts synthesized from strontium titanate by controlled doping and theirperformance in two-step overall water splitting under visible light[J]. J. Phys.Chem. C,2012,116(33):17458-17463
    [127] Li Y.B., Wu J.H., Huang Y.F.,et al. Photocatalytic water splitting on new layeredperovskite A2.33Sr0.67Nb5O14.335(A=K, H)[J]. Int. J. Hydrogen Energy,2009,34(19):7927-7933
    [128] Wei Y.L., Li J., Huang Y.F.,et al. Photocatalytic water splitting with In-dopedH2LaNb2O7composite oxide semiconductors[J]. Solar Energy Materials&SolarCells2009,93(8):1176-1181
    [129] Zong X., Han J.F., Ma G.J.,et al. Photocatalytic H2evolution on CdS loaded withWS2as cocatalyst under visible light irradiation[J]. J. Phys. Chem. C,2011,115(24):12202-12208
    [130] Maeda K., Teramura K., Masuda H.,et al. Efficient overall water splitting undervisible-light irradiation on (Ga1-xZnx)(N1-xOx) dispersed with Rh-Cr mixed-oxidenanoparticles: Effect of reaction conditions on photocatalytic activity[J]. J.Phys.Chem. B,2006,110(26):13107-13112
    [131] Kalyanasundaram K., Gr tzel M. Cyclic cleavage of water into H2and O2byvisible light with coupled redox catalysts[J]. Angew. Chem. Int. Ed.,1979,18(9):701-702
    [132] Chen D.W., Ray A.K. Photodegradation kinetics of4-nitrophenol in TiO2suspension[J]. Water Res.1998,32(11):3223-3234
    [133] Chiou Y.C., Kumar U., Wu J.C.S. Photocatalytic splitting of water on NiO/InTaO4catalysts prepared by an innovative sol–gel method[J]. Applied Catalysis A:General,2009,357(1):73-78
    [134] Domen K., Kudo A., Onishi T.,et al. Photocatalytic decomposition of water into H2and O2over NiO-SrTiO3Power1. structure of the catalyst[J]. J.Phy.Chem.,1986,90(2):292-295
    [135]高艳婷,王亚权,王玉晓. SiC表面改性对其光催化分解水产氢性能影响的浅探[J].化学工业与工程,2008,25(6):512-514
    [136] Zhang L., Tian B.Z., Chen F.,et al. Nickel sulfide as co-catalyst on nanostructuredTiO2for photocatalytic hydrogen evolution[J]. Int. J. Hydrogen Energy,2012,37(22):17060-17067
    [137] Ge L., Zuo F., Liu J.K.,et al. Synthesis and efficient visible light photocatalytichydrogen evolution of polymeric g-C3N4coupled with CdS quantum dots[J]. J.Phys. Chem. C,2012,116(25):13708-13714
    [138] Cao S.W., Yuan Y.P., Fang J.,et al. In-situ growth of CdS quantum dots on g-C3N4nanosheets for highly efficient photocatalytic hydrogen generation under visiblelight irradiation[J]. Int. J. Hydrogen Energy,2013,38(3):1258-1266
    [139] Wang P., Huang B. B., Dai Y.,et al. Plasmonic photocatalysts:harvesting visiblelight with noble metal nanoparticles[J]. Phys. Chem.Chem. Phys.,2012,14(28):9813-9825
    [140] Zhou X.M., Liu G., Yu J. G.,et al. Surface palsmon resonance-mediatedphotocatalysis by noble metal-based composites under visible light[J]. J.Mater.Chem.,2012,22(40):21337-21354
    [141] Chen J.J., Wu J.C.S., Wu P.C.,et al. Plasmonic photocatalyst for H2evolution inphotocatalytic water splitting[J]. J. Phys. Chem. C,2011,115(1):210-216
    [142] Zhang J.Y., Wang Y.H., Zhang J.,et al. Enhanced photocatalytic hydrogenproduction activities of Au-loaded ZnS flowers[J]. Appl. Mater. Interfaces,2013,5(3):1031-1037
    [143] Peng T.Y., Ke D.N., Cai P.,et al. Influence of different ruthenium(II) bipyridylcomplex on the photocatalytic H2evolution over TiO2nanoparticles withmesostructures[J]. J. Power Sources,2008,180(1):498-505
    [144] Sreethawong T., Junbua C., Chavadej S. Photocatalytic H2production from watersplitting under visible light irradiation using Eosin Y-sensitizedmesoporous-assembled Pt/TiO2nanocrystal photocatalyst[J]. J. Power Sources,2009,190(2):513-524
    [145] Zhang X., Jin Z., Li Y.,et al. Visible-light-induced hydrogen production overPt-Eosin Y catalysts with high surface area silica gel as matrix[J]. J. PowerSources,2007,166(1):74-79
    [146] Moser J.E., Gratzel M. Photosensitized electron injection in colloidalsemiconductors[J]. J. Am. Chem. Soc.,1984,106(22):6557-6564.
