抗湿性高活性的过渡金属催化剂的制备及其催化燃烧甲苯的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化燃烧法是一种有效治理挥发性有机化合物VOCs (Volatile organic compounds)污染的技术之一。目前面临急迫解决的一个突出问题是,在实际工况中由于水蒸气的存在会导致催化剂活性的急剧下降而影响VOCs的降解效率,因此,研究和开发高活性同时又具备高憎水性的非贵金属催化剂,这对于治理我国南方潮湿环境下的VOCs污染具有非常重要的意义。
     本文围绕着在高湿度环境下催化燃烧VOCs面临的催化剂抗湿性能差的难题,从理论层面上研究了催化剂的表面性质与其催化氧化VOCs活性和抗水蒸气负面影响的关系;从技术层面上,研制出新型高活性高憎水性的过渡金属基负载型催化材料。
     本文研究了单组分负载型堇青石催化剂(CoOx/Cordierite, MnOx/Cordierite, CrOx/Cordierite)催化燃烧甲苯的活性。研究结果表明:催化剂CoOx/Cordierite催化燃烧甲苯的活性最高;用乙二醇法制备的催化剂CoOx/Cordierite-EG的催化活性要高于采用浸渍法制备的CoOx/Cordierite的活性,发现这是因为Co物种在催化剂CoOx/Cordierite-EG表面主要是以Co2+的化学价态存在,并且具有更好的分散性。这是本文的创新之处。
     本文研究了水蒸气对催化剂CoOx/Cordierite, MnOx/Cordierite和CrOx/Cordierite的活性的影响。水蒸汽的存在会导致这三种催化剂的活性下降,这是由于水分子在表面上形成竞争吸附,它们受水蒸汽负面影响大小的顺序为:CoOx/Cordierite> MnOx/Cordierite> CrOx/Cordierite。H2O-TPD分析表明:水蒸气与催化剂CrOx/Cordierite表面的结合能力要弱于其他二种催化剂,因此它的抗水蒸汽影响的能力最强。
     本文研究了二元复合型催化剂,分别将不同的元素(Mn、Ce、Fe、Cr)掺杂到催化剂CoOx/Cordierite中。研究结果表明:Mn和Ce元素掺杂到CoOx/Cordierite中,能够有效提高催化剂的抗水蒸气的能力;然而Fe和Cr元素的掺杂却会导致催化剂的抗水性能下降。H2O-TPD分析结果表明催化剂CoCe(0.4)Ox/cordierite与水分子的吸附力最弱,使得该催化剂的催化活性受到水蒸气的负面影响最小,其抗湿性能也最好。Ce元素掺杂后的催化剂CoCe(0.4)Ox/cordierite,其表面的Co2+的百分含量得到了增加,而Co3+的百分含量却明显减少,从而削弱了其表面对水分子的吸附能力、增强了其抗湿性能。当相对湿度从55%增至90%时其对甲苯转化率基本维持稳定,其憎水性能明显优于目前文献报道的催化剂。这是本文的创新之处。
     本文研制了铜锰负载型催化剂并考察了其催化燃烧甲苯的性能。结果表明:复合型铜锰催化剂催化燃烧甲苯的活性要高于各自单组分催化剂的活性。当Cu/Mn匕为1:1时,催化剂CuMn(1)Ox/γ-Al2O3催化氧化甲苯的活性最高,其T90为229℃;XRD、TPR和XPS等分析结果表明:在此催化剂表面存在着Cu1.5Mn1.5O4晶相,从而使得其能够在较低的温度下催化燃烧甲苯。这也是本文的新意之处。
     本文采用级数动力学模型、MVK动力学模型模拟了催化剂CuMn(1)Ox/γ-Al2O3催化燃烧甲苯的动力学过程。研究结果表明:基于氧化-还原机理的MVK动力学模型适合用来描述甲苯在催化剂CuMn(l)Ox/γ-Al2O3上的催化燃烧反应过程。
     本文研究了不同载体(γ-Al2O3, TiO2, Cordierite)负载的铜锰催化剂催化燃烧甲苯的活性和抗湿性能。三种催化剂的活性受水蒸汽负面影响大小的顺序为:CuMn(1)Ox/γ-Al2O3> CuMn(1)Ox/TiO2> CuMn(1)Ox/Cordierite。H2O-TPD分析表明:水蒸气与催化剂表面的结合能力的大小顺序为CuMn(1)Ox/γ-Al2O3> CuMn(1)Ox/TiO2> CuMn(1)OX/Cordierite。综合分析表明:催化剂CuMn(1)Ox/Cordierite与水分子结合能力最弱,因此它的催化活性受到水蒸气的负面影响最小,其抗湿性能最强。这是本文的新意之处。
     本文研制了MnCe(y)Ox/TiO2催化剂并考察了其催化燃烧甲苯的性能。研究结果表明:催化剂MnCe(y)Ox/TiO2对甲苯均有优良的催化活性,其中催化剂MnCe(0.1)Ox/TiO2催化燃烧甲苯的活性最好,这是因为掺杂适量Ce元素能够提高催化剂活性组分的分散和晶格氧的迁移能力,从而提高了催化剂活性。同时,催化剂MnCe(0.1)Ox/TiO2抗水蒸气负面影响能力也得到明显提高。这是本文的创新之处。
     本文研究了采用超声-氢气还原联合制备CuMnCe(y)Ox/TiO2三元复合催化剂。研究表明:当Cu:Mn:Ce的摩尔比为1:1:0.25时,催化剂CuMnCe(0.25)Ox/TiO2催化燃烧甲苯的活性最高,在甲苯浓度为5.956g/m3以及空速为23000h-1的条件下,甲苯的转化率达到90%时的温度为201℃,其活性已超过目前文献报道的各种非贵金属负载型催化剂的催化活性,已达到或接近国际上报道的贵金属催化剂的活性水平,是本文的创新之处。
Catalytic combustion is one of the effective techniques for the destruction of VOCs. One of the prominent problems is that the presence of water vapor had a negative effect on catalytic activity, and thus decreased the degradation efficiency of VOCs. Therefore, the studies of non-noble metal catalysts with high activity and moisture resistance is great important for the destruction of VOCs under conditions of high humidity.
