活性层优化及电极界面修饰对聚合物电池性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机聚合物太阳电池具有重量轻、成本低、与湿法成膜的大面积制备技术相兼容以及可制成柔性、特殊形状器件等优点。通过设计和合成新型聚合物半导体材料,可以很容易地实现对器件光伏性能的调控。基于上述这些独特的优点,聚合物太阳电池受到了国内外研究小组的广泛关注,成为近年来太阳能电池技术最热门的研究领域之一。
     目前文献报道的小面积聚合物太阳电池的能量转化效率(PCE)已超过10%,达到了商业化生产的要求,聚合物太阳电池也因此最有希望成为下一代商业化的太阳能电池产品之一。目前聚合物太阳电池的研究主要集中在多功能新型聚合物材料的开发和对器件结构设计、性能的优化等方面。本论文针对目前聚合物太阳电池存在的问题,把握聚合物电池的重点研究方向,依托本实验室的研究基础,以器件的性能优化为切入点展开对聚合物电池的研究,从两个方面对聚合物太阳电池进行了分步优化:一是电池体相异质结活性层的优化,二是活性层与电极之间界面的修饰和优化。在优化活性层特性的基础上,进行活性层与电极之间界面的修饰和优化,期望达到电池性能优化效果的叠加。
     本论文的主要研究内容和成果如下:
     第一,在室温范围、空气中、无热退火的条件下,制备了基于P3HT:PCBM活性层体系的高性能聚合物太阳电池。研究了旋涂转速、旋涂时间和室内温度三者对活性层溶剂挥发速率的影响。研究发现通过调节室温、旋涂的转速和时间可以控制活性层溶剂挥发的速率,从而实现活性层材料的自组装功能。活性层自组装功能的实现,使得P3HT的有序结晶度提高,空穴载流子迁移率提升,从而平衡了活性层中载流子的传输,改善了电池的填充因子(FF)和短路电流密度(Jsc)。在室温、空气中、无热退火的条件下,优化的基于P3HT:PCBM的电池效率达到4.71%,接近国际报道水平(4-5%)。由于此电池制备条件不需要加热退火,与柔性衬底相兼容,基于此工艺制备的柔性聚合物电池的效率达到4.00%。由于在室温范围内可以控制溶剂挥发速率,实现活性层的自组装功能,采用与卷对卷(roll to roll)兼容的浸渍涂布(dip coating)的工艺,亦实现了高性能聚合物电池的制备。
     第二,在优化电池活性层的基础上,分别选取了不同的TCOs(FTO、IWO、AZO等)作为电极材料应用到聚合物电池中,通过电极与活性层之间的界面修饰和优化,实验结果表明这些TCOs完全可以取代ITO,而不会降低器件的性能。通过实验详细分析了TCO的电学、光学特性、表面形貌和功函数对电池性能参数的影响,结果显示TCO的电学特性和表面形貌对电池的FF和Jsc有一定的影响,而电池的Voc与选择使用的TCO电极种类影响很小。这些研究成果表明在降低电池成本的同时还为电池的电极选择提供了更大的灵活性。
     第三,在研究了电极材料对聚合物电池性能参数影响的基础上,借鉴无机硅基薄膜电池陷光结构的理念,将具有陷光作用的绒面电极取代平面电极应用到聚合物电池中,增强了聚合物电池对太阳光谱的吸收和利用。通过绒面电极表面处理和结构优化,获得了良好的绒面电极与活性层的界面接触,保证了在提升电池Jsc的同时不牺牲电池的FF和Voc。与平面电极电池相比,绒面电极电池的Js增加了10%,PCE提升了8%。研究还发现采用“U”型表面形貌的绒面电极比“V”型绒面电极更能获得良好的聚合物电池性能。电池的反射光谱和外量子效率测试均表明,绒面陷光电极能显著提高电池在陷光波段的吸收和利用效率。
     第四,由于电极修饰层的特性对聚合物电池的性能起着至关重要的作用,研究了PEDOT:PSS掺杂不同浓度的乙二醇(EG)和二甲基亚砜(DMSO)对PEDOT:PSS薄膜光电特性和形貌的影响,以及掺杂改性后的PEDOT:PSS薄膜作为电池的修饰层对聚合物太阳电池性能的影响。实验结果表明:PEDOT:PSS中掺入溶剂EG和DMSO均能提高薄膜的电导率,当掺杂浓度为10wt%时,薄膜的电导率比未掺杂时分别提高了约2个和3个数量级。EG和DMSO掺杂PEDOT:PSS后,薄膜的透过率几乎没有发生变化,但薄膜的表面粗糙度增加。将掺杂后的PEDOT:PSS薄膜作为修饰层应用到聚合物电池中,发现高电导率的PEDOT:PSS降低了器件的串联电阻(Rs),增加了器件的Jsc,但掺杂后的PEDOT:PSS薄膜粗糙度的增加也影响到了电池的FF。实验结果显示:当PEDOT:PSS掺杂EG和DMSO的浓度为10wt%时,器件的Rs最小,PCE分别达到4.34%和4.45%,器件效率比未掺杂时分别提高了29%和30%。
     第五,选择了ZnO作为电极界面修饰层,制备了反型结构的聚合物太阳电池,避免了由于使用具有腐蚀性和亲水性的PEDOT:PSS带来的器件性能的衰退,提高了聚合物电池的稳定性。利用水浴法制备了ZnO纳米柱阵列,并研究了不同ZnO纳米形貌作为界面修饰层对反型结构电池性能的影响。研究发现稀疏ZnO纳米柱阵列有利于电子的收集和传输,能显著提高电池的性能。利用金属有机化学气相沉积法(MOCVD)制备了厚度系列和掺杂系列ZnO薄膜,研究了不同厚度和不同导电性ZnO薄膜作为界面修饰层对电池性能的影响。实验发现ZnO薄膜在一定厚度下,适当提高其电导性可以改善电池的性能。与普通结构的电池相比,利用ZnO作为界面修饰层制备的反型结构电池,器件的稳定性显著提高。
Polymer solar cells (PSCs) with light-weight, compatible with low-cost andlarge-area of wet-film manufacturing technology, and can be made flexible, specialshape of the device. Furthermore, through molecular design and synthesis of novelsemiconductor, device performance can be easily improved. Based on these aboveunique advantages, PSCs have been attracted much attentions of the research teamsat home and abroad, and have thus become one of the most popular fields of study.
     Nowadays, power conversion efficiency (PCE) over10%of PSC with a smallarea has been reported in the literature, achieving the requirements of thecommercial production, has thus become one of the most promising next-generationsolar cell products. So far, research on PSC is mainly concentrated in thedevelopment of versatile new polymer materials, structure design, and deviceperformance optimization. In this thesis, based on our laboratory conditions, weaddress to optimize the device performance in order to solve the existed problems ofPSCs and grasp the research direction of PSCs. The optimization of PSCs wasperformed by a step-by-step process. The first process is to optimize the bulkheterojunction active layer of PSCs; the second process is to optimize the interfacebetween the active layer and the electrode. The first step is the foundation of thesecond step, which expects to achieve the perfect optimization of the deviceperformance. Our research will offer the effective way to further enhance theperformance of PSCs in the future. The main contents and results of this thesis are asfollows:
     First, high performance and free-thermal annealing PSCs were fabricated basedon P3HT:PCBM active layer at room temperature in air conditions. Throughadjusting the speed and time of the spin-coating process, and room temperatureduring the solvent evaporation of the active layer, the rate of solvent evaporation wascontrolled, and the self-assembly function of the active layer material can beachieved. Self-assembly function of the active layer makes the ordered degree of crystallinity of P3HT and improved the hole carrier mobility, which balances thecarrier transport in the anctive layer. This improved the fill factor (FF) andshort-circuit current density (Jsc) of PSCs. The optimization of P3HT:PCBM deviceperformance is close to the international reported level (4-5%), and its specificparameters were as follows: open circuit voltage (Voc)=0.61V, FF=0.71, Jsc=10.87mA/cm2and PCE=4.71%. Since this process does not require heating annealing, theefficiency of flexible PSCs achieved4.06%. In view of the adjusted solventevaporation rate by room temperature, high-efficiency PSCs were also fabricatedusing dip coating process which is compatible with roll to roll technique.
