染料敏化太阳能电池磷化物/碳对电极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSSCs)以成本低、易制作和相对高的光电转换效率而成为最有前途的光伏装置。作为DSSCs的重要组成部分,对电极主要起着从外电路收集电子以及催化I_3~-还原为I-的反应。传统的Pt对电极具有优越的电催化活性、高的导电性和较好的稳定性。但世界上的铂资源缺乏,价格昂贵,难适合于规模化应用。因此,研究新型廉价、非铂并且高效的DSSCs对电极材料非常重要。论文设计如下:
     第一,通过水热法,制备出纯相Ni_2P与Ni_(12)P_5,研究了体系压力,反应物浓度和反应时间对反应产物相结构的影响。研究结果表明,增加体系压力、延长反应时间和降低反应物浓度,产物倾向于生成Ni_(12)P_5。反之,则得到Ni_2P。在此基础上,制备出Ni_(12)P_5-graphene复合物,并将该复合材料作为DSSCs对电极研究了其光电性能和电化学作用机制。结果显示, Ni_(12)P_5-graphene复合物中Ni_(12)P_5嵌入到石墨烯片层中,构成“三明治”结构,这种特殊的结构利于电解液的扩散,这一点可从交流阻抗谱中较小的扩散阻抗得以证实。以Ni_(12)P_5-graphene复合物作为DSSCs对电极时,Ni_(12)P_5的高催化活性、石墨烯的高导电性与电解液的高效扩散性三者形成协同效应,使电池的光电转化效率提高至5.7%,在相同条件下,与Pt对电极所组装DSSCs的效率(6.1%)相近。同时,循环伏安测试结果显示,所合成的材料具有长期的循环稳定性,循环20周后,循环伏安曲线中的氧化峰与还原峰的峰电流密度基本保持稳定。
     第二,采用化学镀法制备了三种类型基于碳纳米管(CNTs)负载的复合材料(Ni-P/CNTs、Ni/Ni_3P/CNTs和Ni_3N/Ni_3P/CNTs),并将其作为DSSCs对电极,研究了其光电性能和电化学作用机制。研究结果显示,三种复合材料对I_3~-的还原反应均具有较好的电催化活性。其中,Ni-P/CNTs、Ni/Ni_3P/CNT两种复合材料中因为含有致密且导电性较好的金属镍,而使材料的电荷转移电阻较小。在氮化后的Ni_3N/Ni_3P/CNTs材料中,在碳纳米管表面形成颗粒状的Ni_3N与Ni_3P,为电解液的扩散提供较大空隙,加快了电解质的扩散。因此,Ni_3N/Ni_3P/CNTs材料对电极具有较小的吸附阻抗和扩散阻抗,且氮化镍较金属镍具有较高的电催化活性。综合对比显示,三种材料中Ni_3N/Ni_3P/CNTs对电极的DSSCs光电性能最优,其光电转化效率达6.3%,在相同条件下,接近于由Pt对电极组装的DSSC的效率(6.8%)。
     第三,采用浸渍-固相合成和化学镀-水热两种合成方法制备了Ni_2P/CNTs复合物,并将其作为DSSCs对电极,研究了其电化学作用机制和光电性能。研究发现,浸渍-固相合成法制备的Ni_2P/CNTs复合物负载量较小,且Ni_2P分散并不是很均匀,光电转化效率仅有5.5%。而化学镀-溶剂热合成的材料中Ni_2P纳米晶(约为10-20nm)在碳纳米管上负载均匀,没有出现纯相Ni_2P的团聚现象,表现出最低的电荷转移电阻、较低的吸附阻抗和扩散阻抗。因此,采用该对电极的DSSCs表现出较优的光电性能,光电转化效率达6.7%。
     总之,为研究低成本、非铂和高效的DSSCs对电极材料,本工作制备了几类磷化物/碳复合材料,深入研究了这些材料的构效关系。研究显示,这些材料集较高的电催化活性,良好的导电性和快速的离子扩散性于一体,展示了良好的光电特性。该研究结果为探索研究新型对电极材料提供了新思路。
Dye-sensitized solar cells (DSSCs) are promising photovoltaic devices due totheir low-cost, easy fabrication and relatively high energy conversion efficiency. Asan important component of DSSC, counter electrodes collect electrons from externalcircuit and catalyze the reduction of triiodide to iodide. The conventional Pt counterelectrode has shown superior electrocatalytic activity, high electrical conductivity andgood stability. However, the large-scale manufacturing of DSSCs with Pt counterelectrode may be limited because Pt is one of the scarcest and most expensivematerials available in the world. Therefore, it is highly significant to develop newlow-cost and Pt-free counter electrode materials with a relatively high conversionefficiency for DSSCs.
     Firstly, in this work, individual Ni_2P and Ni_(12)P_5are prepared, respectively, bythe hydrothermal reaction of the red phosphorus and nickel chloride. The effect ofpressure, concentration, and the reaction time on the phase stuctrure of obtainedproducts are analyzed in detail. It is demonstrated that Ni_(12)P_5can be obtained withincreasing the pressure, extending the reaction time or reducing the concentrationof the reactants. On the contrary, Ni_2P phase is formed. Based on above-mentionedresults, the nickel phosphide-embedded graphene composite is subsequentlyprepared and used as counter electrodes for DSSCs. Photovoltaic performance ofthe solar cells assembled by different counter electrode materials andelectrochemical activity are investigated. It is shown that Ni_(12)P_5particles areembedded into the graphene layers to form sandwich-like composite. With suchunique structure, the Ni_(12)P_5-graphene composite shows the optimizedelectrochemical feature, including the lower charge-transfer resistance anddiffusion impedance due to synergistic efect of the high electrocatalytic activityof Ni_(12)P_5nanocrystallites, high electrical conductivity of the graphene, and fastmass-transfer process of the electrolyte species in the graphene. Therefore, DSSCswith the Ni_(12)P_5-graphene counter-electrode presents comparable performance(5.7%) to the device with conventional Pt counter electrode (6.1%) under thesame condition. In addition, after20consecutive cycles scan, curve shape and peak current density remain constant in cyclic voltammograms (CVs), displayingthe excellent electrochemical stability of the Ni_(12)P_5-graphene counter-electrode inthe I-/I_3~-system.
     Secondly, based on carbon nanotubes (CNTs) as a support, the three composites(Ni-P/CNTs, Ni/Ni_3P/CNTs, and Ni_3N/Ni_3P/CNTs) are synthesized by electrolessplating method and investigated as counte electrodes for DSSC with an emphasis onthe electrocatalytic reduction of triiodide to iodide. It is demonstrated that the threecomposites show superior electrocatalytic activity to the reduction of triiodide toiodide. Among all composites, both Ni-P/CNTs and Ni/Ni_3P/CNTs counter electrodesshow a lower charge-transfer resistance due to the dense coverage of the metal nickelor Ni-P alloy with good electrical conductivity on the surface of CNTs. In the nitridedsample, a lower absorption impedance and diffusion impedance are measured due tothe formation of porous Ni_3N and Ni_3P nanocrystallites on the surface of CNTs,which is beneficial to the electrolyte diffusion in the counter electrode. Meanwhile,nickel nitride shows a higher electrocatalytic activity than the metal nickel. Therefore,after comparison, Ni_3N/Ni_3P/CNTs composite presents the best electrocatalyticactivity among the three counter electrode materials, and there are optimalphotovoltaic parameters in the DSSC assembled from the Ni_3N/Ni_3P/CNTs counterelectrode. In particular, the conversion efficiency of6.3%for DSSC withNi_3N/Ni_3P/CNTs is obtained, very close to the value of DSSC cell (6.8%) usingPt/FTO counter electrode under the same condition.