     In order to solve the problem about catalyst deactivation in high humidity circumstance, the effect of surface chemical properties of the catalysts on their activity and moisture resistance was studied. The novel transition metal oxide catalysts with high moisture resistance and activity were prepared from the technical level.
     The activity of the catalysts CoOx/Cordierite, MnOx/Cordierite and CrOx/Cordierite for toluene oxidation was investigated. The results showed that the activity of the catalyst CoOx/Cordierite was the highest among the three catalysts. The catalyst CoOx/Cordierite-EG prepared by chemical reduction with ethylene glycol had the better activity than the catalyst CoOx/Cordierite prepared by impregnation method. It was mainly attributed to the cobalt (II) species with better dispersion presented on the CoOx/Cordierite-EG catalyst. This is one of the innovations in this work.
     The influence of water vapor on the catalytic activity of the catalysts CoOx/Cordierite, MnOx/Cordierite and CrOx/Cordierite for toluene oxidation was investigated. The presence of water vapor had a negative effect on the catalytic activity. It was mainly attributed to the competition of water molecules with toluene molecules for adsorption on the active sites. The degree of degradation in the catalytic activity of the catalysts due to presence of water vapor followed the order:CoOx/Cordierite> MnOx/Cordierite> CrOx/Cordierite. H2O-TPD studies showed that the strength of interactions between water molecules with the surface of the catalyst CrOx/Cordierite was weaker than the other two catalysts. As a consequence of that, CrOx/Cordierite exhibited the best durability to water vapor among the three catalysts.
     In order to further improve the catalytic performance, various transition metals (Mn、Ce、 Fe%Cr) were separately added to the catalyst CoOx/Cordierite. The results showed that the dopping of Ce or Mn on the catalyst CoOx/cordierite can improve its durability towards water vapor poisoning. H2O-TPD showed that the interaction between water molecules with the surface of CoCe(0.4)Ox/cordierite was the weakest. As a result, this catalyst had the best moisture resistance. The dopping of Ce on the catalyst CoOx/cordierite can result in an increase in its Co2+content and a decrease in its Co3+content, which weakened adsorption of the catalyst surface towards water vapor, and thus increased the durability to water vapor. The conversion of toluene on the catalyst CoCe(0.4)Ox/cordierite maintained stabilization when relative humidity varied from55%to90%. The durability of the catalyst CoCe(0.4)Ox/cordierite towards water vapor was much better than that of the catalysts reported in the literatures. This is one of the innovations in this work.
     The bimetallic catalysts CuMn(y)Ox/y-Al2O3were prepared, and their catalytic activity for the toluene oxidation was examined. The results showed that the activity of the bimetallic catalysts was higher than that of the monometallic catalysts CuOx/γ-Al2O3and MnOx/γ-Al2O3. The activity of CuMn(1)Ox/γ-Al2O3was the best among these catalysts, and its T90, the temperature required for90%toluene conversion, was229℃. It was mainly attributed to the formation of the phase Cu1.5Mn1.5O4in the bimetallic catalyst CuMn(1)Ox/γ-Al2O3. This is one of new points in this work.
     The catalytic combustion kinetics of toluene over the catalyst CuMn(1)Ox/γ-Al2O3was investigated. The results showed that MVK model based on redox mechanism was suitable to describe the catalytic combustion kinetics of toluene over CuMn(1)Ox/γ-Al2O3.
     Copper and manganese based catalysts with different supports were prepared. The effect of water vapor on the activity of the catalysts for toluene oxidation was investigated. The degradation of the catalytic activity of the catalysts by water vapor followed the order: CuMn(1)Ox/γ-Al2O3> CuMn(1)Ox/TiO2> CuMn(1)Ox/Cordierite. H2O-TPD studies showed that the strength of interactions between water molecules with the surfaces of the three catalysts followed the order:CuMn(1)Ox/γ-Al2O3> CuMn(1)Ox/TiO2> CuMn(1)Ox/Cordierite. As a consequence of that, CuMn(1)Ox/Cordierite exhibited the best durability to water vapor. This is one of new points in this work.