     Second, the current expensive ITO was replaced by alternative transparentconductive film (TCO), the aim is to reduce the device cost and provide moreflexibility to the choice of electrodes. A series of different TCOs (FTO, IWO, AZO,etc.) as the electrode material is applied in PSCs. The results demonstrated that theTCOs can completely replace the ITO and does not reduce the device performancethrough modification and optimization of the interface between the electrode and theactive layer. The influence of electrical, optical properties, surface morphology andwork function of different TCOs on device performance parameters was analyzed. Itwas found that the electrical properties and surface morphology of TCO have acertain impact on the device FF and Jsc, while the device Vocis independent of thechoice of electrodes.
     Third, the textured electrode with the light-trapping effect was introduced intoPSCs, which replaces the planar electrodes in PSCs in order to strengthen theabsorption of the solar spectrum. The excellent interface contact between theelectrode and the active layer was achieved by rational optimization of the texturedelectrode surface, which ensures the increased Jscand keeps the device FF and Voc.Compared with the planar electrode cell, Jscand PCE of the textured cell enhancedby10%and8%, respectively. The study also showed that the "U" shaped texturedelectrode is more suitable than the "V" shaped textured electrode for application inPSCs. The tests of the reflection spectra and external quantum efficiency (EQE) ofPSCs demonstrate that the light-trapping electrode could significantly increase thelight absorption and utilization.
     Fourth, after PEDOT:PSS doped with different concentrations of EG andDMSO, the conductivity, transmittance and morphology of doped PEDOT: PSS filmwere investigated. The influence of the doped PEDOT:PSS film as the anodemodification layer on the device performance of PSCs was researched. When thedoping concentration of EG and DMSO was10wt%, the electrical conductivities ofthe film were increased about two and three orders of magnitude, respectively,compared with the undoped. The transmittance of the EG and DMSO-dopedPEDOT:PSS did not change, but the film surface roughness was increased. Theenhanced conductivity of the doped PEDOT:PSS film reduced the device seriesresistance (Rs), resulting in increased the device Jsc, but the doped PEDOT:PSS filmwith increased roughness also affected the device FF. The experimental resultsshowed that when the doping concentration of EG was10wt%, the device with thelowest Rsshowed a PCE of4.34%which enhacend by29%than the undoped. Whenthe doping concentration DMSO was10wt%, the device with the lowest Rsshoweda PCE of4.45%which enhacend by30%than the undoped.
     Fifth, the inverted structure of PSCs was fabricated by selecting the modifiedlayer of ZnO to optimize the electrode interface, which avoids the use of corrosiveand hydrophilic PEDOT:PSS resulting in the recession of the device performance.The ZnO nanorods arrays were prepared by water bath, and were applied in invertedPSCs. The impact of the different ZnO nano-morphology as the interfacemodification layer on the device performance was investigated. The study found thatthe sparse ZnO nano-pillar array was helpful for electronic collection and transport,thereforce, can significantly improve the device performance. Thickness series anddoping series of ZnO thin films were prepared by metal organic chemical vapormethod (MOCVD), and were applied in PSCs as the interface modification layer. Itwas found that an appropriate increase in the ZnO conductivity can improve thedevice performance at a fixed ZnO film thickness. Compared with the generalstructure, the stability of the inverted device useing ZnO as an interface modificationlayer significantly inproved.
引文
[1] D. Kearns, M. Calvin, Photovoltaic effect and photoconductivity in laminated organicsystems. J. Chem. Phys.,1958,29:950-951
    [2] C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett.,1986,48:183-185
    [3] N.S. Sariciftci, L. Smilowitz, A.J. Heeger, et al. Photoinduced electron transfer from aconducting polymer to buckminsterfullerene. Science,1992,258(5087):1474-1476
    [4] G. Yu, J. Gao, J.C. Hummelen, et al. Polymer photovoltaic cells: enhanced efficiencies via anetwork of internal donor-acceptor heterojunctions. Science,1995,270(5243):1789-1791
    [5] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, et al.2.5%efficient organic plastic solar cells.Appl. Phys. Lett.,2001,78(6):841-843
    [6] F. Padinger, R.S. Rittberger, N.S. Sariciftci. Effects of postproduction treatment on plasticsolar cells. Adv. Funct. Mater.,2003,13:85-88
    [7] W. Ma, C.Y. Yang, X. Gong, et al. Thermally stable, efficient polymer solar cells withnanoscale control of the interpenetrating network morphology. Adv. Funct. Mater.,2005,15:1617-1622
    [8] G. Li, V. Shrotriya, J.S. Huang, et al. High-efficiency solution processable polymerphotovoltaic cells by self-organization of polymer blends. Nature Mater.,2005,4(11):864-868
    [9] J.Y. Kim, K. Lee, N.E. Coates, et al. Efficient tandem polymer solar cells fabricated byall-solution processing.Science,2007,317:222-225
    [10] H.-Y. Chen, J. Hou, S. Zhang, et al.Polymer solar cells with enhanced open-circuit voltageand efficiency.Nature Photonics,2009,3:649-653
    [11] Y. Liang, Z. Xu, J. Xia, et al. For the bright future-bulk heterojunction polymer solar cellswith power conversion efficiency of7.4%.Adv. Mater.,2010,22:1-4
    [12] Z. He, C. Zhong, X. Huang, et al.Simultaneous enhancement of open-circuit voltage,short-circuit current density, and fill factor in polymer solar cells.Adv. Mater.2011,23:4636-4643
    [13] L. Dou, J. You, J. Yang, et al. Tandem polymer solar cells featuring a spectrally matchedlow-bandgap polymer,2012, DOI:10.1038/NPHOTON.