     Finally, Ni_2P/CNTs composites are assembled by CNTs and Ni_2P throughimpregmation-solid phase and electroless plating-hydrothermal methods, respectively.Subsequently, the electrochemical and photovoltaic performance of Ni_2P/CNTscomposites as counter electrodes for DSSCs are investigated. The obtained resultsshow that the loaded amount of Ni_2P nanocrystallites on the surface of CNTs is lowerin Ni_2P/CNTs composite materials prepared by impregmation-solid phase method. Inaddition, the dispersion of Ni_2P nanocrystallites on the surface of CNTs is notuniform, leading to5.5%conversion efciency of the DSSC with Ni_2P/CNTs ascounter electrode. In the case of Ni_2P/CNTs composite prepared by electrolessplating-hydrothermal methods, Ni_2P nanocrystallites (about10-20nm) were well dispersed on the surface on CNTs. No agglomeration of Ni_2P nanocrystallites isobserved. Therefore, the Ni_2P/CNTs counter electrode exhibites a low charge-transferresistance, adsorption impedance, and diffusion impedance. Correspondingly, theDSSC with this composite as counter electrode shows the better photovoltaicperformance with high conversion efciency of6.7%.
     In summary, to explore low-cost, Pt-free and highly efficient counterelectrode materials for DSSCs, several nickel phosphides/carbon composites areprepared, in which the electrocatalytic activity, electrical conductivity, andelectrolyte diffusion are integrated. The structure-activity relationship of thesecomposites are further investigated. Based on the results obtained in this work,some new research ideas can be proposed for exploring novel counter electrodematerials and improving photovoaltic performance of DSSCs.
引文
[1] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [2] Chapin D M, Fuller C S, Pearson G L. A new silicon P-N junction photocell for convertingsolar radiation into electrical power. J. Appl. Phys.,1954,25(5):676~677
    [3] Reynolds D C, Leies G, Antes L L, et al. Photovoltaic effect in cadmium sulfide. Phys. Rev.,1954,96(2):533~534
    [4] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables. Progress inPhotovoltaics: Research and Applications,2009,17(1):85~94
    [5] O’Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature,1991,353(6346):737~740
    [6] Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)~based redox electrolyte exceed12perce efficiency. Science,2011,334:629~634.
    [7] Hagfeldt A, Boschloo G, Sun L C, et al. Dye-sensitized solar cells. Chem. Rev.,2010,110(11):6595~6663
    [8] Moser J E, Wolf M, Lenzmann F, et al. Photoinduced charge injection from vibronically hotexcited molecules of a dye sensitizer into acceptor states of wide-bandgap oxidesemiconductors. Z Phys. Chem.,1999,212:85~92
    [9] Burfeindt B, Zimmermann C, Ramakrishna S, et al. Femto second electron transfer from theexcited state of chemically anchored chromophores into the empty conduction band ofnanocrystalline spong-like TiO2films. Z Phys. Chem.,1999,212:67~75
    [10] Tachibana Y, Moser J E, Gr tzel M, et al. Subpicosecond Interfacial Charge Separation inDye-Sensitized Nanocrystalline Titanium Dioxide Films. J. Phys. Chem.,1996,100:20056~20062
    [11] Wang Y Q, Asbury J B and Lian T. Ultrafast excited-state dynamics of Re(CO)3Cl(dcbpy)in solution and on nanocrystalline TiO2and ZrO2thin films. J. Phys. Chem. A,2000,104:4291~4299
    [12] Nelson J, Chandler R E. Random walk models of charge transfer and transport in dyesensitized systems. Coord. Chem. Rev.,2004,248:1181~1194
    [13] Wang P, Wenger B, Humphry-Baker R, Moser J E, et al. Charge separation and efficientlight energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J.Am. Chem. Soc.,2005,127:6850~6856
    [14] Huang S Y, Schlichthorl G, Nozik A J, et al. Charge recombination in dye-Sensitizednanocrystalline TiO2solar cells. J. Phys. Chem. B,1997,101:2576~2582
    [15] Hagfeldt A, Gr tzel M. Light-induced redox reactions in nanocrystalline systems. Chem.ReV.1995,95,49~68.
    [16] Halme J, Vahermaa P, Miettunen K, et al. Device Physics of Dye Solar. Adv. Mater.2010,22, E210~E234
    [17] Park N G, Schlichtho1rl G, J. van de Lagemaat, Dye sensitized TiO2solar cells: structuraland photoelectrochemical characterization of nanocrystalline electrodes formed from thehydrolysis of TiCl4. J. Phys. Chem. B,1999,103:3308~3314
    [18] Petra J. Cameron, Laurence M. Peter. Characterization of titanium dioxide blocking layersin dye-sensitized nanocrystalline solar cells. J. Phys. Chem. B,2003,107:14394~14400
    [19] Chen Q W, Xu D S. Large-scale, noncurling, and free-standing crystallized TiO2nanotubearrays for dye sensitized solar cells. J. Phys. Chem. C,2009,113:6310~6314
    [20] Gajjela S R, Ananthanarayanan K, Yap C, et al. Synthesis of mesoporous titanium dioxideby soft template based approach: characterization and application in dye-sensitized solarcells. Energy Environ. Sci.,2010,3:838~845
    [21] Yu J G, Fan J J, Lv K. Anatase TiO2nanosheets with exposed (001) facets: improvedphotoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale,2010,2:2144~2149
    [22] Huang Q L, Zhou G, Fang L, et al. TiO2nanorod arrays grown from a mixed acid mediumfor efficient dye-sensitized solar cells. Energy Environ. Sci,2011,4:2145~2151
    [23] Jeong N C, Farha O K, Hupp J T. A convenient route to high area, nanoparticulate TiO2photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells.Langmuir,2011,27(5):1996~1999
    [24] Nakade S, Matsuda M, Kambe S. Dependence of TiO2nanoparticle preparation methodsand annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B,2002,106:10004~10010
    [25] Yamamoto Y, Kawaraya M, Segawa H, et al.10%Efficiency dye-sensitized solar cellsusing P25TiO2nanocrystalline electrode prepared by a bead-milling method. Chem. Lett.,2011,40:1220~1222
    [26] Jeong N C, Farha O K, and Hupp J T. A convenient route to high area, nanoparticulate TiO2photoelectrodes suitable for high efficiency energy conversion in dye sensitized solar cells.Langmuir,2011,27(5):1996~1999
    [27] Kondo Y, Yoshikawa H, Awaga K, et al. Preparation, photocatalytic activities, and dyesensitized solar cell performance of submicron scale TiO2hollow spheres. Langmuir,2008,24(2):547~550
    [28] Kim Y J, Lee M H, Kim H J, et al. Formation of highly efficient dye-sensitized solar cellsby hierarchical pore generation with nanoporous TiO2spheres. Adv. Mater.,2009,21:3668~3673
    [29] Zhang H M, Han Y H, Liu X L. Anatase TiO2microspheres with exposed mirror-like plane{001} facets for high performance dye-sensitized solar cells (DSSCs). Chem. Commun.,2010,46:8395~8397
    [30] Cha S I, Koo B K, Hwang K H, et al. Spray-dried and pre-sintered TiO2micro-balls forsinter-free processing of dye-sensitized solar cells. J. Mater. Chem.,2011,21:6300~6304
    [31] Wu X, Lu G Q, Wang L Z. Shell-in-shell TiO2hollow spheres synthesized by one-pothydrothermal method for dye-sensitized solar cell application. Energy Environ. Sci.,2011,4:3565~3572
    [32] Hwang D, Lee H, Jang S Y, et al. Electrospray preparation of hierarchically-structuredmesoporous TiO2spheres for use in highly efficient dye-sensitized solar cells. ACS Appl.Mater. Interfaces,2011,3,2719~2725
    [33] Yu J G, Fan J J, Lv K. Anatase TiO2nanosheets with exposed (001) facets: improvedphotoelectric conversion efficiency in dye sensitized solar cells. Nanoscale,2010,2:2144~2149
    [34] Jiu J T, Isoda S, Wang F M, et al. Dye-sensitized solar cells based on a single-crystallineTiO2nanorod Film. J. Phys. Chem. B,2006,110:2087~2092
    [35] Huang Q L, Zhou G, Fang L, et al. TiO2nanorod arrays grown from a mixed acid mediumfor efficient dye-sensitized solar cells. Energy Environ. Sci.,2011,4:2145~2151
    [36] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titaniathin-film electrode composed of a network structure of single-crystal-like TiO2nanowiresmade by the “Oriented Attachment” mechanism. J. Am. Chem. Soc.,2004,126:14943~14949
    [37] Feng X J, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2nanowirearrays grown directly on transparent conducting oxide coated glass: synthesis details andapplications. Nano. Lett.,2008,8:3781~3786
    [38] Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications fordye-sensitized solar cells. J. Electrochem. Soc.,2003,150(8): G488~G493
    [39] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2nanotube arrays indye-sensitized solar cells. Nano. Lett.,2006,6:215~218
    [40] Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and lightscattering in dye-sensitized solar sells using oriented TiO2nanotubes arrays. Nano. Lett.,2007,7:69~74
    [41] Kim D, Ghicov A, Albu S P, et al. Bamboo-type TiO2nanotubes: improved conversionefficiency in dye-sensitized solar cells. J. Am. Chem. Soc.,2008,130:16454~16455.