     The catalysts MnCe(y)Ox/TiO2were prepared and their catalytic activity for toluene oxidation was investigated. The results showed that the catalyst MnCe(0.1)Ox/TiO2had higher activity and better durability towards water vapor than other catalysts MnCe(y)Ox/TiO2tested. It is ascribed to the higher dispersion of manganese species on the support. This is one of the innovations in this work.
     The ternary metal oxide catalysts CuMnCe(y)Ox/TiO2were prepared, and their catalytic activity for toluene oxidation was investigated. The results showed that when Cu:Mn:Ce molar ratio=1:1:0.25, the prepared catalyst CuMnCe(0.25)Ox/TiO2exhibited the best activity among the catalysts tested. Under the condition (Toluene concentration=5.956g/m3, GHSV=23000h-1), its T90, the reaction temperature required for90%toluene conversion, was only 201℃. The activity of the CuMnCe(0.25)Ox/TiO2was better than that of the non-noble metal catalysts, and reached or come close to that of the noble metal catalysts reported in the literatures. This is one of the innovations in this work.
引文
[1]Beauchet R., Magnoux P., Mijoin J. Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts [J]. Catalysis Today,2007, 124(3-4):118-123
    [2]黄思思.金属-有机骨架材料——MOF-5和MIL-101的合成及其对VOCs的吸附/脱附性能[D].广州:华南理工大学,2010
    [3]Chang C.T., Lee C.H., Wu Y.P., et al. Assessment of the strategies for reducing volatile organic compound emissions in the automotive industry in Taiwan[J]. Resources Conservation and Recycling,2002,34 (2):117-128
    [4]Jones A.P. Indoor air quality and health[J]. Atmospheric Environment,1999,33 (28): 4535-4564
    [5]Carpentier J., Lemonier J.F., Siffert S., et al. Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene[J]. Applied Catalysis A:General,2002,234 (1-2):91-101
    [6]Shah J.J., Singh H.B. Distribution of volatile organic chemicals in outdoor and indoor air[J]. Environmental science and technology,1998,22 (12):1381-1385
    [7]张林,陈欢林,柴红.挥发性有机物废弃的膜法处理工艺研究进展[J].化工环保2002,22(2):75-80
    [8]苑宏英,郭静.VOCs恶臭污染物质的污染状况和一般处理方法[J].四川环境,2004,23(6):45-49
    [9]Taylor S.H., Heneghan C.S., Hutchings G.J. The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catalysis today,2000,59 (3-4):249-259
    [10]张广宏,赵福真,季生福,等.挥发性有机物催化燃烧消除的研究[J].化工进展,2007,26(5):624-631
    [11]Kim H.J., Nah S.S., Min B.R. A new technique for preparation of PDMS pervaporation membrane for VOC removal[J]. Advances in Environmental Research,2002,6 (3): 255-264
    [12]冯春杨.脉冲电晕技术处理挥发性有机化合物的应用研究[D].四川:中国工程物理研究院,2003
    [13]梁红,叶代启,肖美英.恶臭及挥发性有机溶剂废气治理技术[J].广州环境科学,1999,14(4):11-15
    [14]Cortese A.D. Clearing the air[J]. Environmental science and technology,1990,24 (4): 442-448
    [15]洪紫萍.挥发性有机化合物的污染与防治[J].环境污染与防治,1994,154(3):24-26
    [16]Khan F.I., Ghoshal A.K. Removal of Volatile Organic Compounds from polluted air[J]. Journal of Loss Prevention in the Process Industies,2000,13 (6):527-545
    [17]Raciulete M., Afanasiev P. Manganese-containing VOC oxidation catalysts prepared in molten salts[J]. Applied Catalysis A:General,2009,368 (1-2):79-86
    [18]高莲,谢永恒.控制挥发性有机化合物污染的技术[J].化工环保,1998,18(6):343-346
    [19]张云,李彦峰.环境中VOCs的污染现状及处理技术研究进展[J].化工环保,2009,29(5):411-415
    [20]Lamonier J.F., Nguyen T.B., Franco M., et al. Influence of the meso-macroporous ZrO2-TiO2 calcination temperature on the pre-reduced Pd/ZrO2-TiO2 (1/1) performances in chlorobenzene total oxidation[J]. Catalysis Today,2011,164(1): 566-570
    [21]Shim W.G, Lee J.W., Kim S.C. Analysis of catalytic oxidation of aromatic hydrocarbons over supported palladium catalyst with different pretreatments based on heterogeneous adsorption properties[J]. Applied Catalysis B:Environmental,2008,84 (1-2):133-141
    [22]杨亚欣,郭斌.工业高浓度挥发性有机气体净化技术现状与进展[J].环境科学导刊,2010,29(1):64-67
    [23]Peng M., Vane L.M., Liu S.X. Recent advances in VOCs removal from water by pervaporation[J], Journal of Hazardous Materials,2003,98 (1-3):69-90
    [24]Ogata A., Einaga H., Kabashima H., et al. Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air[J]. Applied Catalysis B: Environmental,2003,46 (1):87-95
    [25]Khan F.I., Ghoshal A.K. Removal of volatile organic compounds from polluted air[J]. Journal of Loss Prevention in the Process Industries,2000,13 (6):527-545