    [14]http://www2.electronicproducts.com/Heliatek_achieves_new_world_record_for_organic_solar_cells_with_certified_9_8_cell_efficiency-article-newsrc01_05_dec2011-html.aspx
    [15] K.M. Coakley, B.S. Srinivasan, J.M. Ziebarth, et al. Enhanced hole mobility in regioregularpolythiophene infiltrated in straight nanopores.Advanced Functional Mateterials,2005,(15):1927-1932
    [16] A.J. Breeze, A. Salomon, D.S. Ginley, et al. Polymer-perylene dimide heterojunction solarcells. Applied Physics Letters.2002,81:3085-3087
    [17] W. Chen, H. Xiang, Z.Y. Xu., et al. Improving efficiency of organic photovoltaic cells withpentacene-doped CuPc layer. Applied Physics Letters,2007,91:191109
    [18] J. Peet, J.Y. Kim, N.E. Coates, et al. Efficiency enhancement in low-band gap polymer solarcells by processing with alkane dithiols. Nature materials,2007,6:497-500
    [19] D. Chirvase, J. Parisi, J.C. Hummelen, et al. Influence of nanomorphology on thephotovoltaic action of polymer–fullerene composites. Nanotechnology,2004,15:1317–1323
    [20] G. Li, Y. Yao, H. Yang, et al.“Solvent Annealing” Effectin Polymer Solar Cells Based OnPoly(3-hexylthiophene) and Methanofullerenes, Adv. Funct. Mater.2007,17:1636-1644
    [21] M. Granstrom, K. Petritsch, A.C. Arias, et al. Laminated fabrication of polymericphotovoltaic diodes. Nature,1998,395(6699):257-260
    [22] M. Drees,K. Premaratne,W. Graupner, et al. Creation of a gradient polymer-fullereneinterface in photovoltaic devices by thermally controlled interdiffusion.Applied PhysicsLetters,2002,81:4607
    [23] Y. Matsuo, Y. Sato, T. Niinomi, et al. Columnar Structure in Bulk Heterojunction inSolution-Processable Three-Layered p-i-n Organic Photovoltaic Devices UsingTetrabenzoporphyrin Precursor and Silylmethyl[60]fullerene. Journal of the AmericanChemical Society2009,131:16048
    [24] G. Zerza, C.J. Brabec, G. Cerullo, et al. Ultrafast charge transfer in conjugatedpolymer-fullerene composites. Synthetic Metals2001,119(1-3):637-638
    [25] V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, et al. Electron transport in amethanofullerene. Advanced Functional Materials,2003,13(1):43-46
    [26] H.W. Zhu, J.Q. Wei, K.L. Wang. et al. Applications of carbon materials in photovoltaic solarcells. Solar Energy Materials&Solar Cells,2009,93:1461–1470
    [27] R.B. Ross, C.M. Cardona, D.M. Guldi, et al. Endohedral fullerenes for organic photovoltaicdevices. Nature Materials,2009,8:208-212
    [28] Y.J. He, H.Y. Chen, J.H. Hou, et al. Indene-C60Bisadduct: a new acceptor for highperformance polymer solar cells.Journal of American Chemistry Society,2010,132:1377-1382
    [29] F.B. Kooistra,V.D. Mihailetchi, L.M. Popescu, et al. New C84derivative and its applicationin a bulk hetero-junction solar cell. Chemistry Materials,2006(18):3068-3073
    [30] J.J. Dittmer, E.A. Marseglia, R.H. Friend.Electron trapping in dye/polymer blendphotovoltaic cells.Advanced Materials2000,12(17):1270-1274
    [31] J. L. Li, F. Wu Dierschke, J. S. A. C. Grimsdale, et al. Poly(2,7-carbazole) and perylenetetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. Journal ofMaterials Chemistry,2006,16(1):96-10
    [32] T. Kietzke,H.H. Horhold, D. Neher, Efficient polymer solar cells based on M3EH-PPV.Chemistry of Materials,2005,17(26):6532-6537
    [33] M.M. Alam, S.A. Jenekhe. Efficient solar cells from layered nanostructures of donor andacceptor conjugated polymers. Chemistry of Materials,2004,16(23):4647-4656
    [34] S.C. Jain, T. Aernout, A.K. Kapoor. I–V characteristics of dark and illuminated PPV-PCBMblends solar cells. Synthetic Metals,2005,148:245-250
    [35] Sung Heum Park, Anshuman Roy, Serge Beaupre, et al. Bulk heterojunction solar cells withinternal quantum efficiency approaching100%.Nature Photonics,2009,3:297-303
    [36] J.S. Kim, Y. Lee, J.H. Lee. High-Efficiency Organic Solar Cells Based onEnd-Functional-Group-Modified Poly(3-hexylthiophene). Advanced Materials,2010,22:1355-1360
    [37] S. Alem, J. Gao, G. Wantz. Photovoltaic response of synunetric sandwich polymer cells withidentical electrodes.Journal of Applied Physics,2009,106(4):4410-4505
    [38] Woon-Hyuk Baek, Mijung Choi, Tae-Sik Yoon. Use of fluorine-doped tin oxide instead ofindium tin oxide in highly efficient air-fabricated inverted polymer solar cells. AppliedPhysics Letters,2010,96:133506
    [39] K. Schulze, B. Maennig, Y. Tomita, et al. Organic solar cells on indium tin oxide andaluminum doped zinc oxide anodes, Appl. Phys. Lett.2007,91:073521
    [40] Z. Hu, J. Zhang, X. Chen, et al. Performance of electron beam deposited tungsten dopedindium oxide films as anodes in organic solar cells. Solar Energy Materials&Solar Cells,2011,03(020)
    [41] Y.S. Jung, Y.W. Choi, H.C. Lee, et al. Effects of thermal treatment on the electrical andoptical properties of silver-based indium tin oxide/metal/indium tin oxide structures. ThinSolid Films,2003,440:278-284
    [42] D.R. Sahu, S.Y. Lin, J.L. Huang. ZnO/Ag/ZnO multilayer films for the application of a verylow resistance transparent electrode. Applied Surface Science.2006,252(20):7509-7514
    [43] Y.M. Hu, C.W. Lin, J.C.A Huang. Dependences of the Al thickness and annealingtemperature on the structural, optical and electrical properties in ZnO/Al multilayers. ThinSolid Films.2006,497(1-2):130-134
    [44] S.Y. Kim,K. Hong,K. Kim, et al. Increase of quantum efficiency in organic light emittingdiodes with Mg-Al alloy cathode and RhO2-coated ITO anode.Electron Material Letters,2008(4):63-66
    [45] C.J. Brabec, S.E. Shaheen, C. Winder, el at. Effect of LiF/metal electrodes on theperformance of plastic solar cells. Applied Physies Letters,2002,80:1288-1290
    [46] S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, el at.2.5%efficient organic Plastic solar cells.2001,78:841-843
    [47] H. Kim, M. Shin, J. Park, et al. Effect of long time annealing and incident light intensity onthe performance of polymer:fullerene solar cells, IEEE Transparent. Nanotechnology,2010,9:400-406
    [48] D.R. Sahu, S.Y. Lin, J. L. Huang. ZnO/Ag/ZnO multilayer films for the application of a verylow resistance transparent electrode.Applied Surface Science,2006,252(20):7509-7514.