    [42] Jennings J R, Ghicov A, Peter L M, et al. Dye-sensitized solar cells based on oriented TiO2nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc.,2008,130:13364~13372
    [43] Srivastava D N, Chappel S, Palchik O, et al. Sonochemical synthesis of mesoporous tinoxide. Langmuir,2002,18,4160~4164
    [44] Yang M J, Ding B, Lee S. Carrier transport in dye-sensitized solar cells using singlecrystalline TiO2nanorods grown by a microwave-assisted hydrothermal reaction. J. Phys.Chem. C,2011,115:14534~14541
    [45] Barbe C J, Arendse F, Comte P, et al. Nanocrystalline TiO2electrodes for photovoltaicapplications. J. Am. Ceram. Soc.,1997,80(12):3157~3171
    [46] Zaban A, Aruna S T, Tirosh S, et al. The effect of the preparation condition of TiO2colloidson their surface structures. J. Phys. Chem. B,2000,104(17):4130~4133
    [47] Hsiao P T, Liou Y J, Teng H. Electron transport patterns in TiO2nanotube arrays baseddye-sensitized solar cells under frontside and backside illuminations. J. Phys. Chem. C,2011,115:15018~15024
    [48] Li L L, Chen Y J, Wu H P, et al. Detachment and transfer of ordered TiO2nanotube arraysfor front-illuminated dye-sensitized solar cells. Energy Environ. Sci.,2011,4:3420~3425.
    [49] Hamann T W, Jensen R A, Martinson A B F, et al. Advancing beyond current generationdye-sensitized solar cells. Energy Environ. Sci.,2008,1,66~78
    [50] Stathatos E. and Lianos P. Increase of the Efficiency of Quasi-Solid State Dye-SensitizedSolar Cells by a Synergy between Titania Nanocrystallites of Two Distinct NanoparticleSizes. Adv. Mater.2007,19:3338~3341.
    [51] Wang M, Yin X, Mao X R, et al. A new ionic liquid based quasi-solid state electrolyte fordye-sensitized solar cells J. Photochem. Photobiol. A: Chem.2008,194:20~26
    [52] Hauch A, Georg A, Diffusion in the electrolyte and charge-transfer reaction at the platinumelectrode in dye-sensitized solar cells Electrochim. Acta,2001,46:3457~3466
    [53] Namutdinova G, Sensfuss S, Schrodner M, et al. Quasi-solid state polymer electrolytes fordye-sensitized solar cells: Effect of the electrolyte components variation on the triiodide iondiffusion properties and charge-transfer resistance at platinum electrode. Solid State Ionics,2006,177:3141~3146.
    [54] Franco G, Peter L M, Ponomarev E A. Detection of inhomogeneous dye distribution in dyesensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy(IMPS). Electrochem. Commun.,1999,1:61~64.
    [55]尹艳红,许泽辉和冯磊硕等.染料敏化太阳能电池对电极的研究进展.材料导报,2009,23(5):109~112
    [56] Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cellconfigurations. Coordination Chemistry Reviews,2004,248(13~14):1421~1446
    [57] Bessho T, Constable E C, Gr tzel M. An element of surprise-efficient copper-functionalizeddye-sensitized solar cells. Chem. Commun.,2008,3717~3719
    [58] Brennan L J, Byrne M T, Bari M, et al. Carbon nanomaterials for dye-sensitized solar cellapplications: a bright future. Advanced Energy Materials,2011,1(4):472~485
    [59] Ramasamy E, Lee J W. Ferrocene-derivatized ordered mesoporous carbon as highperformance counter electrodes for dye-sensitized solar cells. Carbon,2010,48(13):3715~3720
    [60] Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cellsprepared by electrophoretic deposition. J. Mater. Chem.,2011,21:7548~7551
    [61] Jiang Q W, Li G R, Wang F, et al. Highly ordered mesoporous carbon arrays from naturalwood materials as counter electrode for dye-sensitized solar cells. Electrochem.Commun.,2010,12:924~927
    [62] Lee K S, Lee H K, Wang D H, et al. Dye-sensitized solar cells with Pt-and TCO-freecounter electrodes. Chem. Commun.,2010,12(7):924~927
    [63] Tai Q D, Chen B L, Guo F, et al. In situ prepared transparent polyaniline electrode and itsapplication in bifacial dye-sensitized solar cells. Acs Nano,2011,5(5):3795~3799.