    [26]Bosc F., Edwards D., Keller N., et al. Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation[J]. Thin Solid Films,2006,495 (1-2): 272-279
    [27]Pires J., Carvalho A. Adsorption of volatile organic compounds in Y zeolites and pillared clays[J]. Microporous and Mesoporous Materials,2001,43 (3):277
    [28]Shen W.Z., Wang H., Guan R.G., et al. Surface modification of activated carbon fiber and its adsorption for vitamin B1 and folic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,331 (3):263-267
    [29]Lei S., Miyamoto J., Kanoh H., et al. Enhancement of the methylene blue adsorption rate for ltramicroporous carbon fiber by addition of mesopores[J]. Carbon,2006,44 (10):1884-1890
    [30]Przepiorski J. Enhanced adsorption of phenol from water by ammonia-treated activated carbon[J]. Journal of Hazardous Materials,2006,135 (1-3):453-456
    [31]姚恕,刘茉娥,郑连英.液体吸收法处理喷漆尾气的研究[J].环境污染与防治,1984,6(4):23-26
    [32]Engleman V.S. Updates on choices of appropriate technology for control of VOC emissions[J]. Metal finishing,2000,98 (6):433-445
    [33]栾志强,郝郑平,王喜芹.工业固定源VOCs治理技术分析评估[J].环境科学,2011,32(12):3476-3486
    [34]马生柏,汪斌.有机废气处理技术研究进展[J].内蒙古环境科学,2009,21(2):55-58
    [35]Diban N., Urtiaga A., Ortiz I. Recovery of key components of bilberry aroma using a commercial pervaporation membrane[J]. Desalination,2008,224 (1-3):34-39
    [36]张宇峰,邵春燕,张雪英,等.挥发性有机化合物的污染控制技术[J].南京工业大学学报,2003,25(3):89-92
    [37]Togna A.P. Biological vapor-phase treatment using biofilter and biotrickling filter reactors:practical operating regimes [J]. Environmental Progress,1994,13 (2):94-97
    [38]Pagans E., Font X., Sanchez A. Coupling composting and biofiltration for ammonia and volatile organic compound removal[J]. Biosystens Engineering,2007,97 (4):491-500
    [39]李清雪,王冬云,冯如彬.生物滴滤池处理甲苯废气研究[J].河北建筑科技学院学报,2004,21(1):1-3
    [40]Lu Y., Liu J., Lu B., et al. Study on the removal of indoor VOCs using biotechnology [J]. Journal of Hazardous Materials,2010,182 (1-3):204-209
    [41]Burgess J. E., Parsons S. A., Stuetz R. M. Developments in odour control and waste gas treatment biotechnology [J]. Biotechnology Advances,2001,19 (1):35-63
    [42]张丽,张小平,黄伟海.生物膜法处理挥发性有机化合物技术[J].化工环保,2005,25(2):100-103
    [43]王丽燕,王爱杰,任南琪,等.有机废气(VOC)生物处理研究现状与发展趋势[J].哈尔滨工业大学学报,2004,36(6):732-735
    [44]王红娟,李忠.半导体多相光催化氧化技术[J].现代化工,2002,22(2):56-60
    [45]Xiao G.C., Wang X.C., Li D.Z., et al. InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,193 (2-3):213-221
    [46]何荣亮,张小宁,曹文斌.氮掺杂纳米Ti02改性涂料的制备及其可见光下VOC降解性能研究[J].中国涂料,2005,21(12):35-37
    [47]Abbas N., Hussain M., Russoa N., et al. Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs[J].2011,175 (5): 330-340
    [48]Yan K. Heesch E.J.M. Elements of pulsed corona induced non-thermal plasmas for pollution control and sustainable development[J]. Journal of Electrostatics,2001,51 (6):218-224
    [49]Stefan S., Matthias C., Jecklin R.Z. Degradation of volatile organic compounds in a non-thermal plasma air purifier[J]. Chemosphere,2010,79 (2):124-130
    [50]马竞涛,周则飞,吴祖成,等.低温等离子体处理恶臭废气技术的工业应用研究[J].炼油技术与工程,2007,37(4):50-54
    [51]Subrahmanyam C., Renken A., Kiwi-Minsker L. Novel catalytic non-thermal plasma reactor for the abatement of VOCs[J]. Chemical Engineering Journal,2007,134 (1-3): 78-83
    [52]Karuppiah J., Reddy E.L., P. Reddy M.K., et al. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor[J]. Journal of Hazardous Materials,2012,237 (2):283-289
    [53]Aouad S., Abi-Aad E., Aboukais A. Simultaneous oxidation of carbon black and volatile organic compounds over Ru/CeO2 catalysts [J]. Applied Catalysis B: Environmental,2009,88 (3-4):249-256
    [54]徐铭遥.单元式CuMn2CenOx/Cord催化剂的研制及其对甲苯催化燃烧性能[D].广州:华南理工大学,2011
    [55]Saad F.T., Carolyn A.K. Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere,1999,38 (9):2109-2116
    [56]Tidahy H.L., Siffert S., Wyrwalski F. Catalytic activity of copper and palladium based catalysts for toluene total oxidation[J]. Catalysis Today,2007,119 (3-4):317-320
    [57]Radic N., Grbic B., Terlecki A. Kinetics of deep oxidation of n- hexane and toluene over Pt/Al2O3 catalysts:Platinum crystallite size effect[J]. Applied Catalysis B: Environmental,2004,50 (3):153-159
    [58]陈晓.高湿度条件下负载型锰铈催化剂催化燃烧乙酸乙酯性能的研究[D].广州:华南理工大学,2011
    [59]吴忠标,蒋新,赵伟荣.环境催化原理及应用[M].北京:化学工业出版社,2006:380-383
    [60]郝吉明,马广大,王书肖.大气污染控制工程[M].北京:高等教育出版社,2010:436-438