    [147] Min S.X., Lu G.X. Dye-cosensitized graphene/Pt photocatalyst for high efficientvisible light hydrogen evolution[J]. Int. J. Hydrogen Energy,2012,37(14):10564-10574
    [148] Li Q., Jin Z., Peng Z.,et al. High-efficient photocatalytic hydrogen evolution oneosin Y-sensitized Ti-MCM-41zeolite under visible-light irradiation[J]. J. Phys.Chem. C,2007,111(23):8237-8241
    [149] Li Q., Chen L., Lu G. Visible-light-induced photocatalytic hydrogen generation ondye-sensitized multiwalled carbon nanotube/Pt catalyst[J]. J. Phys. Chem. C,2007,111(30):11494-11499
    [150] Huang S.T., Shi Y., Li N.B.,et al. Sensitive turn-on fluorescent detection oftartrazine based on fluorescence resonance energy transfer[J]. Chem. Commun.,2012,48(5):747-749
    [151] Fan S.Q., Kim C., Fang B.Z.,et al. Improved efficiency of over10%indye-sensitized solar cells with a ruthenium complex and an organic dyeheterogeneously positioning on a single TiO2electrode[J]. J. Phys. Chem. C,2011,115(15):7747-7754
    [152] Hardin B., Sellinger E.A., Moehl T.,et al. Energy and hole transfer between dyesattached to titania in cosensitized dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2011,133(27):10662-10667
    [153] Zhang J., Xu Q., Feng Z.C.,et al. Importance of the relationship between surfacephases and photocatalytic activity of TiO2[J]. Angew. Chem. Int. Ed.,2008,120(9):1790-1793
    [154]陈金媛,彭图治.磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能[J].化学学报,2004,62(20):2093-2097
    [155] Liu G., Chen Z.G., Dong C.L.,et al. Visible light photocatalyst: iodine-dopedmesoporous titania with a bicrystalline framework[J]. J. Phys. Chem. B,2006,110(42):20823-20828
    [156]张鹏,贾立山,李清彪,等.金红石相含量对混晶纳米TiO2光催化分解水制氢的影响[J].化工进展,2008,27(9):1473-1476,1482
    [157] Murakami N., Katayama S., Nakamura S.,et al. Dependence of photocatalyticactivity on aspect ratio of shape-controlled rutile titanium(IV) oxide nanorods[J].J. Phys. Chem. C,2011,115(2):419-424
    [158] Tachikawa T., Yamashita S., Majima T. Evidence for crystal-face-sependent TiO2photocatalysis from single-molecule imaging and kinetic analysis[J]. J. Am. Chem.Soc.,2011,113(18):7197-7204
    [159] Miseki Y., Kato H., Kudo A. Water splitting into H2and O2over nibate andtitanate photocatalysts with (111) plane-type layered perovskite structure[J].Energy Environ. Sci.,2009,2(3):306-314
    [160] Li Y., Chen G., Zhou C.,et al. Photocatalytic water splitting over a protonatedlayered perovskite tantalate H1.81Sr0.81Bi0.19Ta2O7[J]. Catal. Lett.,2008,123(1-2):80-83
    [161] Chen W., Li C.L., Gao H.Y.,et al. Photocatalytic water splitting on protonatedform of layered perovskites K0.5La0.5Bi2M2O9(M=Ta;Nb) by ion-exchange[J]. Int.J. Hydrogen Energy,2012,37(17):12846-12851
    [162] Yao W.F., Huang C.P., Ye J.H. Hydrogen production and characterization ofMLaSrNb2NiO9(M=Na,Cs,H) based photocatalysts[J]. Chem. Mater.,2010,22(3):1107-1113
    [163] Tijare S.N., Joshi M.V., Padole P.S.,et al. Photocatalytic hydrogen generationthrough water splitting on nano-crystalline LaFeO3perovskite[J]. Int. J. HydrogenEnergy,2012,37(13):10451-10456
    [164] Wang B., Li C.S., Hirabayashi D.,et al. Hydrogen evolution by photocatalyticdecomposition of water under ultraviolet-visible irradiation overK2La2Ti3-xMxO10+δperovskite[J]. Int. J. Hydrogen Energy,2010,35(8):3306-3312
    [165] Yang Y.H., Qiu G.Z., Chen Q.Y.,et al. Influence of calcination atmosphere onphotocatalytic reactivity of K2La2Ti3O10for water splitting[J]. Transactions ofNonferrous Metals Society of China,2007,17(4):836-840
    [166] Huang Y.F., Li Y.B., Wei Y.L.,et al. Photocatalytic property of partiallysubstituted Pt-intercalated layered perovskite, ASr2TaxNb3-xO10(A=K,H;x=0,1,1.5,2and3)[J]. Solar Energy Materials&Solar Cells,2011,95(3):1019-1027
    [167] Ruiz-Gómez M.A., Torres-Martinez L.M., Figueroa-Torres M.Z.,et al. Hydrogenevolution from pure water over a new advanced photocatalyst Sm2GaTaO7[J]. Int.J Hydrogen Energy,2012, http://dx.doi.org/10.1016/j.ijhydene.2012.11.131