    [64] Jeon S S, Kim C, Ko J, et al. Spherical polypyrrole nanoparticles as a highly efficientcounter electrode for dye-sensitized solar cells. J. Mater. Chem.,2011,21:8146~8151
    [65] Wang M K, Anghel A M, Marsan B. CoS supersedes Pt as efficient electrocatalyst fortriiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc.2009,131(44):15976~15977
    [66] Sun H C, Qin D, Huang S Q, et al. Dye-sensitized solar cells with NiS counter electrodeselectrodeposited by a potential reversal technique. Energy Environ. Sci.,2011,4:2630~2637
    [67] Wu M X, Lin X, Hagfeldt A, et al. Low-cost molybdenum carbide and tungsten carbidecounter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2011,123:1~6
    [68] Jang J S, Ham D J, Ramasamy E. Platinum-free tungsten carbides as an efficient counterelectrode for dye sensitized solar cells. Chem.Commun.,2010,46:8600~8602
    [69] Li G R, Song J, Pan G L, et al. Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells. Energy Environ. Sci.,2011,4:1680~1683
    [70] Jiang Q W, Li G R, Liu S, et al. Surface-nitrided nickel with bifunctional structure aslow-cost counter clectrode for dye-sensitized solar cells. J. Phys. Chem. C,2010,114(31):13397~13401
    [71] Jiang Q W, Li G R, Gao X P. Highly ordered TiN nanotube arrays as counter electrodes fordye-sensitized solar cells. Chem. Commun.,2009,6720~6722
    [72] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-costcounter electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2010,49:3653~3656
    [73] Hauch, A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinumelectrode in dye-sensitized solar cells. Electrochim Acta,2001,46:3457~3466
    [74] Papageorgiou N, Maier W F, Gr tzel M. An iodine/triiodide reduction electrocatalyst foraqueous and organic media. J Electrochem Soc,1997,144:876~884
    [75] Olsen E, Hagen G, Lindquist S. Dissolution of platinum in methoxy propionitrilecontaining LiI/I2. E. Sol. Energy Mater. Sol. Cells,2000,63:267~273
    [76] Fang X M, Ma T L, Guan G Q, et al. Effect of the thickness of the Pt film coated on acounter electrode on the performance of a dye-sensitized solar cell. J. ElectroanalyticalChemistry.2004,570:257~263
    [77] Zhou C H, Hu H, Yang Y. et al. Effect of thickness on structural, electrical, andelectrochemical properties of platinum/titanium bilayer counterelectrode. J. Appl. Phys.,2008,104:034910-1-034910-6
    [78] Yoon C H, Vittal R, Lee J W, et al. Enhanced performance of a dye-sensitized solar cellwith an electrodeposited-platinum counter electrode. Electrochimica Acta2008,53:2890~2896
    [79] Ji W W, Zhang X D, Zhao Y, et al. A new structure of counter electrode used fordye-sensitized solar cells. Phys. Status Solidi C,2010,7:3~4
    [80] Giuseppe Calogero, Pietro Calandra, Alessia Irrera, etal. A new type of transparent and lowcost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells.Energy Environ. Sci.,2011,4:1838~1844
    [81] Sun K A, Fan B H, Ouyang J Y. Nanostructured platinum films deposited by polyolreduction of a platinum precursor and their application as counter electrode ofdye-sensitized solar cells. J. Phys. Chem. C,2010,114:4237~4244
    [82] Lin C Y, Lin J Y, Lan J L, et al. Electroless platinum counter electrode for dye-sensitizedsolar cells by using self-assembly monolayer modification. Electrochemical and Solid-StateLetters,2010,13(11): D77~D79
    [83] Lee Y L, Chen C L, Chong L W, et al. A platinum counter electrode with highelectrochemical activity and high transparency for dye-sensitized solar cells. Electrochem.Commun.,2010,12:1662~1665
    [84] Kay A, Gr tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystallinetitanium dioxide and carbon power. Solar Energy Materials and Solar Cells,1996,44:99~117
    [85] Pettersson H, Gruszecki T, Bernhard R, The monolithic multicell: a tool for testing materialcomponents in dye-sensitized solar cells. Prog. PhotoVoltaics,2007,15:113~121
    [86] Murakami T N, Ito S, Wang Q, et a1. Highly efficient dye-sensitized solar cells based oncarbon black counter electrodes. J. Electrochem. Soc.,2006,153: A2255~A2261
    [87] Ramasamy E, Lee W J, Lee D Y, et a1. Nanocarbon counterelectrode for dye sensitizedsolar cells. Appl. Phys. Lett.,2007,90:173103-173106
    [88] Mei X G, Cho S J, Fan B H,et al. High-performance dye-sensitized solar cells withgel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology,2010,21:395202(9pp)
    [89] Dong P, Pint C L, Hainey M, et al. Vertically aligned single-walled carbon nanotubes aslow-cost and high electrocatalytic counter electrode for dye-sensitized solar cells. ACSAppl. Mater. Interfaces,2011,3:3157~3161
    [90] Zhang S, Ji C Y, Bian Z Q, et al. Single-wire dye-sensitized solar cells wrapped by carbonnanotube film electrodes. Nano Lett.,2011,11:3383~3387
    [91] Veerappan G, Bojan K, Rhee S W. Sub-micrometer-sized graphite as a conducting andcatalytic counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces2011,3:857~862
    [92] Huang K C, Huang J H, Wu C H, et al. Nanographite/polyaniline composite films as thecounter electrodes for dyesensitized solar cells. J. Mater. Chem.,2011,21:10384~10389.
    [93] Zhang D W, Li X D, Li H B. et al. Graphene-based counter electrode for dye-sensitizedsolar cells. Carbon,2011,49:5382~5388
    [94] Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cellsprepared by electrophoretic deposition. J. Mater. Chem.,2011,21:7548~7551
    [95] Joseph D. Roy-Mayhew, David J. Bozym, Christian Punckt, et al. Functionalized grapheneas a catalytic counter electrode in dye-sensitized solar cells. ACS Nano,2010,4(10):6203~6211
    [96] Kavan L, Yum J H, Gr tzel M. Optically transparent cathode for dye-sensitized solar Cellsbased on graphene nanoplatelets. ACS nano.2011,5:165~172
    [97] Lee K S, Lee H K, Wang D H, et al. Dye-sensitized solar cells with Pt-and TCO-freecounter electrode. Chem. Commun.,2010,46:4505~4507
    [98] Pringle J M, Armel V, MacFarlane D R. Electrodeposited PEDOT-on-plastic cathodes fordye-sensitized solar Cells. Chem. Commun.,2010,46:5367~5369
    [99] Ahmad S, Yum J H, Zhang X X, et al. Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. J. Mate.r Chem.,2010,20:1654~1658
    [100] Sun H C, Luo Y H, Zhang Y D, et al. In Situ Preparation of a Flexible Polyaniline/CarbonComposite Counter Electrode and Its Application in Dye-Sensitized Solar Cells. J. Phys.Chem. C,2010,114:11673~11679
    [101] Tai Q D, ChenB L, Guo F, et al. In situ prepared transparent polyaniline electrode and itsapplication in bifacial dye-sensitized solar cells. ACS Nano,2011,5:3795~3799
    [102] Jeon S S, Kim C, Ko J, et al. Spherical polypyrrole nanoparticles as a highly efficientcounter electrode for dye-sensitized solar cells. J. Mater. Chem,2011,21:8146~8151
    [103] Xia J B, Chena L, Yanagid S. et al. Application of polypyrrole as a counter electrode for adye-sensitized solar cell. J. Mater. Chem,2011,21:4644~4649
    [104] Wu M X, Lin X, Hagfeldt A, et al. A novel catalyst of WO2nanorod for the counterelectrode of dy-sensitized solar cells. Chem. Commun,2011,47:4535~4537
    [105] Xia J B, Yuan C C, Yanagida S. Novel counter electrode V2O5/Al for solid dye-sensitizedsolar cells. ACS Appl. Mater. Interfaces,2010,2(7):2136~2139
    [106] Chou C S, Hsiung C M, Wang C P. et al. Preparation of a counter electrode with P-type NiOand its applications in dye-sensitized solar cell. International Journal of Photoenergy.Volume2010, ID902385,9
    [107] Sun W W, Sun X H, Peng T. et al, A low cost mesoporous carbon/SnO2/TiO2nanocompositecounter electrode for dye-sensitized solar cells. J. Power Sources.2012,201:402~407
    [108] Lin J Y, Liao J H, Wei T C, et al. Honeycomb-like CoS counter electrodes for transparentdye-sensitized solar cells. Electrochemical and Solid-State Letters,2011,14(4): D41~D44
    [109] Sudhagar P, Nagarajan S, Lee Y G, et al. Synergistic catalytic effect of a composite(CoS/PEDOT:PSS) counter electrode on triiodide reduction in dye-sensitized solar cells.ACS Appl. Mater. Interfaces,2011,3:1838~1843
    [110] Xin X k, He M, Han W, et al. Low-cost copper zinc tin sulfide counter electrodes for highefficiency dye-sensitized solar cells. Angew. Chem. Int. Ed.,2011,50:11739~11742
    [111] Du Y F, Fan J Q, Zhou W H, et al. One-step synthesis of stoichiometric Cu2ZnSnSe4ascounter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, DOI:10.1021/am3000616
    [112]姜奇伟.南开大学博士论文.2010.