    [61]牛学坤,李成岳,陈标华,等.流向变换催化燃烧反应器的热波特性[J].化工学报,2003,54(8):1087-1092
    [62]郭建光.超声/等离子体制备CuO/CeO2/γ-Al2O3催化剂及其催化燃烧VOCs'性能[D].广东:华南理工大学,2006
    [63]Eigenberger G., Nieken U. Catalytic combustion with periodic flow reversal[J]. Chemical Engineering Science,1988,43 (8):2109-2115
    [64]Hosseini M., Tidahy H.L., Siffert S., et al. Effects of the treatment and the mesoporosity of mesostructured TiO2 impregnated with noble metal for VOCs oxidation[J]. Studies in Surface Science and Catalysis,2008,174 (2):1323-1326
    [65]Shen Y.N., Yang X.Z., Wang Y.Z., et al. The states of gold species in CeO2 supported gold catalyst for formaldehyde oxidation[J]. Applied Catalysis B:Environmental,2008, 79 (2):142-148
    [66]Burch R., Urbano F.J., Loader P.K. Some aspects of hydrocarbon activation on platinum group metal combustion catalysts[J]. Applied Catalysis A:General,1995,123 (1): 173-184
    [67]Saad F.T., Carolyn A.K. Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere,1999,38(9):2109-2116
    [68]Papaefthimiou P., Ioannides T., Verykios X.E. Catalytic incineration of volatile organic compounds Present in industrial waste streams[J]. Applied Thermal Engineering,1998, 18(11):1005-1012
    [69]Kobayashi M., Morita A., Ikeda M. The support effect in oxidizing atmosphere on propane combustion over platinum supported on TiO2, TiO2-SiO2 and TiO2-SiO2-WO3[J]. Applied Catalysis B:Environmental,2007,71 (1-2):94-100
    [70]Tsou J., Magnoux P., Guisnet M., et al. Catalytic oxidation of volatile organic compounds:Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts[J]. Applied Catalysis B:Environmental,2005,57 (2):117-123
    [71]Peng J.X., Wang S.D. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures[J]. Applied Catalysis B: Environmental,2007,73 (3-4):282-291
    [72]Santos V.P., Carabineiro S.A, Tavaresv P.B., et al. Oxidation of CO, ethanol and toluene over TiO2 supported noblemetal catalysts[J]. Applied Catalysis B: Environmental,2010,99 (1-2):198-205
    [73]Giraudona J.M., Elhachimia A., Wyrwalskib F., et al. Studies of the activation process over Pd perovskite-type oxides usedfor catalytic oxidation of toluene[J]. Applied Catalysis B:Environmental,2007,75 (3-4):157-166
    [74]Padilla J.M., Del A.G., Navarrete J. Improved Pd/γ-Al2O3-Ce catalysts for benzene combustion[J]. Catalysis Today,2008,133-135:541-547
    [75]Tidahy H.L., Hossenia M., Sifferta S., et al. Nanostructured macro-mesoporous zirconia impregnated by noblemetal for catalytic total oxidation of toluene[J]. Catalysis Today,2008,137 (2-4):335-339
    [76]Kim H.S., Kim T.W., Koh H.L., et al. Complete benzene oxidation over Pt-Pd bimetal catalyst supported on y-alumina:influence of Pt-Pd ratio on the catalytic activity [J]. Applied Catalysis A:General,2005,280 (2):125-131
    [77]Taylor M., Ndifor E.N., Garcia T., et al. Deep oxidation of propane using palladium-titania catalysts modified by niobium[J]. Applied Catalysis A:General, 2008,350 (1):63-70
    [78]Wang C.H., Lin S.S., Chen C.L., et al. Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons [J]. Chemosphere, 2006,64 (3):74-80
    [79]Kim S.K., Kim K.H., Ihm S.K. The characteristics of wet air oxidation of phenol over CuOx/Al2O3 catalysts:Effect of copper loading[J]. Chemosphere,2007,68 (2): 287-292
    [80]Bampenrat A., Meeyoo V., Kitiyanan B., et al. Catalytic oxidation of naphthalene over CeO2-ZrO2 mixed oxide catalysts[J]. Catalysis Communications,2008,9 (14): 2349-2352
    [81]Soylu G.S.P. Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite[J]. Chemical Engineering Journal,2010,162 (1),380-387
    [82]Liu Y., Luo M.F., Wei Z. B., et al. Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts[J]. Applied Catalysis B:Environmental,2001,29 (1):61-67
    [83]Hettige C., Mahanama K.R.R., Dissanayake D. P. Cyclohexane oxidation and carbon deposition over metal oxide catalysts[J]. Chemosphere,2001,43 (8):1079-1083
    [84]Tseng T.K., Wang L., Ho T., et al. The destruction of dichloroethane over a γ-alumina supported manganese oxide catalyst[J]. Journal of Hazardous Materials,2010,178 (1-3):1035-1040
    [85]Aguero F.N., Scian A., Barbero B.P., et al. Combustion of volatile organic compounds over supported manganese oxide:Influence of the support, the precursor and the manganese loading[J]. Catalysis Today,2008,133-135:493-501