    [49] Y.M. Hu, C.W. Lin, J.C. Huang, et al. Dependences of the Al thickness and annealingtemperature on the structural,optical and electrical properties in ZnO/Al multilayers.Thinsolid films,2006,497(1-2):130-134
    [50] C.J. Brabec, A. Cravino, J.C. Hummelen, Origin of the Open Circuit Voltage of Plastic SolarCells. Adv. Funct. Mater.,2001,11:374
    [51] D. Gupta, M. Bag, K.S. Narayan. Correlating reduced fill factor in polymer solar cells tocontact effects. Appl. Phys. Lett.,2008,92:093301
    [52] M.O. Reese, M.S. White, S.E. Shaheen. Optimal negative electrodes forpoly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester bulk heterojunctionphotovoltaic devices. Appl. Phys. Lett.,2008,92:053307
    [53] G.E. Jabbour, B. Kippelen, N. Peyghambarian, et al. Aluminum based cathode structure forenhanced electron injection in electroluminescent organic devices. Appl. Phys. Lett.,1998,73:1185
    [54] J. Lee, Y. Park, T. Zyung, et al.Tris-(8-hydroxyquinoline)aluminum-based organiclight-emitting devices with Al/CaF2cathode:Performance enhancement and interfaceelectronic structures. Appl. Phys. Lett.,2002,80:3123
    [55] J. Lee, Y. Park, L.M. Do, et al. High efficiency organic light-emitting devices with Al/NaFcathode. Appl. Phys. Lett.,2003,82:173
    [56] J.Y. Kim, S.H. Kim, A.J. Heeger, et al. New Architecture for High-Efficiency PolymerPhotovoltaic Cells. Adv. Mater.,2006,18:572
    [57] J.H. Kim, Y.H. Sung, H.H. Lee, et al.Thin pentacene interlayer for polymerbulk-heterojunction solar cell. Appl. Phys. Lett.,2008,93:143305
    [58] H. Gommans, B. Verreet, J. Genoe, et al. On the Role of Bathocuproine in OrganicPhotovoltaic Cells. Adv. Funct. Mater.,2008,18:3686–3691
    [59] J.S. Kim, J.H. Park, K. Cho, et al. Control of the electrode work function and active layermorphology via surface modification of indium tin oxide for high efficiency organicphotovoltaics. Appl. Phys. Lett.,2007,91:112111
    [60] H.L. Yip, S.K. Hau, A.K.Y. Jen, et al. High performance ambient processed invertedpolymer solar cells through interfacial modification with a fullerene self-assembledmonolayer. Appl. Phys. Lett.,2008,92:193313
    [61] F.L Zhang., M. Ceder, O. Inganas. Enhancing the photovoltage of polymer solar cells byusing a modified cathode. Adv. Mater.,2007,19:1835
    [62] J. Luo, H.B. Wu, Y. Cao, et al. Enhanced open-circuit voltage in polymer solar cells. Appl.Phys. Lett.,2009,95:043301
    [63] S.H. Oh, S.I. Na, D.Y. Kim, et al. Water-Soluble Polyfluorenes as an Interfacial LayerLeading to Cathode-Independent High Performance of Organic Solar Cells. Adv.Funct.Mater,2010,20:1977–1983
    [64] F.L. Zhang, O. Inganas, M.R. Andersson,et al. Influence of buffer layers on the performanceof polymer solar cells. Appl. Phys. Lett.,2004,84:3096
    [65] K.W. Wong, H.L. Yip, C.C. Chang, et al. Blocking reactions between indium-tin oxide andpoly(3,4-ethylene dioxythiophene):poly(styrene sulphonate)with a self-assembly monolayer.Appl.Phys.Lett.,2002,80:2788
    [66] V. Shrotriya, G. Li, Y. Yang, et al. Transition metal oxides as the buffer layer for polymerphotovoltaic cells. Appl. Phys. Lett.,2006,88:073508
    [67] D.W. Zhao, X.W. Sun, D.L. Kwong, et al. Efficient tandem organic solar cells with anAl/MoO3intermediate layer. Appl. Phys.Lett.,2008,93:083305
    [68] M.D. Irwin, D.B. Buchholz, T.J. Marks, et al. p-Type semiconducting nickel oxide as anefficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc.Natl. Acad. Sci. U.S.A.,2008,105:2783
    [69] S.Y. Park, H.R. Kim, J.W. Kang, et al. Organic solar cells employing magnetron sputteredp-type nickel oxide thin film astheanodebufferlayer. Solar Energy Materials&Solar Cells,2010,9:42332–2336
    [70] Y. Yang, A.J. Heeger. A new architecture for polymer transistors. Appl. Phys. Lett.,1994,64:1245
    [71] J. Jang, J. Ha, K. Kim. Organic light-emitting diode with polyaniline-poly(styrenesulfonate)as a hole injection layer. Thin Solid Films,2008,516:3152
    [72] S.S. Li, K.H. Tu, M. Chhowalla, et al. Solution-Processable Graphene Oxide as an EfficientHole Transport Layer in Polymer Solar Cells. ACS NANO,2010,4:3169–3174
    [73] C.J. Ko, Y.K. Lin, C.W. Chu, et al. Modified buffer layers for polymer photovoltaic devices.Appl. Phys. Lett.,2007,90:063509-063511
    [74] Y. Zhou, F. Zhang, K. Tvingstedt, et al. Investigation on polymer anode design for flexiblepolymersolar cells. Appllied Physics Letters,2008,92:233308-233310
    [75] K. Norrman, A. Ghanbari-Siahkali, N.B. Larsen, Studies of spin-coated polymer films,Annu. Rep. Prog. Chem. Sect. C,2005,101:174–201
    [76] P. Schilinsky, C. Waldauf, C.J. Brabec. Performance analysis of printed bulk heterojunctionsolar cells. Adv. Funct. Mater,2006,16:1669–1672
    [77] F.C. Krebs, H. Spanggaard, T. Kj r, et al. Large area plastic solar cell modules. Mater. Sci.Eng. B,2007,138:106–111.
    [78] M. J rgensen, O. Hagemann, J. Alstrup, F.C. Krebs, Thermo-cleavable solvents for printingconjugated polymers: application in polymer solar cells, Sol. Energy Mater. Sol. Cells,2009,93:413–421
    [79] F.C. Krebs, M. J rgensen, K. Norrman, et al. A complete process for production of flexiblelarge area polymer solar cells entirely using screen printing—first public demonstration, Sol.Energy Mater. Sol. Cells,2009,93:422–441
    [80] S.E. Shaheen, R. Radspinner, N. Peyghambarian, et al. Fabrication of bulk heterojunctionplastic solar cells by screen printing. Appl. Phys. Lett.,2001,79:2996–2998
    [81] F.C. Krebs, J. Alstrup, H. Spanggaard, et al. Production of large-area polymer solar cells byindustrial silk screen printing, lifetime considerations and lamination withpolyethyleneterephthalate, Sol. Energy Mater. Sol. Cells,2004,83:293–300
    [82] C.N. Hoth, S.A. Choulis, P. Schilinsky, et al. High photovoltaic performance of inkjetprinted polymer:fullerene blends, Adv. Mater.2007,19:3973–3978
    [83] T. Aernouts, T. Aleksandrov, C. Girotto, et al. Polymer based organic solar cells using ink-jetprinted active layers. Appl. Phys. Lett.,2008,92:033306-033308
    [84] K.X. Steirer, M.O. Reese, B. Rupert, et al. Ultrasonic spray deposition for production oforganic solar cells, Sol. Energy Mater. Sol. Cells,2009,93:447–453