    [168] Torres-Martinez L.M., Ruiz-Gómez M.A., Figueroa-Torres M.Z.,et al. Synthesisby two methods and crystal structure determination of a new pyrochlore-relatedcompound Sm2FeTaO7[J]. Mater. Chem. Phys.,2012,133(2-3):839-844
    [169]李鸿建,陈刚,李中华,等.烧绿石结构La2Ti2-xCoxO7的制备及可见光分解水性能[J].物理化学学报,2007,23(5):761-764
    [170] Tachikawa T., Majima T. Exploring the spatial distribution and transport behaviorof charge carriers in a single titania nanowire[J]. J. Am. Chem. Soc.,2009,131(24):8485-8495
    [171] Kamat P.V. Manipulation of charge transfer across semiconductor interface. Acriterion that cannot be ignored in photocatalyst design[J]. J. Phys. Chem. Lett.,2012,3(5):663-672
    [172] Lightcap I.V., Kosel T.H., Kamat P.V. Anchoring semiconductor and metalnanoparticles on a two-Dimensional catalyst mat. Storing and shuttling electronswith reduced graphene oxide[J]. Nano Lett.,2010,10(2):577-583
    [173] Kamat P.V. Graphene-based nanoarchitectures. Anchoring semiconductor andmetal nanoparticles on a two-dimensional carbon support[J]. J. Phys. Chem. Lett.,2010,1(2):520-527
    [174] Yu X.Y., Chen Z.H., Kuang D.B.,et al. A mild one-step process from grapheneoxide and Cd2+to a graphene-CdSe quantum dot nanocomposite with enhancedphotoelectric properties[J]. Chem. Phys. Chem.,2012,13(11):2654-2658
    [175] Zhang X.Y., Li H.P., Cui X.L.,et al. Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalyticsplitting[J]. J. Mater. Chem.,2010,20(14):2801-2806
    [176] Li Q., Guo B.D., Yu J.G.,et al. Highly efficient visible-light-driven photocatalytichydrogen production of CdS-cluster-decorated graphene nanosheets[J]. J. Am.Chem. Soc.,2011,133(28):10878-10884
    [177] Jia L., Wang D.H., Huang Y.X.,et al. Highly durable N-doped graphene/CdSnanocomposites with enhanced photocatalytic hydrogen evolution from waterunder visible light irradiation[J]. J. Phys. Chem. C,2011,115(23):11466-11473
    [178] Xiang Q.J., Yu J.G., Jaroniec M. Preparation and enhanced visible-lightphotocatalytic H2-production activity of graphene/C3N4composites[J]. J. Phys.Chem. C,2011,115(15):7355-7363
    [179] Ng Y.H., Iwase A., Kudo A.,et al. Reducing graphene oxide on a visible-lightBiVO4photocatalyst for an enhanced photoelectrochemical water splitting[J]. J.Phys. Chem. Lett.,2010,1(17):2607-2612
    [180] Mukherji A., Seger B., Lu G.Q.,et al. Nitrogen doped Sr2Ta2O7coupled withgraphene sheets as photocatalysts for increased photocatalytic hydrogenproduction[J]. ACS Nano,2011,5(5):3483-3492
    [181] Min S.X., Lu G.X. Sites for high efficient photocatalytic hydrogen evolution on alimited-layered MoS2cocatalyst confined on graphene sheets-The role ofgraphene[J]. J. Phys. Chem. C,2012,116(48):25415-25424
    [182] Min S.X., Lu G.X. Dye-sensitized reduced graphene oxide photocatalysts forhighly efficient visible-light-driven water reduction[J]. J. Phys. Chem. C,2011,115(28):13938-13945
    [183] Xiang Q.J., Yu J.G., Jaroniec M. Enhanced photocatalytic H2-production activityof graphene-modified titania nanosheets[J]. Nanoscale,2011,3(9):3670-3678
    [184] Xiang Q.J., Yu J.G., Jaroniec M. Graphene-based semiconductor photocatalysts[J].Chem. Soc. Rev.,2012,41(2):782-796
    [185] Rao C.N.R., Sood A.K., Surbrahmanyam K.S.,et al. Graphene: The newtwo-dimensional nanomaterial[J]. Angew. Chem., Int. Ed.,2009,48(42):7752-7777
    [186] Cao A.N., Liu Z., Chu S.S.,et al. A Facile one-step method to producegraphene-CdS quantum dot nanocomposites as promising optoelectronicmaterials[J]. Adv. Mater.,2010,22(1):103-106
    [187] Du J., Zhang H., Lv X.J.,et al. P25-graphene composite as a high performancephotocatalyst[J]. ACS Nano,2010,4(1):380-386
    [188] Iwase A., Ng Y.H., Ishiguro Y.,et al. Reduced graphene oxide as a solid-stateelectron mediator in Z-scheme photocatalytic water splitting under visible light[J].J. Am. Chem. Soc.,2011,133(29):11054-11057