    [86]Sang C.K., Wang G.S. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B:Environmental,2010,98 (3-4):180-185
    [87]Duran F.G. Manganese and iron oxides as combustion catalysts of volatile organic compounds. Applied Catalysis B:Environmental,2009,92 (1-2):194-201
    [88]Morales M.R., Barbero B.P., Cadus L. E. Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts[J]. Applied Catalysis B: Environmental,2007,74 (1-2):1-10
    [89]Gutierrez-Ortiz J.I., Rivas B., Lopez R., et al. Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons[J]. Chemosphere,2007,68 (6):1004-1012
    [90]Tsoncheva T., Ivanova L., Rosenholm J., et al. Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation[J]. Applied Catalysis B:Environmental,2009,89 (3-4):365-374
    [91]Chen M., Zheng X.M. The effect of K and Al over NiCo2O4 catalyst on its character and catalytic oxidation of VOCs[J]. Journal of Molecular Catalysis A:Chemical,2004, 221 (1):77-80
    [92]Trigueiro F.E., Ferreirab C.M., Voltac J. C., et al. Effect of niobium addition to Co/γ-Al2O3 catalyst on methane combustion[J]. Catalysis Today,2006,118:425-432
    [93]Lu C.Y. Al2O3-supported Cu-Co bimetallic catalysts prepared with polyol process for removal of BTEX and PAH in the incineration flue gas[J]. Fuel,2009,88 (2):340-347
    [94]Mu Z., L J.J., Duan M.H. Catalytic combustion of benzene on Co/CeO2/SBA-15 and Co/SBA-15 catalysts[J]. Catalysis Communications,2008,9(9):1874-1877
    [95]Li J., Liang X., Xu S.C. Catalytic performance of manganese cobalt oxides on methane combustionat low temperature [J]. Applied Catalysis B:Environmental,2009,90 (1-2): 307-312
    [96]Todorova. S., Kolev H., Holgado J. P. Complete n-hexane oxidation over supported Mn-Co catalysts[J]. Applied Catalysis B:Environmental,2010,94(1-2):46-54
    [97]Lu C.Y., Wey M.Y., Chen L.I., et al. Application of polyol process to prepare AC-supported nanocatalyst for VOC oxidation[J]. Applied Catalysis A:General,2007, 325 (1):62-73
    [98]Yang J.S., Jung W.Y., Lee GD., et al. Catalytic combustion of benzene over metal oxides supported on SBA-15[J]. Journal of Industrial and Engineering Chemistry,2008, 14 (6):779-784
    [99]Delimaris D., Ioannides T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B:Environmental,2009,89 (1-2):295-302
    [100]Morales M.R., Barbero B.P., Cadus L.E. Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts[J]. Applied Catalysis B:Environmental,2006,67 (3-4): 229-236
    [101]Hu C.Q., Zhu Q.S., Jiang Z., et al. Preparation and formation mechanism of mesoporous CuO-CeO2 mixed oxides with excellent catalytic performance for removal of VOCs[J]. Microporous and Mesoporous Materials,2008,113 (1-3):427-434
    [102]Yang Y.X., Xu X.L., Sun K.P. A highly efficient copper supported catalyst for catalytic combustion of ethyl acetate[J]. Catalysis Communications,2006,7 (10):756-760
    [103]Spinicci R. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion[J]. Journal of Molecular Catalysis A:Chemical,2003,197 (1-2):147-155
    [104]Wang W., Zhang H.B., Lin GD. Study of Ag/La0.6Sr0.4MnO3 catalysts for complete oxidation of methanol and ethanol at low concentration[J]. Applied Catalysis B: Environmental,2000,24(3-4):219-225
    [105]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展[J].物理化学学报,2010,26(4):885-894
    [106]Huang H.F., Liu Y.Q., Tang W., et al. Catalytic activity of nanometer La1-xSrxCoO3 (x = 0,0.2) perovskites towards VOCs combustion[J]. Catalysis Communications,2008, 9 (1):55-59
    [107]Deng J.G., Dai H.X., Jiang H.Y., et al. Hydrothermal fabrication and catalytic properties of lal-xSrxMl-yFeyO3 (M= Mn, Co) that are highly active for the removal of toluene[J]. Environmental Science & Technology,2010,44 (7):2618-2623
    [108]Deng J.G., Zhang L., Dai H.X,, et al. In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts:High activity for the complete oxidation of toluene and ethyl acetate[J]. Applied Catalysis A:General,2009,352 (1-2):43-49
    [109]Irusta S., Pina M.P., Santamaria J. Catalytic combustion of volatile organic compounds over La-based perovskites[J]. Journal of catalysis,1998,179 (2):400-412