    [113]王凤.南开大学硕士论文.2010.
    [114] Yeh M H, Lin L Y, Lee C P, et al. A composite catalytic film of PEDOT:PSS/TiN-NPs on aflexible counter electrode substrate for a dye-sensitized solar cell. J. Mater. Chem.,2011,21:19021~19029
    [115] Kim J Y, Lee J K, Han S B, et al. Improved tri-iodide reduction reaction of Co-TMPP/C as anon-Pt counter electrode in dye-sensitized solar cells. J. Electrochem. Sci. Tech.2010,1:75~80
    [116] Wu M X, Lin X, Wang Y D, et al. Economical Pt-free catalysts for counter electrodes ofdye-sensitized solar cells. J. Am. Chem. Soc.,2012,134:3419~3428
    [117] Oyama S T,Novel catalysts for advanced hydroprocessing: transition metal phosphides.JCatal,2003,216:343~352
    [118] Alexander A M,Hargreaves J S J.Alternative catalytic materials: carbides, nitrides,phosphides and amorphous boron alloys.Chem Soc Rev,2010,39(11):4388~4401
    [119] Jiang Q W,Li G R,Gao X P.Highly ordered TiN nanotube arrays as counter electrodesfor dye-sensitized solar cells.Chem Commun,2009,44:6720~6722
    [120] Li G R,Song J,Pan G L,et. al.Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells.Energy Environ Sci,2011,4(5):1680~1683
    [121] Kaskhedikar N A,Maier J.Lithium storage ion carbon nanostructures. Adv Mater,2009,21(25):2664~2680
    [122] Pumera M.Graphene-based nanomaterials for energy storage.Energy Environ Sci,2011,4(3):668~674
    [123] Fan Z J,Yan J,Zhi L J,et al.A three-dimensional carbon nanotube/graphene sandwich andits application as electrode in supercapacitors.Adv Mater,2010,22(33):3723~3724
    [1]朱永法.纳米材料的表征与测试技术.北京:化学工业出版社,2006
    [2]王凤.南开大学硕士论文.2010
    [3]郭鹤桐,姚素薇.基础电化学及测量.北京:化学工业出版社,2008
    [4] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [5] Hagfeldt A, Gr tzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev,1995,95:49~68
    [6] Hagfeldtt A, Boschloo G, Sun L C.Dye-sensitized solar cells.Chem Rev,2010,110:6595~6663
    [1] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-costcounter-electrode material for dye-sensitized solar cells. Angew. Chem.Int. Ed.,2010,49:3653~3656
    [2] Alexander A M, Hargreaves J S J. Alternative catalytic materials: carbides, nitrides,phosphides and amorphous boron alloys. Chem. Soc. Rev.,2010,39:4388~4401
    [3] Jiang Q W, Li G R, Gao X P. Highly ordered TiN nanotube arrays as counter electrodes fordye-sensitized solar cells. Chem. Commun.,2009,44:6720~6722
    [4] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with Titanium Nitride as a low-costcounter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2010,49:3653~3656
    [5] Wu M X, Zhang Q Y, Xiao J Q, et. al. Two flexible counter electrodes based onmolybdenum and tungsten nitrides for dye-sensitized solar cells. J. Mater. Chem.,2011,21:10761~10766
    [6] Li G R, Song J, Pan G L, et. al. Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells. Energy Environ. Sci.,2011,4:1680~1683
    [7] Kaskhedikar N A, Maier J. Lithium storage ion carbon nanostructures. Adv. Mater.,2009,21:2664~2680
    [8] Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci.,2011,4:668~674
    [9] Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials. Energy Environ. Sci.,2011,4:1113~1132
    [10] Kamat P V. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett.,2011,2:242~251
    [11] Fan Z J, Yan J, Zhi L J, et al. A three-dimensional carbon nanotube/graphene sandwich andits application as electrode in supercapacitors. Adv. Mater.,2010,22:3723~3724
    [12] Muthuswamy E, Kharel P R, Lawes G, et al. Control of phase in phosphide nanoparticlesproduced by metal nanoparticle transformation: Fe2P and FeP. ACS Nano,2009,3:2383~2393
    [13] Ni Y, Jina L and Hong J. Phase-controllable synthesis of nanosized nickel phosphides andcomparison of photocatalytic degradation ability. Nanoscale,2011,3:196~200
    [14] Ni Y, Tao A, Hu G, et al. synthesis, characterization and properties of hollow nickelphosphide nanospheres. Nanotechnology,2006,17:5013~5018
    [15] Li J, Ni Y, Liana K, et al. Hydrothermal synthesis of Ni12P5hollow microspheres,characterization and photocatalytic degradation property. J. Colloid Interface Sci.,2009,332:231~236
    [16] Henkes A E, Vasquez Y, Schaak R E. Converting metalsinto phosphides: A generalstrategy for the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc.,2007,129,1896~1897
    [17] Sato K, Saito R, Oyama Y, et al. D-band Raman intensity of graphitic materials as afunction of laser energy and crystallite size. Chem. Phys. Lett.,2006,427:117~121
    [18] Subrahmanyam K S, Vivekchand S R C, Govindaraj A, et al. A study of graphenesprepared by different methods: characterization, properties and solubilization. J. Mater.Chem.,2008,18:1517~1523
    [19] Wang H L, Robinson J T, Li X L, et al. Solvothermal reduction of chemically exfoliatedgraphene sheets. J. Am. Chem. Soc.,2009,131(29):9910~9911
    [20] Fang X M, Ma T L, Guan G Q, et al. Effect of the thickness of the Pt film coated on acounter electrode on the performance of a dye-sensitized solar cell. J. Electroanal. Chem.,2004,570(2):257~263
    [21] Murakami T N, Gr tzel M. Counter electrodes for DSC: Application of functionalmaterials as catalysts. Inorganica. Chimica. Acta,2008,361(3):572~580
    [22] Halme J, Vahermaa P, Miettunen K, et al. Device physics of dye solar cells. Adv. Mater.,2010,22(35): E210~E234
    [23] Longo C, Marco A, Paoli D. Dye-sensitized solar cells: A Successful combination ofmaterials. J. Braz. Chem. Soc.,2003,14(6):889~901
    [24] Tang Y T, Pan X, Zhang C N, et al. Influence of different electrolytes on the reactionmechanism of a Triiodide/Iodide redox couple on the platinized FTO glass electrode indye-sensitized solar cells. J. Phys. Chem. C,2010,114(9):4160~4167
    [25] Han L Y, Koide N, Chiba Y, et al. Improvement of efficiency of dye-sensitized solar cellsby reduction of internal resistance. Appl. Phys. Lett.,2005,86(21):213501.