    [189] Xiang Q.J., Yu J.G., Jaroniec M. Synergetic Effect of MoS2and Graphene asCocatalysts for Enhanced Photocatalytic H2Production Activity of TiO2Nanoparticles[J]. J. Am. Chem. Soc.,2012,134(15):6575-6578
    [190] Chang K., Chen W.X. Chem. Commun., In situ synthesis of MoS2/graphenenanosheet composites with extraordinarily high electrochemical performance forlithium ion batteries[J].2011,47(14):4252-4254
    [191] Zhang J., Yu J.G., Jaroniec M.,et al. Noble metal-free reduced grapheneoxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2productionperformance[J]. Nano Lett.,2012,12(9):4584-4589
    [192] Dubey N., Rayalu S.S., Labhsetwar N.K.,et al. Visible light active zeolite-basedphotocatalysts for hydrogen evolution from water[J]. Int. J. Hydrogen Energy,2008,33(21):5958-5966
    [193]胥利先,马重芳,桑丽霞,等.高效可见光光催化分解水制氢催化剂InVO4/CNTs[J].催化学报,2007,28(12):1083-1088
    [194] Dai H.J. Carbon nanotubes: Synthesis, integration, and properties[J]. Acc. Chem.Res.,2002,35(12):1035-1044
    [195] Lim Y.K., Koh E.W.K., Zhang Y.W.,et al. Ab initio design of GaN-basedphotocatalyst: ZnO-codoped GaN nanotubes[J]. J. Power Sources,2013,232(1):323-331
    [196] Dhanasekaran P., Gupta N.M. Factors affecting the production of H2by watersplitting over a novel visible-light-driven photocatalyst GaFeO3[J]. Int. J.Hydrogen Energy,2012,37(6):4897-4907
    [197] Maeda K., Hashiguchi H., Masuda H.,et al. Photocatalytic activity of(Ga1-xZnx)(N1-xOx) for visible-light driven H2and O2evolution in the presence ofsacrificial reagents[J]. J. Phys. Chem. C,2008,112(9):3447-3452
    [198] Kudo A. Photocatalysis and solar hydrogen production[J]. Pure Appl. Chem.,2007,79(11):1917-1927
    [199] Siritanaratkul B., Maeda K., Hisatomi T.,et al. Synthesis and photocatalyticactivity of perovskite niobium oxynitrides with wide visible light absorptionbands[J]. Chem. Sus. Chem.,2011,4(1):74-78
    [200] Rakesh K., Khaire S., Bhange D.,et al. Role of doping induced photochemical andmicrostructural properties in the photocatalytic activity of InVO4for splitting ofwater[J]. J. Mater. Sci.,2011,46(16):5466-5476.
    [201] Shah P., Bhange D.S., Deshpande A.S.,et al. Doping induced microstructural,textural and optical properties of In2Ti1-xVxO5+δsemiconductors and their role inthe photocatalytic splitting of water[J]. Mater. Chem. Phys.,2009,117(2-3):399-407
    [202] Deshpade A., Madras G., Gupta N.M. Role of lattice defects and crystallitemorphology in the UV and visible light induced photo catalytic properties ofcombustion prepared TiO2[J]. Mater. Chem. Phy.,2011,126(3):546-554
    [203] Awate S.V., Deshpande S.S., Rakesh K.,et al. Role of micro-structure andinterfacial properties in the higher photocatalytic activity of TiO2supportednanogold for methanol-assisted visible light induced splitting of water[J]. Phys.Chem. Chem. Phys.,2011,13(23):11329-11339
    [204] Deshpande A., Gupta N.M. Critical role of particle size and interfacial propertiesin the visible light induced splitting of water over the nanocrystallites of supportedcadmium sulphide[J]. Int. J. Hydrogen Energy,2010,35(8):3287-3296
    [205] Khan M.A., Yang O-B. Photocatalytic water splitting for hydrogen productionunder visible light on Ir and Co ionized titania nanotube[J]. Catalysis Today,2009,146(1-2):177-182
    [206] Khan M.A., Akhtar M.S., Woo S.I.,et al. Enhanced photoresponse under visiblelight in Pt ionized TiO2nanotube for the photocatalytic splitting of water[J]. Catal.Commun.,2008,10(1):1-5
    [207] Hou Y.D., Abrams B.L., Vesborg P.C.K.,et al. Bioinspired molecular co-catalystsbonded to a silicon photocathode for solar hydrogen evolution[J]. Nat. Mater.,2011,10(6):434-438
    [208] Li Y.G., Wang H.L., Xie L.M.,et al. MoS2nanoparticles grown on graphene: Anadvanced catalyst for the hydrogen evolution reaction[J]. J. Am. Chem. Soc.,2011,133(19):7296-7299
    [209] Jaramillo T.F., Jorgensen K.P., Bonde J.,et al. Identification of active edge sites forelectrochemical H2evolution from MoS2nanocatalysts[J]. Science,2007,317(5834):100-102