    [110]Gianpiero G. Preparation, characterisation and catalytic activity of pure and substituted La-hexaaluminate systems for high temperature catalytic combustion[J]. Applied Catalysis B:Environmental,2001,35 (2):137-148
    [111]Persson K., Pfefferle L.D., Schwartz W., et al. Stability of palladium-based catalysts during catalytic combustion of methane:The influence of water [J]. Applied Catalysis B:Environmental,2007,74 (3-4):242-250
    [112]Kikuchi R., Maeda S., Sasaki K., et al. Low-temperature methane oxidation over oxide-supported Pd catalysts:inhibitory effect of water vapor[J]. Applied Catalysis A: General,2002,232 (1-2):23-28
    [113]Pan H.Y., Xu M.Y., Li Z., et al. Catalytic combustion of styrene over copper based catalyst:Inhibitory effect of water vapor[J]. Chemosphere,2009,76 (5):721-726
    [114]Fang J.C., Chen X., Xia Q.B., et al. Effect of relative humidity on catalytic combustion of toluene over copper based catalysts with different supports[J]. Chinese Journal of Chemical Engineering,2009,17 (5):767-772
    [115]Gelin P., Urfels L., Primet M., et al. Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions:influence of water and sulphur containing compounds[J]. Catalysis Today, 2003,83 (1-4):45-57
    [116]Bertinchamps F., Attianese A., Mestdagh M.M., et al. Catalysts for chlorinated VOCs abatement:Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene[J]. Catalysis Today,2006,112 (1-4):165-168
    [117]张婉静.固体催化剂的研究方法-第十章多晶X射线衍射(上)[J].石油化工,2001,30(7):571-736
    [118]Bordoloi A., Halligudi S.B. Studies in structural characterization and correlation with the catalytic activity of an efficient and stable WOX/SBA-15 nanocomposite catalyst[J]. Journal of Catalysis,2008,257 (2):283-290
    [119]杨锡尧.固体催化剂的研究方法-第十三章程序升温分析技术(上)[J].石油化工,2001,30(12):952-959
    [120]韩森.用程序升温还原法对双金属催化剂性能研究[J].实验技术与管理,2000,17(4):25-27
    [121]Liotta L.F., Ousmane M., Carlo G.D., et al. Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides:Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity[J]. Applied Catalysis A:General,2008, 347(1):81-88
    [122]Wang K., Qian L., Zhang L., et al. Simultaneous removal of NOx and soot particulates over La0.7Ag0.3MnO3 perovskite oxide catalysts[J]. Catalysis Today,2010,158 (3-4): 423-426
    [123]黄惠忠.固体催化剂的研究方法-第九章表面分析方法[J].石油化工,2001,30(4):325-339
    [124]Kim K.H., Ihm S.K. Characteristics of titania supported copper oxide catalysts for wet air oxidation of phenol[J]. Journal of Hazardous Materials,2007,146 (3):610-616
    [125]Xiao T.C., Ji S.F., Wang H. T., et al. Methane combustion over supported cobalt catalysts[J]. Journal of Molecular Catalysis A,2001,175 (1-2):111-123
    [126]Li X., Zhang C.B., He H., et al. Catalytic decomposition of N2O over CeO2 promoted CO3O4 spinel catalyst[J].Applied Catalysis B:Environmental,2007,75 (3-4):167-174
    [127]Liotta L.F., Carlo G.D. Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4/CeO2 interaction and catalytic activity[J]. Applied Catalysis B:Environmental,2006,66 (3-4):217-227
    [128]Papavasiliou J., Avgouropoulos G., Ioannides T. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts[J]. Journal of Catalysis,2007,251 (1): 7-20
    [129]Alvarez-Galvan M.C., O'Shea V.A., Fierro J.L.G., et al. Alumina-supported manganese-and manganese-palladium oxide catalysts for VOCs combustion[J]. Catalysis Communications,2003,4 (5):223-228
    [130]Hong W.J., Iwamoto S., Hosokawa S., et al. Effect of Mn content on physical properties of CeOx-MnOy support and BaO-CeOx-MnOy, catalysts for direct NO decomposition[J]. Journal of Catalysis,2011,277 (2):208-216
    [131]Luo J.Y., Meng M., Li X., et al. Mesoporous Co3O4-CeO2 and Pd/Co3O4-Ce02 catalysts:Synthesis, characterization and mechanistic studyof their catalytic properties for low-temperature CO oxidation[J]. Journal of Catalysis,2008,254 (2):310-324
    [132]Zhao Z.K., Jin R.H., Bao T. Mesoporous ceria-zirconia supported cobalt oxide catalysts for CO preferentialoxidation reaction in excess H2[J]. Applied Catalysis B: Environmental,2011,110 (3-4):154-163
    [133]Levasseur B., Kaliaguine S. Effects of iron and cerium in La1-yCeyCo1-xFexO3 perovskites as catalysts for VOC oxidation[J]. Applied Catalysis B:Environmental, 2009,88 (3-4):305-314
    [134]Pearson R G., Hard and soft acids and bases[J]. Journal of the American Chemical Society,1963,85 (22):3533-3539