    [85] C. Girotto, B.P. Rand, J. Genoe, P. Heremans, Exploring spray coating as a depositiontechnique for the fabrication of solution-processed solar cells, Sol. Energy Mater. Sol. Cells,2009,93:454–458
    [86] D. Vak, S. Kim, J. Jo, et al. Fabrication of organic bulk heterojunction solar cells by a spraydeposition method for low-cost power generation, Appl. Phys. Lett,2007,91:081102-081104
    [87] F.C.Krebs. Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edgecoating, slot-die, coating and screen printing, Sol.Energy Mater. Sol. Cells,2009,93:465–475
    [88] P.H. Gaskell, G.E.Innes, M.D. Savage, An experimental investigation of meniscusrollcoating, J. Fluid Mech.1998:1355:7–44
    [89] E.Cohen, E.Gutoff (Eds.). Modern Coating and Drying Technology. Wiley-VCH,1992
    [90] A.A. Tracton (Ed.), Coatings Technology Handbook, thirded, CRC Press, Boca Raton, FL,2006
    [91]J.M. Ding, A.F. Vornbrock, C. Ting, et al. Patternable polymer bulk heterojunctionphotovoltaic cells on plastic by rotogravure printing, Sol. Energy Mater. Sol. Cells,2009,93:459–464
    [92] M.A.-Ibrahim, O. Ambacher, S. Sensfuss, et al. Effects of solvent and annealing on theimproved performance of solar cells based on poly(3-hexylthiophene):Fullerene. Appl. Phys.Lett.,2005,86(20):201120
    [93] F. Zhang, K.G. Jespersen, C. Bjorstrom, et al. Influence of Solvent Mixing on theMorphology and Performance of Solar Cells Based on Polyfluorene Copolymer/FullereneBlends. Advanced Functional Materials,2006,16:667-674
    [94] K.C. Kim, J. H. Park, O.K. Park. New approach for nanoscale morphology of Polymer solacells. Solar Energy Materials&Solar Cells,2008,92(10):1188-119
    [95] J. Peet, J.Y. Kim, N.E. Coates, et al. Efficiency enhancement in low-bandgap polymer solarcells by processing with alkane dithiols. Nature Materials,2007,6:497
    [96] X. Yang, J.K.J.van Duren, R.J. Janssen, et al. Morphology and Thermal Stability of theActive Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices.Macromolecules,2004,37:2151-2158
    [97]於黄忠,彭俊彪,周晓明.不同比例的MEH-PPV与PCBM共混体系光电池性能研究,2008,57(06):38982-38988
    [98] X.N. Yang, J. Loos, S.C Veenstra, et al. Nanoscale Morphology of High-PerformancePolymer Solar Cells. Nano Lett.,2005,5:579
    [99] H. Kim, W.W. So, S.J. Moon, et al. The importance of Post-annealing proeess in the deviceperformanee of Poly(3-hexylthiophene):Methanofullerene polymer solar cells. Solar EnergyMaterials&Solar Cells,2007,91(7):581-587
    [100] Y. Zhao, Z. Xie,Y. Qu, et al. Solvent-vapor treatment induced performance enhancement ofpoly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells treatmentinduced performance, Appl. Phys. Lett.2007,90:043504
    [101] H. Flügge, H. Schmidt, T. Riedl, et al Microwave annealing of polymer solar cells withvarious transparent anode materials, Appl. Phys. Lett.2010,97:123306
    [102] Z. Wu, T. Song, Y. Jin, et al. High performance solar cell based on ultra-thinpoly(3-hexylthiophene):Fullerene film without thermal and solvent annealing, Appl. Phys.Lett.2011,99:143306
    [103]Y. Kim, S. Cook, S.M. Tuladhar, et al. A strong regioregularity effect in self-organizingconjugated polymer films and high effieieney polythiophene:fullerene solar cells. NatureMaterials,2006,5:197-203
    [104] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, et al. Cathode dependence of theopen-circuit voltage of polymer:fullerene bulk heterojunction solar cells. J. Appl. Lett.,2003,94:6849
    [105] M.C. Scharber, D. Mühlbacher, C.J. Brabec, et al. Design Rules for Donors inBulk-Heterojunction Solar Cells—Towards10%Energy-Conversion Efficiency. Adv. Mater.,2006,18:789-794
    [106] J.J.B. Smith, L. Goris, J. Nelson, et al. Formation of a Ground-State Charge-TransComplex in Polyfluorene/[6,6]-Phenyl-C61Butyric Acid Methyl Ester(PCBM) Blend Filmsand Its Role in the Function of Polymer/PCBM Solar Cells. Adv. Funct. Mater.,2007,17:451-457
    [107] M.A. Loi, S. Toffanin, M. Scharber, et al.Charge Transfer Excitons in BulkHeterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative. Adv. Funct. Mater.,2007,17:2111-2116
    [108] K. Vandewal, A. Gadisa, J.V. Manca, et al. The Relation Between Open-Circuit Voltageand the Onset of Photocurrent Generation by Charge-Transfer Absorption inPolymer:Fullerene Bulk Heterojunction Solar Cells. Adv. Funct. Mater.,2008,18:206
    [109] A. Kumar, S. Sista, Y. Yang. Dipole induced anomalous S-shape I-V curves in polymersolar cells. J. Appl. Phys.,2009,105:094512
    [110] K. Lee, J.Y. Kim, A.J. Heeger, et al. Air-Stable Polymer Electronic Devices. Adv. Mater.,2007,19:2445
    [111] C. Waldauf, M. Morana, C.J. Brabec, et al. Highly efficient inverted organic photovoltaicsusing solution based titanium oxide as electron selective contact. Appl. Phys. Lett.,2006,89:233517
    [112] A. Hayakawa, O. Yoshikawa, S. Yoshikawa, et al. High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOxhole blocking layer. Appl.Phys.Lett.,2007,90:163517
    [113] R. Steim, r F.R. Kogle, C.B. Brabec. Interface materials for organic solar cells. J. Mater.Chem.,2010,20:2499-2512
    [114] J.Y. Kim, S.H. Kim, A.J. Heeger, et al. New architecture for high-efficiency polymerphotovoltaic cells using solution-based titanium oxide as an optical spacer. AdvancedMaterials,2006,18:572-576
    [115] C.F. Zhang, S.W. Tong, C.X. Zhu, et al. Efficient multilayer organic solar cells using theoptical interference peak. Appl. Phys. Lett.,2008,93:043307
    [116] F.L. Zhang, M. Svensson, M.R. Andersson, et al. Influence of buffer layers on theperformance of polymer solar cells. Appl. Phys. Lett.,2004,84:3906-3908
    [117] X. Bulliard, G.I. Soo, K. Cho, et al. Enhanced Performance in Polymer Solar Cells bySurface Energy Control. Adv. Funct. Mater.,2010,20:4381–4387
    [118] M.R.-Reyes, K. Kim, D.L. Carroll, et al. High-efficiency photovoltaic devices based onannealed poly(3-hexylthiophene) and1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61blends,Appl. Phys. Lett.,2005,87:083506
    [119] C.-Y. Nam, D. Su, C.T. Black, et al. High-performance air-processed polymer–fullerenebulk heterojunction solar cells, Adv. Funct. Mater.2009:19,3552-3559.