    [210] Yu J.; Zhang J., Jaroniec M. Preparation and enhanced visible-light photocatalyticH2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution[J].Green Chem.,2010,12(9):1611-1614
    [211] Wu X.M., Song Q.Q., Jia L.S.,et al. Pd-Gardenia-TiO2as a photocatalyst for H2evolution from pure water[J]. Int. J. Hydrogen Energy,2012,37(1):109-114
    [212] Sreethawong T., Laehsalee S., Chavadej S. Comparative investigation ofmesoporous-and non-mesoporous-assembled TiO2nanocrystals for photocatalyticH2production over N-doped TiO2under visible light irradiation[J]. Int. J.Hydrogen Energy,2008,33(21):5947-5957
    [213] Puangpetch T., Sreethawong T., Yoshikawa S.,et al. Hydrogen production fromphotocatalytic water splitting over mesoporous-assembled SrTiO3nanocrystal-based photocatalysts[J]. J. Mol. Catal. A: Chem.,2009,312(1-2):97-106
    [214] Shao G.S., Zhang X.J., Yuan Z.Y. Preparation and photocatalytic activity ofhierarchically mesoporous-macroporous TiO2-xNx[J]. Appl. Catal. B: Envir.,2008,82(3-4):208-218
    [215] Shangguan W.F. Hydrogen evolution from water splitting on nanocompositephotocatalysts[J]. Science and Technology of Advanced Materials,2007,8(1-2):76-81
    [216] Hosogi Y., Shimodaira Y., Kato H.,et al. Role of Sn2+in the band structure ofSnM2O6and Sn2M2O7(M=Nb and Ta) and their photocatalytic properties[J].Chem. Mater.,2008,20(4):1299-1307
    [217] Maruyama M., Iwase A., Kato H.,et al. Time-resolved infrared absorption study ofNaTaO3photocatalysts doped with alkali earth metals[J]. J. Phys. Chem. C,2009,113(31):13918-13923
    [218] Bao N.Z., Shen L.M., Takata T.,et al. Self-templated synthesis of nanoporous CdSnanostructures for highly efficient photocatalytic hydrogen production undervisible light[J]. Chem. Mater.,2008,20(1):110-117
    [219] Zhang J., Yu J.G., Zhang Y.M.,et al. Visible light photocatalytic H2-productionactivity of CuS/ZnS porous nanosheets based on photoinduced interfacial chargetransfer[J]. Nano Lett.,2011,11(11):4774-4779
    [220] Xiang Q.J., Lv K.L., Yu J.G. Pivotal role of fluorine in enhanced photocatalyticactivity of anatase TiO2nanosheets with dominant (001) facets for thephotocatalytic degradation of acetone in air[J]. Appl. Catal. B,2010,96(3-4):557-564
    [221] Yu J.G., Fan J.J., Cheng B.J. Dye-sensitized solar cells based on anatase TiO2hollow spheres/carbon nanotube composite films[J]. Power Sources,2011,196(18):7891-7898
    [222] Hao J.Y., Wang Y.Y., Tong X.L.,et al. Photocatalytic hydrogen production overmodified SiC nanowires under visible light irradiation[J]. Int. J. Hydrogen Energy,2012,37(20):15038-15044
    [223] Bai H.W., Liu Z.Y., Sun D.D. The design of a hierarchical photocatalyst inspiredby natural forest and its usage on hydrogen generation[J]. Int. J Hydrogen Energy,2012,37(19):13998-14008
    [224] Huang Y.F., Li J., Wei Y.L.,et al. Fabrication and photocatalytic property ofPt-intercalated layered perovskite niobates H1-xLaNb2-xMoxO7(x=0-0.15)[J]. J.Hazardous Materials,2009,166(1):103-108
    [225] Guzman F., Chuang S.S.C., Yang C. Role of methanol sacrificing reagent in thephotocatalytic evolution of hydrogen[J]. Ind. Eng. Chem. Res.,2013,52(1):61-65
    [226] Wang B., Li C.S., Hirabayashi D.,et al. Hydrogen evolution by photocatalyticdecomposition of water under ultraviolet–visible irradiation overK2La2Ti3-xMxO10+δperovskite[J]. Int. J. Hydrogen Energy,2010,35(8):3306-3312
    [227] Buhler N., Meier K., Reber J.F. Photochemical hydrogen production withcadmium sulfide suspensions[J]. J. Phys. Chem.,1984,88(15):3261-3268
    [228] Tsuji I., Kato H., Kobayashi H.,et al. Photocatalytic H2evolution reaction fromaqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2solid solutionphotocatalysts with visible-light response and their surface nanostructures[J]. J.Am. Chem. Soc.,2004,126(41):13406-13413
    [229] Reber J.F., Meier K. Photochemical production of hydrogen with zinc sulfidesuspensions[J]. J. Phys. Chem.,1984,88(24):5903-5913.