    [1]唐娟,程凯,张韧等.化学镀镍–磷的研究与应用,电镀与涂饰,2011,30:24-27
    [2] Ramasamy E, Lee W J, Lee D Y, et al. Spray coated multi-wall carbon nanotube counterelectrode for tri-iodide (I-3) reduction in dye-sensitized solar cells. Electrochem. Commun.,2008,10(7):1087~1089
    [3] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-costcounter-electrode material for dye-sensitized solar cells. Angew. Chem. Inter. Ed.,2010,49:3653~3656
    [4]阎晓琦.南开大学博士论文.2003.
    [5] Kong F Z, Zhang X B, Xiong W Q, et al. Continuous Ni-layer on multiwall carbonnanotubes by an electroless plating method. Surface and coating technology,2002,155(1):33~36
    [6]闫洪.现代化学镀镍.北京:国防工业出版社,1999
    [7] Caturla F, Molina F, Molina S M, et al. Electroless plating of graphite with copper andnickel. J. Electrochem. Soc.,1995,142(12):4084~4090
    [8] Ang L M, Hor T S A, Xu G Q, et al. Decoration of activated carbon nanotubes with copperand Nickel. Carbon,2000,38:363~372
    [9] Ramasamy E, Lee W J, Lee D Y, et al. Nanocarbon counter electrode for dye sensitized solarcells. Appl. Phys. Lett.,2007,90(17):173103
    [10] Fabregat-Santiago F, Bisquert J, Palomares E, et al. Correlation between photovoltaicperformance and impedance spectroscopy of dye-sensitized solar cells based on ionicliquids. J. Phys. Chem. C,2007,111(17):6550~6560
    [11] Halme J, Toivola M, Tolvanen A, et al. Charge transfer resistance of spray deposited andcompressed counter electrodes for dye-sensitized nanoparticle solar cells on plasticsubstrates. Sol. Energy Mater. Sol. Cells,2006,90(7-8):872~886
    [12] Fang X M, Ma T L, Akiyama M, et al. Flexible counter electrodes based on metal sheet andpolymer film for dye-sensitized solar cells. Thin Solid Films,2005,472(1-2):242~245
    [13] Miettunen K, Halme J, Toivola M, et al. Initial performance of dye solar cells on stainlesssteel substrates. J. Phys. Chem.C,2008,112(10):4011~4017
    [14] Kim S S, Nah Y C, Noh Y Y, et al. Electrodeposited Pt for cost-efficient and flexibledye-sensitized solar cells. Electrochim. Acta.,2006,51(18):3814~3819
    [15] Wang, M K, Anghel A M, Marsan B, et al. CoS supersedes Pt as efficient electrocatalyst fortriiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc.,2009,131(44):15976~15977
    [1] Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, et al. A novel method for preparingan active nickel phosphide catalyst for HDS of dibenzothiophene. J. Catal.,2009,263(1):4~15
    [2] Wang X, Clark P, Oyama T S. Synthesis, characterization, and hydrotreating activity ofseveral iron group transition metal phosphides. J. Catal.,2002,208:321~331
    [3] Chiang R K, Chiang R T. Formation of hollow Ni2P nanoparticles based on the nanoscaleKirkendall effect. Inorg. Chem.,2007,46:369~371
    [4] Henkes A E, Vasquez Y, Schaak R E. Converting metalsinto phosphides: a general strategyfor the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc.,2007,129:1896~1897
    [5] Maneeprakorn W, Nguyen C Q, Malik M A, et al. Synthesis of the Nickelselenophosphinates [Ni(Se2PR2)2](R=Pr, Bu, and Ph) and their use as single sourceprecursors for the deposition of Nickel phosphide or Nickel selenide nanoparticles. DaltonTrans.,2009,12:2103~2108
    [6] Oyama S T, Wang X, Lee Y K, et al. Active phase of Ni2P/SiO2in hydroprocessingreactions. J. Catal.,2004,221(2):263~273
    [7] Wang X J, Wan F Q, Gao Y J, et al. Synthesis of high-quality Ni2P hollow sphere via atemplate-free surfactant-assisted solvothermal route. J. Cryst. Growth,2008,310(10):2569~2574
    [8] Liu J W, Chen X Y, Shao M W, et al. Surfactant-aided solvothermal synthesis of dinickelphosphide nanocrystallites using red phosphorus as starting materials. J. Cryst. Growth,2003,252(1-3):297~301
    [9] Guan Q X, Li W, Zhang M H, et al. Alternative synthesis of bulk and supported nickelphosphide from the thermal decomposition of hypophosphites. J. Catal.,2009,263:1~3
    [10] Fabregat-Santiago F, Bisquert J, Palomares E, et al. Correlation between photovoltaicperformance and impedance spectroscopy of dye-sensitized solar cells based on ionicliquids. J. Phys. Chem. C,2007,111(17):6550~6560
    [11]黄翔,刘宗义,戴金辉等.一种磷化物的水热合成工艺.中国专利,CN101659403A200910018549.2.
    [1] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [2] Chapin D M, Fuller C S, Pearson G L. A new silicon P-N junction photocell for convertingsolar radiation into electrical power. J. Appl. Phys.,1954,25(5):676~677
    [3] Reynolds D C, Leies G, Antes L L, et al. Photovoltaic effect in cadmium sulfide. Phys. Rev.,1954,96(2):533~534
    [4] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables. Progress inPhotovoltaics: Research and Applications,2009,17(1):85~94
    [5] O’Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature,1991,353(6346):737~740
    [6] Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)~based redox electrolyte exceed12perce efficiency. Science,2011,334:629~634.
    [7] Hagfeldt A, Boschloo G, Sun L C, et al. Dye-sensitized solar cells. Chem. Rev.,2010,110(11):6595~6663
    [8] Moser J E, Wolf M, Lenzmann F, et al. Photoinduced charge injection from vibronically hotexcited molecules of a dye sensitizer into acceptor states of wide-bandgap oxidesemiconductors. Z Phys. Chem.,1999,212:85~92
    [9] Burfeindt B, Zimmermann C, Ramakrishna S, et al. Femto second electron transfer from theexcited state of chemically anchored chromophores into the empty conduction band ofnanocrystalline spong-like TiO2films. Z Phys. Chem.,1999,212:67~75
    [10] Tachibana Y, Moser J E, Gr tzel M, et al. Subpicosecond Interfacial Charge Separation inDye-Sensitized Nanocrystalline Titanium Dioxide Films. J. Phys. Chem.,1996,100:20056~20062
    [11] Wang Y Q, Asbury J B and Lian T. Ultrafast excited-state dynamics of Re(CO)3Cl(dcbpy)in solution and on nanocrystalline TiO2and ZrO2thin films. J. Phys. Chem. A,2000,104:4291~4299
    [12] Nelson J, Chandler R E. Random walk models of charge transfer and transport in dyesensitized systems. Coord. Chem. Rev.,2004,248:1181~1194
    [13] Wang P, Wenger B, Humphry-Baker R, Moser J E, et al. Charge separation and efficientlight energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J.Am. Chem. Soc.,2005,127:6850~6856
    [14] Huang S Y, Schlichthorl G, Nozik A J, et al. Charge recombination in dye-Sensitizednanocrystalline TiO2solar cells. J. Phys. Chem. B,1997,101:2576~2582
    [15] Hagfeldt A, Gr tzel M. Light-induced redox reactions in nanocrystalline systems. Chem.ReV.1995,95,49~68.