    [120] C. Lin, E.-Y. Lin, F.-Y. Tsai, et al. Enhanced thermal stability and efficiency of polymerbulk-heterojunction solar cells by low-temperature drying of the active layer, Adv. Funct.Mater.2010,20:834-839
    [121] H. Hoppe, N. S. Sariciftci. Morphology of polymer/fullerene bulk heterojunction solar cells,J. Mater. Chem.2006,16:45-61
    [122] K.M. Coakley, M.D. McGehee. Conjugated polymer photovoltaic cells, Chem. Mater.2004,16:4533-4542
    [123] P.W.M. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov, Device physics ofpolymer:fullerene bulk heterojunction solar cells, Adv. Mater.2007,19:1551–1566
    [124] G. Dennler, M.C. Scharber, C.J. Brabec. Polymer-fullerene bulk-heterojunction solar cells,Adv. Mater.2009,21:1323-1338
    [125] A.J. Moulé, K. Meerholz. Morphology control in solution-processed bulk-heterojunctionsolar cell mixtures, Adv. Funct. Mater.2009,19:3028–3036
    [126] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells,Chem. Rev.2007,107:1324-1338
    [127] G. Li, V. Shrotriya, Y. Yao, J. Huang, and Y. Yang, Manipulating regioregularpoly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester blends—route towardshigh efficiency polymer solar cells, J. Mater. Chem.2007,17:3126-3140
    [128] A.R. Campbell, J.M. Hodgkiss, S. Westenhoff, et al. Low-Temperature Control ofNanoscale Morphology for High Performance Polymer Photovoltaics, Nano Lett.,2008,8(11):3942-3947
    [129] S.Wu, J. Li, Q. Tai, et al. Investigation of High-Performance Air-ProcessedPoly(3-hexylthiophene)/Methanofullerene Bulk-Heterojunction Solar Cells, J. Phys. Chem. C2010,114:21873–21877
    [130] V.D. Mihailetchi, H. X. Xie, B. de Boer, et al. Origin of the enhanced performance inpoly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester solar cells upon slowdrying of the active layer, Appl. Phys. Lett.2006,89:012107
    [131] G. Li, V. Shrotriya, Y. Yao, et al. Investigation of annealing effects and film thicknessdependence of polymer solar cells based on poly(3-hexylthiophene), Journal of AppliedPhysics,2005,98:043704–043708
    [132] T. Wang, A.D.F. Dunbar, P.A. Staniec, et al. The development of nanoscale morphology inpolymer:fullerene photovoltaic blends during solvent casting, Soft Matter,2010,6:4128–4134
    [133] C. Melzer, E.J. Koop, V.D. Mihailetchi, P.W.M. Blom, Hole transport in poly(phenylenevinylene)/methanofullerene bulk-heterojunction solar cells, Adv. Funct. Mater.2004,14:865-870
    [134] D. Vak, S. Kim, J. Jo, et al. Fabrication of organic bulk heterojunction solar cells by a spraydeposition method for low-cost power generation, Appl. Phys. Lett.2007,91:081102
    [135] J.H. Lee, D.W. Kim, H. Jang, et al. Enhanced Solar-Cell Efficiency in Bulk-HeterojunctionPolymer Systems Obtained by Nanoimprinting with Commercially Available AAOMembrane Filters, Small,2009,5:2139
    [136] C.F. Shih, K.T. Hung, J.W. Wu, et al. Efficiency improvement of blendedpoly(3-hexylthiophene) and1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61solar cells bynanoimprinting, Appl. Phys. Lett.2009,94:143505
    [137] C.J. Brabec, U. Scherf, V. Dyakonov, Organic Photovoltaics, Wiley VCH, Weinheim,Germany2008
    [138] C.J. Brabec, J. Durrant, MRS Bull. Solution-Processed Organic Solar Cells,2008,33:670-675
    [139] R.J.O.M. Hoofman, M.P. de Haas, L. D. A. Siebbeles, et al. Highly mobile electrons andholes on isolated chains of the semiconducting polymer poly(phenylene vinylene), Nature,1998,362:54-56
    [140] C. Waldauf, M.C. Scharber, P. Schilinsky,et al. Highly efficient inverted organicphotovoltaics using solution based titanium oxide as electron selective contact, J. Appl. Phys.2006,99:104503-104505
    [141] H. Tang, G. Lu, L. Li, et al. Precise construction of PCBM aggregates for polymer solarcells via multi-step controlled solvent vapor annealing, Journal of Materials Chemistry,2010,20:683–688
    [142] M.C. Quiles, T. Ferenczi, T. Agostinelli, et al. Morphology evolution via self-organizationand lateral and vertical diffusion in polymer:fullerene solar cell blends, Nature Materials,2008,7:158–164
    [143] R. Dabirian, X. Feng, L. Ortolani, et al. Micron-sized [6,6]-phenyl C61butyric acid methylester crystals grown by dip coating in solvent vapour atmosphere: interfaces for organicphotovoltaics, Physical Chemistry Chemical Physics,2010,12:4473–4480
    [144] F. Yang and S.R. Forrest. Organic solar cells using transparent SnO2-F anodes. Adv. Mater.2006,18:2018–2022
    [145] H. Kim, G.P. Kushto, R.C.Y. Auyeung, et al. Optimization of F-doped SnO2electrodes fororganic photovoltaic devices, Appl. Phys. A,2008,93:521–526
    [146] F.Z. Dahou, L. Cattin, J. Garnier, et al. Influence of anode roughness and buffer layer natureon organic solar cells performance, Thin Solid Films,2010,518:6117-6122
    [147]任世荣.电子束蒸发技术生长高迁移率IWO(In2O3:WO3)薄膜的研究:[硕士学位论文].天津:河北工业大学,2011
    [148] J.C. Bernede, Y. Berredjem, L. Cattin, et al. Improvement of organic solar cellperformances using a zinc oxide anode coated by an ultrathin metallic layer, Appl. Phys. Lett.2008,92:083304
    [149] G.B. Murdoch, S. Hinds, E.H. Sargent, et al. Aluminum doped zinc oxide for organicphotovoltaics, Appl. Phys. Lett.2009,94:213301
    [150] J.-H. Park, K.-J. Ahn, K.-I. Park, et al. An Al-doped ZnO electrode grown by highlyefficient cylindrical rotating magnetron sputtering for low cost organic photovoltaics, J. Phys.D: Appl. Phys.2010,43:115101-115106.
    [151] N. Sun, G. Fang, P. Qin, et al. Bulk heterojunction solar cells with NiO hole transportinglayer based on AZO anode,2010,94(12):2328–2331
    [152] J. Owen, M.S. Son, K.-H. Yoo, et al. Organic photovoltaic devices with Ga-doped ZnOelectrode, Appl. Phys. Lett.2007,90:033512
    [153]焦宝臣,超声喷雾热分解法制备ZnO透明导电薄膜的研究:[博士学位论文].天津:南开大学,2011
    [154] J. Xue, B.P. Rand, S. Uchida, et al. Asymmetric tandem organic photovoltaic cells withhybrid planar-mixed molecular heterojunctions, Applied Physics Letters,2004,85(23):5757-5759
    [155] J. Müller, B. Rech, J. Springer, et al. TCO and light trapping in silicon thin film solar cells,Solar Energy,2004,77:917–930
    [156] K.S. Nalwa, and S. Chaudhary, Design of light-trapping microscale-textured surfaces forefficient organic solar cells, OPTICS EXPRESS,2010,18(5):5168-5178
    [157] M. Niggemann, M. Riede, A. Gombert, et al. Light trapping in organic solar cells, Phys.Stat. Sol.(a)2008,205(12):2862–2874
    [158] M. Niggemann, M. Glatthaar, A. Gombert, et al. Diffraction gratings and buriednano–electrodes—architectures for organic solar cells, Thin Solid Films2004(451-452):619-623
    [159] M. Niggemann, M. Glatthaar, P. Lewer, et al. Functional microprism substrate for organicsolar cells, Thin Solid Films2006:511-512,628-633
    [160] D.H. Wang, D. GeunChoi, K.J. Lee, et al. Effect of the ordered2D–dot nano–patternedanode for polymer solar cells, Organic Electronics,2010,11:285–290
    [161] K.S. Nalwa, J.M. Park, K.M. Ho, et al. On realizing higher efficiency polymer solar cellsusing a textured substrate platform, Adv. Mater.2011,23:112-116
    [162] F.Z. Dahou, L. Cattin, J. Garnier, et al. Influence of anode roughness and buffer layernature on organic solar cells performance, Thin Solid Films2010,(518):6117–6122
    [163] Y. Kim, A.M. Ballantyne, J. Nelson, et al. Effects of thermal annealing on the efficiency ofbulk-heterojunction organic photovoltaic devices, Org. Electron.2009,10:205–209
    [160] D.H.Wang, D.G. Choi, K.J. Lee, J.H. Jeong, S.H. Jeon, O.O. Park, J.H. Park, Effect of theordered2D–dot nano–patterned anode for polymer solar cells, Organic Electronics2010,11:285–290
    [164] P.C.Yu, C.H. Chang, M.S. Su, M.H. Hsu, and K.H. Wei, Embedded indium–tin–oxidenanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells, Appl.Phys. Lett.2010,96:153307
    [165] T. Aernouts, W. Geens, J. Poortmans, et al. Extraction of bulk and contact components ofthe series resistance in organic bulk donor-acceptor-heterojunetions. Thin Solid Films.2002,403-404:297-301.