    [230] Lunawat P.S., Senapati S., Kumar R.,et al. Visible light-induced splitting of waterusing CdS nanocrystallites immobilized overwater-repellant polymeric surface[J].Int. J. Hydrogen Energy,2007,32(14):2784-2790
    [231] Chen X.B., Mao S.S. Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications[J]. Chem. Rev.,2007,107(7):2891-2959
    [232] Yelda Y., Murat K., Zekiye C. Fe+3-doped TiO2: a combined experimental andcomputational approach to the evaluation of visible light activity[J]. AppliedCatalysis B: Environmental,2010,99(3-4):469-477
    [233] Zhang G.S., Zhang W., Wang P.,et al. Stability of an H2-producing photocatalyst(Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation[J].Int. J. Hydrogen Energy,2013,38(3):1286-1296
    [234] Feng X., Mao W.Y., Yan W. The critical conversion efficiency of light energy tohydrogen from photocatalytic water decomposition[J]. Int. J. Hydrogen Energy,2008,33(14):3644-3650
    [235] Tong Z., Zhang G., Takagi S.,et al. Preparation and characterization of atransparent thin film of the layered perovskite K2La2Ti3O10intercalated with anionic porphyrin[J]. Chem. Lett.,2005,34(5):632-633
    [236] Gopalakrishnan J., Sivakumar T., Thangadurai V.,et al. A[Bi3Ti4O13] andA[Bi3PbTi5O16](A=K,Cs): New n=4and n=5members of the layered perovskiteseries, A[A’n-1BnO3n+1], and their hydrates[J]. Inorg. Chem.,1999,38(12):2802-2806
    [237] Gopalakrishnan J., Bhat V. A2Ln2Ti3O10(A=potassium or rubidium; Ln=lanthanumor rare earth): a new series of layered perovskites exhibiting ion exchange[J].Inorg. Chem.,1987,26(26):4299-4301
    [238] Sing K.S.W., Everett D.H., Haul R.A.W.,et al. Reporting physisorption data forgas/solid systems with special reference to the determination of surface area andporosity[J]. Pure Appl. Chem.,1985,57(4):603-619
    [239] Gregg S.J., Sing K.S.W. Adsorption, surface area and porosity[M].2ndEd.London: Academic Press,1982:16-20
    [240]辛勤,罗孟飞.现代催化研究方法[M].北京:科学出版社,2009:16-23
    [241]陈超.制备条件对等离子体处理Pd/HZSM-5催化剂性能影响的实验研究[D].天津:天津大学,2005
    [242] Maesen T.L.M., Bruinsma D.S.L., Kouwenhoven H.W.,et al. Use ofradiofrequency plasma for low-temperature calcinations of zeolites[J]. J. Chem.Soc. Chem. Commun.,1987,(17):1284-1285
    [243] Maesen T.M., Kouwenhoven H.W., Bekkum H.V., et al., Template removal frommolecular sieves by low-temperature plasma calcinations[J]. J. Chem. Soc.Faraday Trans.,1990,86(23):3967-3970
    [244] Choi W., Termin A., Hoffmann M.R. Effects of metal-ion dopants on thephotocatalytic reactivity of quantum-sized TiO2particles[J]. Angew. Chem., Int.Ed.,1994,33(10):1091-1092
    [245] Teoh W.Y., Scott J.A., Amal R. Progress in heterogeneous photocatalysis: Fromclassical radical chemistry to engineering nanomaterials and solar reactors[J]. J.Phys. Chem. Lett.,2012,3(5):629-639
    [246] Khan M.A., Woo S.I., Yang O-B. Hydrothermally stabilized Fe(III) doped titaniaactive under visible light for water splitting reaction[J]. Int. J Hydrogen Energy,2008,33(20):5345-5351
    [247] Kato H., Kudo A. Visible-light-response and photocatalytic activities of TiO2andSrTiO3photocatalysts codoped with antimony and chromium[J]. J. Phys. Chem. B,2002,106(19):5029-5034
    [248] Ishii T., Kato H., Kudo A. H2evolution from an aqueous methanol solution onSrTiO3photocatalysts codoped with chromium and tantalum ions under visiblelight irradiation[J]. J. Photochem. Photobio. A,2004,163(1-2):181-186
    [249] Niishiro R., Kato H., Kudo A. Nickel and either tantalum or niobium-codopedTiO2and SrTiO3photocatalysts with visible-light response for H2or O2evolutionfrom aqueous solutions[J]. Phys. Chem. Chem. Phys.,2005,7(10):2241-2245
    [250] Zhang H.J., Chen G., Li X.,et al. Electronic structure and water splitting undervisible light irradiation of BiTa1-xCuxO4(x=0.00-0.04) photocatalysts[J]. Int. J.Hydrogen Energy,2009,34(9):3631-3638
    [251] Pleskov Y.V. Conversion of luminous energy into electrical and chemical energyin photoelectrochemical cells with semiconductor electrodes[J]. Sov. Electrochem.,1981,17(1):1-25
    [252] Sun L., Li J., Wang C.L.,et al. An electrochemical strategy of doping Fe3+intoTiO2nanotube array films for enhancement in photocatalytic activity[J]. Sol.Energy. Mater. Sol. Cells,2009,93(10):1875-1880