    [16] Halme J, Vahermaa P, Miettunen K, et al. Device Physics of Dye Solar. Adv. Mater.2010,22, E210~E234
    [17] Park N G, Schlichtho1rl G, J. van de Lagemaat, Dye sensitized TiO2solar cells: structuraland photoelectrochemical characterization of nanocrystalline electrodes formed from thehydrolysis of TiCl4. J. Phys. Chem. B,1999,103:3308~3314
    [18] Petra J. Cameron, Laurence M. Peter. Characterization of titanium dioxide blocking layersin dye-sensitized nanocrystalline solar cells. J. Phys. Chem. B,2003,107:14394~14400
    [19] Chen Q W, Xu D S. Large-scale, noncurling, and free-standing crystallized TiO2nanotubearrays for dye sensitized solar cells. J. Phys. Chem. C,2009,113:6310~6314
    [20] Gajjela S R, Ananthanarayanan K, Yap C, et al. Synthesis of mesoporous titanium dioxideby soft template based approach: characterization and application in dye-sensitized solarcells. Energy Environ. Sci.,2010,3:838~845
    [21] Yu J G, Fan J J, Lv K. Anatase TiO2nanosheets with exposed (001) facets: improvedphotoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale,2010,2:2144~2149
    [22] Huang Q L, Zhou G, Fang L, et al. TiO2nanorod arrays grown from a mixed acid mediumfor efficient dye-sensitized solar cells. Energy Environ. Sci,2011,4:2145~2151
    [23] Jeong N C, Farha O K, Hupp J T. A convenient route to high area, nanoparticulate TiO2photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells.Langmuir,2011,27(5):1996~1999
    [24] Nakade S, Matsuda M, Kambe S. Dependence of TiO2nanoparticle preparation methodsand annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B,2002,106:10004~10010
    [25] Yamamoto Y, Kawaraya M, Segawa H, et al.10%Efficiency dye-sensitized solar cellsusing P25TiO2nanocrystalline electrode prepared by a bead-milling method. Chem. Lett.,2011,40:1220~1222
    [26] Jeong N C, Farha O K, and Hupp J T. A convenient route to high area, nanoparticulate TiO2photoelectrodes suitable for high efficiency energy conversion in dye sensitized solar cells.Langmuir,2011,27(5):1996~1999
    [27] Kondo Y, Yoshikawa H, Awaga K, et al. Preparation, photocatalytic activities, and dyesensitized solar cell performance of submicron scale TiO2hollow spheres. Langmuir,2008,24(2):547~550
    [28] Kim Y J, Lee M H, Kim H J, et al. Formation of highly efficient dye-sensitized solar cellsby hierarchical pore generation with nanoporous TiO2spheres. Adv. Mater.,2009,21:3668~3673
    [29] Zhang H M, Han Y H, Liu X L. Anatase TiO2microspheres with exposed mirror-like plane{001} facets for high performance dye-sensitized solar cells (DSSCs). Chem. Commun.,2010,46:8395~8397
    [30] Cha S I, Koo B K, Hwang K H, et al. Spray-dried and pre-sintered TiO2micro-balls forsinter-free processing of dye-sensitized solar cells. J. Mater. Chem.,2011,21:6300~6304
    [31] Wu X, Lu G Q, Wang L Z. Shell-in-shell TiO2hollow spheres synthesized by one-pothydrothermal method for dye-sensitized solar cell application. Energy Environ. Sci.,2011,4:3565~3572
    [32] Hwang D, Lee H, Jang S Y, et al. Electrospray preparation of hierarchically-structuredmesoporous TiO2spheres for use in highly efficient dye-sensitized solar cells. ACS Appl.Mater. Interfaces,2011,3,2719~2725
    [33] Yu J G, Fan J J, Lv K. Anatase TiO2nanosheets with exposed (001) facets: improvedphotoelectric conversion efficiency in dye sensitized solar cells. Nanoscale,2010,2:2144~2149
    [34] Jiu J T, Isoda S, Wang F M, et al. Dye-sensitized solar cells based on a single-crystallineTiO2nanorod Film. J. Phys. Chem. B,2006,110:2087~2092
    [35] Huang Q L, Zhou G, Fang L, et al. TiO2nanorod arrays grown from a mixed acid mediumfor efficient dye-sensitized solar cells. Energy Environ. Sci.,2011,4:2145~2151
    [36] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titaniathin-film electrode composed of a network structure of single-crystal-like TiO2nanowiresmade by the “Oriented Attachment” mechanism. J. Am. Chem. Soc.,2004,126:14943~14949
    [37] Feng X J, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2nanowirearrays grown directly on transparent conducting oxide coated glass: synthesis details andapplications. Nano. Lett.,2008,8:3781~3786
    [38] Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications fordye-sensitized solar cells. J. Electrochem. Soc.,2003,150(8): G488~G493
    [39] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2nanotube arrays indye-sensitized solar cells. Nano. Lett.,2006,6:215~218
    [40] Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and lightscattering in dye-sensitized solar sells using oriented TiO2nanotubes arrays. Nano. Lett.,2007,7:69~74
    [41] Kim D, Ghicov A, Albu S P, et al. Bamboo-type TiO2nanotubes: improved conversionefficiency in dye-sensitized solar cells. J. Am. Chem. Soc.,2008,130:16454~16455.
    [42] Jennings J R, Ghicov A, Peter L M, et al. Dye-sensitized solar cells based on oriented TiO2nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc.,2008,130:13364~13372
    [43] Srivastava D N, Chappel S, Palchik O, et al. Sonochemical synthesis of mesoporous tinoxide. Langmuir,2002,18,4160~4164
    [44] Yang M J, Ding B, Lee S. Carrier transport in dye-sensitized solar cells using singlecrystalline TiO2nanorods grown by a microwave-assisted hydrothermal reaction. J. Phys.Chem. C,2011,115:14534~14541
    [45] Barbe C J, Arendse F, Comte P, et al. Nanocrystalline TiO2electrodes for photovoltaicapplications. J. Am. Ceram. Soc.,1997,80(12):3157~3171
    [46] Zaban A, Aruna S T, Tirosh S, et al. The effect of the preparation condition of TiO2colloidson their surface structures. J. Phys. Chem. B,2000,104(17):4130~4133
    [47] Hsiao P T, Liou Y J, Teng H. Electron transport patterns in TiO2nanotube arrays baseddye-sensitized solar cells under frontside and backside illuminations. J. Phys. Chem. C,2011,115:15018~15024
    [48] Li L L, Chen Y J, Wu H P, et al. Detachment and transfer of ordered TiO2nanotube arraysfor front-illuminated dye-sensitized solar cells. Energy Environ. Sci.,2011,4:3420~3425.
    [49] Hamann T W, Jensen R A, Martinson A B F, et al. Advancing beyond current generationdye-sensitized solar cells. Energy Environ. Sci.,2008,1,66~78
    [50] Stathatos E. and Lianos P. Increase of the Efficiency of Quasi-Solid State Dye-SensitizedSolar Cells by a Synergy between Titania Nanocrystallites of Two Distinct NanoparticleSizes. Adv. Mater.2007,19:3338~3341.
    [51] Wang M, Yin X, Mao X R, et al. A new ionic liquid based quasi-solid state electrolyte fordye-sensitized solar cells J. Photochem. Photobiol. A: Chem.2008,194:20~26
    [52] Hauch A, Georg A, Diffusion in the electrolyte and charge-transfer reaction at the platinumelectrode in dye-sensitized solar cells Electrochim. Acta,2001,46:3457~3466
    [53] Namutdinova G, Sensfuss S, Schrodner M, et al. Quasi-solid state polymer electrolytes fordye-sensitized solar cells: Effect of the electrolyte components variation on the triiodide iondiffusion properties and charge-transfer resistance at platinum electrode. Solid State Ionics,2006,177:3141~3146.