    [166] B. Mazhari, An improved solar cell circuit model for organic solar cells, Sol. EnergyMater&Sol. Cells.2006,90:1021-1033
    [167] http://www.clevios.com
    [168] Y.-S. Hsiao, W.-T. Whang, C.-P. Chen, et al. High-conductivitypoly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for use in ITO-free polymersolar cells, J. Mater. Chem.2008,18:5948
    [169] Y. Xia, H. Zhang, and J. Ouyang, Highly conductive PEDOT:PSS films prepared through atreatment with zwitterions and their application in polymer photovoltaic cells, J. Mater. Chem.2010,20:9740
    [170] Y. Xia, and J. Ouyang, PEDOT:PSS films with significantly enhanced conductivitiesinduced by preferential salvation with cosolvents and their application in polymerphotovoltaic cells, J. Mater. Chem.2011,21:4927
    [171] Y.H. Kim, C. Sachse, M. L. Machala, et al. Highly conductive PEDOT:PSS electrode withoptimized solvent and thermal post-treatment for ITO-rree organic solar cells, Adv. Funct.Mater.2011,21:1076
    [172] J. Ouyang, C.-W. Chu, F.-C. Chen, et al. High-conductivitypoly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymeroptoelectronic devices, Adv. Funct. Mater.2005,15:203-208.
    [173] S.-I. Na, G. Wang, S.-S. Kim, et al. Evolution of nanomorphology and anisotropicconductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solarcells, J. Mater. Chem.2009,19:9045
    [174] H. Yan, H. Okuzaki. Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPSand STEM/AFM studies, Synth. Met.2009,159:2225–2228
    [175] J. Ouyanga, Q. Xua, C.-W. Chu, et al. On the mechanism of conductivity enhancement inpoly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film through solvent treatment,Polymer2004,45:8443–8450
    [176] J.Y. Kim, J.H. Jung, D.E. Lee, et al. Enhancement of electrical conductivity ofpoly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synth.Met.2002,126:311–316
    [177] J. Huang, P.F. Miller, J.S. Wilson, et al. Investigation of the effects of doping andpost-deposition treatments on the conductivity, morphology, and work function ofpoly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films, Adv. Funct. Mater.2005,15:290–296
    [178] O.P. Dimitrieva, D.A. Grinko, Y.V. Noskov, et al. PSS:PEDOT films-Effect of organicsolvent additives and annealing on the film conductivity, Synth. Met.2009,159:2237–2239
    [179] Y. Kim, A.M. Ballantyne, J. Nelson, et al. Effects of thickness and thermal annealing of thePEDOT:PSS layer on the performance of polymer solar cells, Org. Electron.2009,10:205–209
    [180] H.K. Lee, J.-K. Kim, O.O. Park, Effects of UV light-irradiated buffer layer on theperformance of polymer solar cells, Org. Electron.2009,10:1641–1644
    [181] T. Nagata, S. Oha, T. Chikyow, et al. Effect of UV–ozone treatment on electrical propertiesof PEDOT:PSS film, Org. Electron.2011,12:279–284
    [182] H. Kim, J. Park, S. Lee, et al. Effect of strong base addition to hole collecting buffer layerin polymer solar cells, Sol. Energy Mater. Sol. Cells2011,95:349–351
    [183] C.-J. Ko, Y.-K. Lin, F.-C. Chen, et al. Modified buffer layers for polymer photovoltaicdevices, Appl. Phys. Lett.2007,90:063509-063511
    [184] T. Xiao, W. Cui, J. Anderegg, J. Shinar, R. Shinar, Simple routes for improvingpolythiophene:fullerene-based organic solar cells, Org. Electron.2011,12:257-262
    [185] F. Louwet, L. Groenendaal, J. Dhaen, et al. PEDOT/PSS: synthesis, characterization,properties and applications. Synthetic Metals,2003,135-136:115-117
    [186] L.A.A. Pettersson, S. Ghosh, O. Inganas, Optical anisotropy in thin films of Poly(3,4-ethylenedioxythiophene-poly(4-styrene sulfonate), Organic Electronics,2002,3(3-4):143-148
    [187] S.K.M. J nssona, J. Birgerson, X. Crispin, et al. The effects of solvents on the morphologyand sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid(PEDOT-PSS) films, Synth. Met.2003,139:1-10
    [188] T.J. Wang, Y.Q. Qi, J.K. Xu, et al. Effects of poly(ethylene glycol) on electricalconductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) film. Appl SurfSci.2005,250:188
    [189] J. Huang, P.F. Miller, J.S. Wilson, et al. Investigation of the effects of doping andpost-deposition treatments on the conductivity, morphology, and work function ofpoly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films, Adv. Funct. Mater.2005,15:290–296
    [190] Y. Zhou, F. Zhang, K. Tvingstedt, et al. Investigation on polymer anode design for flexiblepolymer solar cells, Appl. Phys. Lett.2008,92:233308
    [191] T. makino, M. Inada, k. yoshida, et al. Structural and optical properties of siliconnanoparticles prepared by pulsed laser ablation in hydrogen background gas, AppliedPhysics Letters,2004,79:1391-1393
    [192] C.-Y. Liu, Z.C. Holman, U.R. Kortshagen, et al. Hybrid solar cells from P3HT and siliconnanocrystals, Nano Lett.,2009,9(1):449–452
    [193] V. Svrcek, T.Yamanari, Y. Shibata, et al. Tailoring of hybrid silicon nanocrystal-based bulkheterojunction photovoltaic properties upon nanocrystal laser processing in liquid medium,Acta Materialia,2011,59:764-773
    [194] W.-H. Baek, I. Seo, T.-S. Yoon, et al. Hybrid inverted bulk heterojunction solar cells withnanoimprinted TiO2nanopores. Solar Energy Materials&Solar Cells,2009,93:1587-1591
    [195] Lin Chen, Xiaowei Pan, Dingxiang Zheng, et al. Hybrid solar cells based on P3HT andSi@MWCNT nanocomposite, Nanotechnology,2010,21:345201
    [196] Chien-Hung Lin, Surojit Chattopadhyay, Chia-Wen Hsu. Enhanced Charge Separation bySieve-Layer Mediation in High-Efficiency Inorganic-Organic Solar Cells, AdvancedMaterials,2009,21:759-763
    [197] V. Gowrishankar, S. R. Scully, M.D. McGehee. Exciton splitting and carrier transportacross the amorphous-silicon/polymer solar cell interface, Applied Physics Letters,2006,89:252102
    [198] Yue Zhao, Guoxiong Yuan, Philippe Roche. A calorimetric study of the phase transitionsin poly(3-hexylthiophene), Polymer,1995,36(11):2211-2214
    [199] Y.C. Huang, Y.C.Liao. Study of the effect of annealing process on the performance ofP3HT/PCBM photovoltaic devices using scanning-probe microscopy, Solar EnergyMaterials&Solar Cells,2009,93:888-892
    [200] C.Y. Kwong, A.B. Djuri i, P. C. Chui, et al. Nanocomposite solar cells-influence ofparticle concentration, size and shape on the device performance, Organic Photovoltaics,2004,5520:176-183.