    [253] Tong T.Z., Zhang J.L., Tian B.Z.,et al. Preparation of Fe3+-doped TiO2catalysts bycontrolled hydrolysis of titanium alkoxide and study on their photocatalyticactivity for methyl orange degradation[J]. J. Hazard Mater.,2008,155(3):572-579
    [254] Chen T., Feng Z.C., Wu G.P.,et al. Mechanistic studies of photocatalytic reactionof methanol for hydrogen on Pt/TiO2by in situ Fourier transform IR andtime-resolved IR spectroscopy[J]. J. Phys. Chem. C,2007,111(22):8005-8014
    [255] Abe T., Suzuki E., Kaneko M. Electron source in photoinduced hydrogenproduction on Pt-supported TiO2particles[J]. J. Phys. Chem. B,1999,103(7):1119-1123
    [256]崔文权,刘利,冯良荣,等. Pt/K2La2Ti3O10催化剂的合成及其光催化分解甲醇水溶液制氢[J].中国科学B辑,2006,36(2):139-144
    [257] Fox M.A., Dulay M.Y. Heterogeneous photocatalysis[J]. Chem. Rev.,1993,93(1):341-357
    [258] Kudo A., Domen K., Maruya K.,et al. Photocatalytic activities of TiO2loaded withNiO[J]. Chem. Phys. Lett.,1987,133(6):517-519
    [259] Hwang D.W., Kim H.G., Kim J.K.,et al. photocatalytic water splitting over highlydonor-doped (110) layered[J]. J. Catal.,2000,193(1):40-48
    [260] Kato H., Asakura K., Kudo A. Highly efficient water splitting into H2and O2overlanthanum-doped NaTaO3photocatalysts with high crystallinity and surfacenanostructure[J]. J. Am. Chem. Soc.,2003,125(10):3082-3089
    [261] Sreethawong T., Suzuki Y., Yoshikawa S. Photocatalytic evolution of hydrogenover mesoporous TiO2supported NiO photocatalyst prepared by single-stepsol-gel process with surfactant template[J]. Int. J. Hydrogen Energy,2005,30(10):1053-1062
    [262] Kato H., Kudo A. Photocatalytic water splitting into H2and O2over varioustantalite photocatalysts[J]. Catalysis Today,2003,78(1-4):561-569
    [263] Domen K., Naito S., Onishi T.,et al. Study of the photocatalytic decomposition ofwater vapor over a NiO-SrTiO3catalyst[J]. J. Phys.Chem.,1982,86(18):3657-3661
    [264] Qiu X.Q., Masahiro M., Yu H.G.,et al. Visible-light-drivenCu(II)-(Sr1-yNay)(Ti1-xMox)O3photocatalysts based on conduction band controland surface ion modification[J]. J. Am. Chem. Soc.,2010,132(43):15259-15267
    [265] Yu H.G., Irie H., Hashimoto K. Conduction band energy level control of titamiumdioxide: Toward an efficient visible-light-sensitive photocatalyst[J]. J. Am. Chem.Soc.,2010,132(20):6898-6999
    [266] Irie H., Kamiya K., Shibanuma T.,et al. Visible light-sensitive Cu(II)-grafted TiO2photocatalysts: Activities and X-ray absorption fine structure analyses[J]. J. Phys.Chem. C,2009,113(24):10761-10766.
    [267] Irie H., Miura S., Kamiya K.,et al. Efficient visible light-sensitive photocatalysts:Grafting Cu(II) ions onto TiO2and WO3photocatalysts[J]. Chem. Phys. Lett.,2008,457(1-3):202-205
    [268] Yu J.G., Hai Y., Cheng B. Enhanced photocatalytic H2-production activity of TiO2by Ni(OH)2cluster modification[J]. J Phys. Chem. C,2011,115(11):4953-4958
    [269] Ruh U., Sun H.Q., Wang S.B.,et al. Wet-chemical synthesis of InTaO4forphotocatalytic decomposition of organic contaminants in air and water withUV-vis light[J]. Industrial&Engineering Chemistry Research,2012,51(4):1563-1569
    [270]陈建华,龚竹青.二氧化钛半导体光催化材料离子掺杂[M].北京:科学出版社,2006:114
    [271] Dohcevic-Mitrovic Z.D., Milutinovic A., Popovic D., et al. Variable energy gap ofSiCN nanopowders[J]. Appl. Phys. A: Materials Science&Processing,2006,84(1-2):197-202
    [272] Yu J.C., Yu J.G., Ho W.K.,et al. Chem. Mater., Effects of F doping on thephotocatalytic activity and microstructures of nanocrystalline TiO2powders[J].2002,14(9):3808-3816
    [273] Yu J.G., Yu J.C., Ho W.K.,et al. Effects of calcinations temperature on thephotocatalytic activity and photo-induced super-hydrophilicity of mesoporousTiO2thin films[J]. New J. Chem.,2002,26(5):607-613
    [274] Zhou L., Wang W.Z., Liu S.W.,et al. A sonochemical route to visible-light-drivenhigh-activity BiVO4photocatalyst[J]. J. Mol. Catal. A,2006,252(1-2):120-124
    [275] Hu X., Hu C., Qu J. Preparation and visible-light activity of silver vanadate for thedegradation of pollutants[J]. Mater. Res. Bull.,2008,43(11):2986-2997
    [276] Konta R., Kato H., Kobayashi H.,et al. Photophysical properties and photocatalyticactivities under visible light irradiation of silver vanadates[J]. Phys. Chem. Chem.Phys.,2003,5(14):3061-3065