    [135]Woodward S. HSAB matching and mismatching in selective catalysis and synthesis[J]. Tetrahedron,2002,58 (7):1017-1050
    [136]Alfarra A., Frackowiakb E. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons [J]. Applied Surface Science,2004,228 (1-4): 84-92
    [137]Putz M.V., Russo N., Sicilia E. On the Applicability of the HSAB Principle through the Use of Improved Computational Schemes for Chemical Hardness Evaluation[J]. Journal of Computational Chemistry,2004,25 (7):994-1003
    [138]甄开吉,王国甲,毕颖丽,等.催化作用基础[M].北京:科学出版社,2005:76-79
    [139]Tseng T.K., Chu H. The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst[J]. The Science of the Total Environment,2001,275 (1-3):83-93
    [140]Spivey J.J., Agarwal S.K., David T.E. Kinetics of the catalytic destruction of cyanogen chloride[J]. Applied Catalysis B:Environmental,1995,5 (4):389-403
    [141]Vannice M. A. An analysis of the Mars-van Krevelen rate expression[J]. Catalysis Today,2007,123 (1-4):18-22
    [142]Vu V.H., Belkouch J., Dris A.O., et al. Catalytic oxidation of volatile organic compounds on manganese and copper oxides supported on titania[J]. AICHE Journal, 2008,54 (6):1585-1591
    [143]Buciuman F.C., Patcas F., Hahn T. A spillover approach to oxidation catalysis over copper and manganese mixed oxides[J]. Chemical Engineering and Processing,1999, 38(4-6):563-569
    [144]Morales M.R., Barbero B.P., Cadus L.E. Evaluation and characterization of Mn-Cu mixed oxide catalysts for ethanol total oxidation:Influence of copper content[J]. Fuel, 2008,87(7):1177-1186
    [145]Moretti E., Lenarda M., Storaro L. Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina[J]. Applied Catalysis B:Environmental,2007,72 (1-2):149-156
    [146]Allen G.C., Harris S.J., Jutson J.A., et al. A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy[J]. Applied Surface Science,1989,37(1):111-134
    [147]Porta P., Moretti G., Musicanti M., et al. Copper-manganese mixed oxides:formation, characterization and reactivity under different conditions[J]. Solid State Ionics,1993, 63 (5):257-267
    [148]Yu M.X., Li Z., Xia Q.B., et al. Desorption activation energy of dibenzothiophene on the activated carbons modified by different metal salt solutions[J]. Chemical Engineering Journal,2007,132 (1-3):233-239
    [149]Ribeiro M.F., Silva J.M., Brimaud S., et al. Improvement of toluene catalytic combustion by addition of cesium in copper exchanged zeolites[J]. Applied Catalysis B: Environmental,2007,70 (1-4):384-392
    [150]Dula R., Janik R., Machej T., et al. Mn-containing catalytic materials for the total combustion of toluene:The role of Mn localisation in the structure of LDH precursor[J]. Catalysis Today,2007,119 (1-4):327-331
    [151]Angel G.D., Padilla J.M., Cuauhtemoc I., et al. Toluene combustion on y-Al2OrCeO2 catalysts prepared from boehmite and cerium nitrate [J]. Journal of Molecular Catalysis A:Chemical,2008,281 (1-2):173-178
    [152]Chen H.Y., Abdelhamid S., Alain A. Composition-activity effects of Mn-Ce-O composites onphenol catalytic wet oxidation[J]. Applied Catalysis B:Environmental, 2001,32(3):195-204
    [153]Arena F., Trunfio G., Negro J., et al. Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel "Redox-Precipitation" route[J]. Chemistry of Materials,2007,19 (9):2269-2276
    [154]Delimaris D., Ioannides T.. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B:Environmental,2008,84 (1-2):303-312
    [155]Wu Y.S., Zhang Y.X., Liu M., et al. Complete catalytic oxidation of o-xylene over Mn-Ce oxides prepared using a redox-precipitation method[J]. Catalysis Today,2010, 153 (3-4):170-175
    [156]Daniela T., Alessandro T., Carla d.L., et al. Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria-zirconia solid solutions[J]. Catalysis Today,1999,47 (1-4): 133-140
    [157]Wang X.Y., Kang Q., Li D., et al. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Applied Catalysis B:Environmental,2009,86 (3-4):166-175
    [158]Tang Q.H., Zhao P.Z., Gong X.N., et al. Copper-manganese oxide catalysts supported on alumina:Physicochemical features and catalytic performances in the aerobic oxidation of benzyl alcohol[J]. Applied Catalysis A:General,2010,389 (1-2):101-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700