    [201] W.U. Huynh, J.J. Dittmer, W.C. Libby, et al. Controlling the Morphology ofNanocrystal-Polymer Composites for Solar Cells. Advanced Functional Materials,2003,13(1):73-79
    [202] C.-Y. Liu, Z.C. Holman, U.R. Kortshagen. et al., Optimization of Si NC/P3HT HybridSolar Cells. Advanced Functional Materials,2010,20:2157-2164
    [203] M.O. Reese, M.S. White, G. Rumbles, et al. Optimal negative electrodes forpoly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester bulk heterojunctionphotovoltaic devices, Appl. Phys. Lett.2008,92:053307-053309
    [204] B. Paci, A. Generosi, V. Rossi Albertini, P. Perfetti, R. de Bettignies, C. Sentein,Time-resolved morphological study of organic thin film solar cells based oncalcium/aluminium cathode material, Chem. Phys. Lett.2008,461:77-81
    [205] M. Jorgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol.Energy Mater. Sol. Cells92(2008)686-714.
    [206] M.P. de Jong, L.J. van IJzendoorn, M.J.A. de Voigt, Stability of the interface betweenindium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymerlight-emitting diodes, Appl. Phys. Lett.2000,77:2255-2257
    [207] K. Kawano, R. Pacios, D. Poplavskyy, et al. Degradation of organic solar cells due to airexposure, Sol. Energy Mater. Sol. Cells2006,90:3520-3530
    [208] Erik Ahlswede, Jonas Hanisch, and Michael Powalla.Comparative study of the influence ofLiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells.AppliedPhysics Letters2007,90:163504.
    [209] H.H. Liao, L.M. Chen, Z. Xu, et al. Highly efficient inverted polymer solar cell by lowtemperature annealing of Cs2CO3interlayer, Appl. Phys. Lett.2008,92:173303-173305
    [210] D.W. Zhao, P. Liu, X.W. Sun, et al. An inverted organic solar cell with an ultrathin Caelectron-transporting layer and MoO3hole-transporting layer, Appl. Phys. Lett.2009,95:153304-153306
    [211] C.Y. Jiang, X.W. Sun, D.W. Zhao, et al. Low work function metal modified ITO as cathodefor inverted polymer solar cells, Sol. Energy Mater. Sol. Cells2010,94:1618-1621
    [212] C. Tao, S.P. Ruan, X.D. Zhang, et al. Performance improvement of inverted polymer solarcells with different top electrodes by introducing a MoO3buffer layer, Appl. Phys. Lett.2008,93:193307-193309
    [213] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, Efficient inverted polymer solar cells,Appl. Phys. Lett.88(2006)253503-253505
    [214] M.S. White, D.C. Olson, S.E. Shaheen, et al. Inverted bulk-heterojunction organicphotovoltaic device using a solution-derived ZnO underlayer, Appl. Phys. Lett.2006,89:143517
    [215] A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, et al. An inverted organic solar cell employing asol-gel derived ZnO electron selective layer and thermal evaporated MoO3hole selectivelayer. Appl. Phys. Lett.2008,93:221107
    [216] K. Takanezawa, K. Tajima, K. Hashimoto. Efficiency enhancement of polymerphotovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadiumoxide buffer layer. Appl. Phys. Lett.2008,93:063308
    [217] P.A. van Hal, M.M. Wienk, J.M. Kroon, et al. Photoinduced electron transfer andphotovoltaic response of a MDMO-PPV:TiO2bulk-heterojunction, Adv. Mater.2003,15:118-121
    [218] A.C. Arango, L.R. Johnson, V.N. Bliznyuk, Z. Schlesinger, S.A. Carter, H.-H. H rhold,Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion. Adv.Mater.2000,12:1689-1692
    [219] K. Takanezawa, K. Tajima, K. Hashimoto, Efficiency enhancement of polymerphotovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadiumoxide buffer layer, Appl. Phys. Lett.2008,93:063308-063310
    [220] X. Ju, W. Feng, K. Varutt, et al. Fabrication of oriented ZnO nanopillar self-assemblies andtheir application for photovoltaic devices, Nanotechnology2008,19:435706-435711
    [221] C.-Y. Chou, J.-S. Huang, C.-H. Wu, et al. Lengthening the polymer solidification time toimprove the performance of polymer/ZnO nanorod hybrid solar cells, Sol. Energy Mater. Sol.Cells2009,93:1608-1612
    [222] J.-S. Huang, C.-Y. Chou, M.-Y. Liu, et al. Solution-processed vanadium oxide as an anodeinterlayer for inverted polymer solar cells hybridized with ZnO nanorods, Org. Electron.2009,10:1060-1065
    [223] F.C. Krebs, Y. Thomann, R. Thomann, et al. A simple nanostructured polymer/ZnO hybridsolar cell-preparation and operation in air, Nanotechnology2008,19:424013-424024
    [224] D.C. Olson, J. Piris, R.T. Collins, et al. Hybrid photovoltaic devices of polymer and ZnOnanofiber composites, Thin Solid Films,2006,496:26-29
    [225] D.C. Olson, Y.J. Lee, M.S. White, et al. Effect of polymer processing on the performanceof poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices, J. Phys. Chem. C2007,111:16640-16645
    [226] D.C. Olson, S.E. Shaheen, R.T. Collins, et al. The effect of atmosphere and ZnOmorphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiberphotovoltaic devices, J. Phys. Chem. C2007,111:16670-16678
    [227] D.C. Olson, Y.J. Lee, M.S. White, et al. Effect of ZnO processing on the photovoltage ofZnO/poly(3-hexylthiophene) solar cells, J. Phys. Chem. C2008,112:9544-9547
    [228] S. Sakohara, L.D. Tickanen, M.A. Anderson, Luminescence properties of thin zinc oxidemembranes prepared by the sol-gel technique: change in visible luminescence during firing,J. Phys. Chem.1992,96:11086-11091
    [229] S. Fujihara, C. Sasaki, T. Kimura, Crystallization behavior and origin of c-axis orientationin sol-gel-derived ZnO:Li thin films on glass substrates, Appl. Surf. Sci.2001,180:341-350
    [230]张路宁.聚合物/ZnO杂化太阳能电池的制备:[硕士毕业论文].北京:北京交通大学,2011
    [231]刘岩.氧化锌在染料敏化太阳能电池上的应用:[硕士毕业论文].天津:河北工业大学,2011
    [232] E.M. Kaidashev, M.Lorenz, H. von Wenckstern, et al. High electron mobility of epitaxialZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Appl. Phys.Lett.2003,82:3901-3903
    [233] H. You, Y.F. Dai, Z.Q. Zhang, et al. Improved performances of organic light-emittingdiodes with metal oxide as anode buffer, J. Appl. Phys.2007,101:026105-026107
    [234]樊正海. MOCVD-ZnO中间层对非晶硅/微晶硅叠层太阳电池性能的影响:[硕士学位论文].天津:南开大学,2011
    [235] R. Steim, S.A. Choulis, P. Schilinsky, et al. Interface modification for highly efficientorganic photovoltaics, Appl. Phys. Lett.2008,92,093303
    [236]陈新亮. MOCVD技术生长的ZnO薄膜及其在太阳电池上的应用研究:[博士学位论文].天津:南开大学,2007
    [237] J. Bailat, D. Dominé, R. Schlüchter, et al. High-efficiency p-i-n microcrystalline andmicromorph thin film silicon solar cells deposited on LPCVD ZnO coated glass substrates.4th World Conference on Photovoltaic Energy Conversion,2006, New York
    [238] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ: Wiley,2007,Ch.1
    [239] S. W. Tong, C. F. Zhang, C. Y. Jiang, et al. Improvement in the hole collection of polymersolar cells by utilizing gold nanoparticle buffer layer, Chem. Phys. Lett.,2008,453:73–76
    [240] C. Waldauf, M. C. Scharber, P. Schilinsky, et al. Physics of organic bulk heterojunctiondevices for photovoltaic applications, J. Appl. Phys.,2006,99:104503-10450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700