    [277] Kim S.H., Park S., Lee C.W.,et al. Photophysical and photocatalytic water splittingperformance of stibiotantalite type-structure compounds, SbMO4(M=Nb,Ta)[J].Int. J. Hydrogen Energy,2012,37(22):16895-16902
    [278] Merino N.A., Barbero B.P., Eloy P.,et al. La1-xCaxCoO3perovskite-type oxides:identification of the surface oxygen species by XPS[J]. Appl. Sur. Sci.,2006,253(3):1489-1493
    [279] Kulkarni G.U., Rao C.N.R., Roberts M.W. Nature of the oxygen species at Ni(110)and Ni(100) surfaces revealed by exposure to oxygen and oxygen-ammoniamixtures: evidence for surface reactivity of O-type species[J]. J. Phys. Chem.,1995,99(10):3310-3316
    [280] Sutthiumporn K., Kawi S. Promotional effect of alkaline earth over Ni-La2O3catalyst for CO2reforming of CH4: Role of surface oxygen species on H2production and carbon suppression[J]. Int. J. Hydrogen Energy,2011,36(22):14435-14446
    [281]梁日忠,李成岳,李英霞,等.正丁烷选择氧化中吸附氧与晶格氧的作用[J].化工学报,2003,54(6):854-858
    [282] Szubka M., Talik E., Molak A.,et al. Electronic structure of PrxLa1-xAlO3solidsolution[J]. Crys. Res. Tech.,2010,45(12):1309-1315
    [283] Wang Z.Y., Shi L.Y., Wu F.Q.,et al. Structure and humidity sensing properties ofLa1-xKxCo0.3Fe0.7O3-δperovskite[J]. Sensors and Actuators B: Chemical,2011,158(1):89-96
    [284] Blanchard P.E.R., Slater B.R., Cavell R.G.,et al. Electronic structure of lanthanumtransition-metal oxyarsenides LaMAsO(M=Fe,Co,Ni) and LaFe1-xM’xAsO(M’=Co,Ni) by X-ray photoelectron and absorption spectroscopy[J]. Solid StateSciences,2010,12(1):50-58
    [285] Dutta R.S., Jagannath, Dey G.K., et al. Characterization of microstructure andcorrosion properties of cold worked Alloy800[J]. Corrosion Science,2006,48(9):2711-2726
    [286] Hotovy I., Huran J., Spiess L.,et al. Preparation of nickel oxide thin films for gassensors applications[J]. Sensors and Actuators B: Chemical,1999,57(1-3):147-152
    [287] Yamakata A., Ishibashi T., Onishi H. Effects of water addition on the methanoloxidation on Pt/TiO2photocatalyst dtudied by time-resolved infrared sbsorptiondpectroscopy[J]. J. Phys. Chem. B,2003,107(36):9820-9823
    [288]荆煦瑛,陈式棣,么恩云.红外光谱实用指南[M],天津:天津科学技术出版社,1992:3-4,29-30,81-82
    [289] Singh A.P., Kumari S., Shrivastav R.,et al. Iron doped nanostructured TiO2forphotoelectrochemical generation of hydrogen[J]. Int. J. Hydrogen Energy,2008,33(20):5363-5368
    [290]谢称福,李越湘,彭绍琴,等.伊红-Y敏化TiO2的制备及其可见光下光催化制氢性能[J].太阳能学报,2007,28(9):956-960
    [291]陈涛,吴国鹏,冯兆池,等.Pt/TiO2光催化分解甲酸制氢反应的原位红外光谱研究[J].催化学报,2008,29(2):105-107
    [292] Sobhana S.S.L., Vimala D.M., Sastry T.P.,et al. CdS quantum dots formeasurement of the size-dependent optical properties of thiol capping[J].J.Nanopart. Res.,2011,13(4):1747-1757
    [293] Tang S.H.; Li Y.Q. Interaction via in situ binding of CdS nanorods onto gelatin[J].J. Colloid Interface Sci.,2011,360(1):71-77
    [294] Mendive C.B., Bredow T., Blesa M.A.,et al. ATR-FTIR measurements andquantum chemical calculations concerning the adsorption and photoreaction ofoxalic acid on TiO2[J]. Phys. Chem. Chem. Phys.,2006,8(27):3232-3247
    [295] Sun C.H., Liu L.M., Selloni A.,et al. Titania-water interactions: a review oftheoretical studies[J]. J. Mater. Chem.,2010,20(46):10319-10334
    [296] Feldhoff A., Mendive C., Bredow T.,et al. Direct measurement of size,three-dimensional shape, and specific surface area of anatase nanocrystals[J].Chem. Phys. Chem.,2007,8(6):805-809
    [297] Mendive C.B., Hansmann D., Bredow T.,et al. New insights into the mechanism ofTiO2photocatalysis: Thermal processes beyond the electron-hole creation[J]. J.Phys. Chem. C,2011,115(40):19676-19685
    [298] Liao L.F., Wu W.C., Chen C.Y.,et al. Photooxidation of formic acid vs formateand ethanol vs ethoxy on TiO2and effect of adsorbed water on the rates of formateand formic acid photooxidation[J]. J. Phys. Chem. B,2001,105(32):7678-7685
    [299] Kecskés T., Raskó J., Kiss J. FTIR and mass spectrometric study of HCOOHinteraction with TiO2supported Rh and Au catalysts[J]. J. Appl. Catal. A,2004,268(1-2):9-16
    [300] Ara a J., Cabo C.G.I., Do a-Rodríguez J.M.,et al. FTIR study of formic acidinteraction with TiO2and TiO2doped with Pd and Cu in photocatalyticprocesses[J]. Appl. Surf. Sci.,2004,239(1):60-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700