    [54] Franco G, Peter L M, Ponomarev E A. Detection of inhomogeneous dye distribution in dyesensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy(IMPS). Electrochem. Commun.,1999,1:61~64.
    [55]尹艳红,许泽辉和冯磊硕等.染料敏化太阳能电池对电极的研究进展.材料导报,2009,23(5):109~112
    [56] Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cellconfigurations. Coordination Chemistry Reviews,2004,248(13~14):1421~1446
    [57] Bessho T, Constable E C, Gr tzel M. An element of surprise-efficient copper-functionalizeddye-sensitized solar cells. Chem. Commun.,2008,3717~3719
    [58] Brennan L J, Byrne M T, Bari M, et al. Carbon nanomaterials for dye-sensitized solar cellapplications: a bright future. Advanced Energy Materials,2011,1(4):472~485
    [59] Ramasamy E, Lee J W. Ferrocene-derivatized ordered mesoporous carbon as highperformance counter electrodes for dye-sensitized solar cells. Carbon,2010,48(13):3715~3720
    [60] Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cellsprepared by electrophoretic deposition. J. Mater. Chem.,2011,21:7548~7551
    [61] Jiang Q W, Li G R, Wang F, et al. Highly ordered mesoporous carbon arrays from naturalwood materials as counter electrode for dye-sensitized solar cells. Electrochem.Commun.,2010,12:924~927
    [62] Lee K S, Lee H K, Wang D H, et al. Dye-sensitized solar cells with Pt-and TCO-freecounter electrodes. Chem. Commun.,2010,12(7):924~927
    [63] Tai Q D, Chen B L, Guo F, et al. In situ prepared transparent polyaniline electrode and itsapplication in bifacial dye-sensitized solar cells. Acs Nano,2011,5(5):3795~3799.
    [64] Jeon S S, Kim C, Ko J, et al. Spherical polypyrrole nanoparticles as a highly efficientcounter electrode for dye-sensitized solar cells. J. Mater. Chem.,2011,21:8146~8151
    [65] Wang M K, Anghel A M, Marsan B. CoS supersedes Pt as efficient electrocatalyst fortriiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc.2009,131(44):15976~15977
    [66] Sun H C, Qin D, Huang S Q, et al. Dye-sensitized solar cells with NiS counter electrodeselectrodeposited by a potential reversal technique. Energy Environ. Sci.,2011,4:2630~2637
    [67] Wu M X, Lin X, Hagfeldt A, et al. Low-cost molybdenum carbide and tungsten carbidecounter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2011,123:1~6
    [68] Jang J S, Ham D J, Ramasamy E. Platinum-free tungsten carbides as an efficient counterelectrode for dye sensitized solar cells. Chem.Commun.,2010,46:8600~8602
    [69] Li G R, Song J, Pan G L, et al. Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells. Energy Environ. Sci.,2011,4:1680~1683
    [70] Jiang Q W, Li G R, Liu S, et al. Surface-nitrided nickel with bifunctional structure aslow-cost counter clectrode for dye-sensitized solar cells. J. Phys. Chem. C,2010,114(31):13397~13401
    [71] Jiang Q W, Li G R, Gao X P. Highly ordered TiN nanotube arrays as counter electrodes fordye-sensitized solar cells. Chem. Commun.,2009,6720~6722
    [72] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-costcounter electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2010,49:3653~3656
    [73] Hauch, A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinumelectrode in dye-sensitized solar cells. Electrochim Acta,2001,46:3457~3466
    [74] Papageorgiou N, Maier W F, Gr tzel M. An iodine/triiodide reduction electrocatalyst foraqueous and organic media. J Electrochem Soc,1997,144:876~884
    [75] Olsen E, Hagen G, Lindquist S. Dissolution of platinum in methoxy propionitrilecontaining LiI/I2. E. Sol. Energy Mater. Sol. Cells,2000,63:267~273
    [76] Fang X M, Ma T L, Guan G Q, et al. Effect of the thickness of the Pt film coated on acounter electrode on the performance of a dye-sensitized solar cell. J. ElectroanalyticalChemistry.2004,570:257~263
    [77] Zhou C H, Hu H, Yang Y. et al. Effect of thickness on structural, electrical, andelectrochemical properties of platinum/titanium bilayer counterelectrode. J. Appl. Phys.,2008,104:034910-1-034910-6
    [78] Yoon C H, Vittal R, Lee J W, et al. Enhanced performance of a dye-sensitized solar cellwith an electrodeposited-platinum counter electrode. Electrochimica Acta2008,53:2890~2896
    [79] Ji W W, Zhang X D, Zhao Y, et al. A new structure of counter electrode used fordye-sensitized solar cells. Phys. Status Solidi C,2010,7:3~4
    [80] Giuseppe Calogero, Pietro Calandra, Alessia Irrera, etal. A new type of transparent and lowcost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells.Energy Environ. Sci.,2011,4:1838~1844
    [81] Sun K A, Fan B H, Ouyang J Y. Nanostructured platinum films deposited by polyolreduction of a platinum precursor and their application as counter electrode ofdye-sensitized solar cells. J. Phys. Chem. C,2010,114:4237~4244
    [82] Lin C Y, Lin J Y, Lan J L, et al. Electroless platinum counter electrode for dye-sensitizedsolar cells by using self-assembly monolayer modification. Electrochemical and Solid-StateLetters,2010,13(11): D77~D79
    [83] Lee Y L, Chen C L, Chong L W, et al. A platinum counter electrode with highelectrochemical activity and high transparency for dye-sensitized solar cells. Electrochem.Commun.,2010,12:1662~1665
    [84] Kay A, Gr tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystallinetitanium dioxide and carbon power. Solar Energy Materials and Solar Cells,1996,44:99~117
    [85] Pettersson H, Gruszecki T, Bernhard R, The monolithic multicell: a tool for testing materialcomponents in dye-sensitized solar cells. Prog. PhotoVoltaics,2007,15:113~121
    [86] Murakami T N, Ito S, Wang Q, et a1. Highly efficient dye-sensitized solar cells based oncarbon black counter electrodes. J. Electrochem. Soc.,2006,153: A2255~A2261
    [87] Ramasamy E, Lee W J, Lee D Y, et a1. Nanocarbon counterelectrode for dye sensitizedsolar cells. Appl. Phys. Lett.,2007,90:173103-173106
    [88] Mei X G, Cho S J, Fan B H,et al. High-performance dye-sensitized solar cells withgel-coated binder-free carbon nanotube films as counter electrode. Nanotechnology,2010,21:395202(9pp)
    [89] Dong P, Pint C L, Hainey M, et al. Vertically aligned single-walled carbon nanotubes aslow-cost and high electrocatalytic counter electrode for dye-sensitized solar cells. ACSAppl. Mater. Interfaces,2011,3:3157~3161
    [90] Zhang S, Ji C Y, Bian Z Q, et al. Single-wire dye-sensitized solar cells wrapped by carbonnanotube film electrodes. Nano Lett.,2011,11:3383~3387
    [91] Veerappan G, Bojan K, Rhee S W. Sub-micrometer-sized graphite as a conducting andcatalytic counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces2011,3:857~862
    [92] Huang K C, Huang J H, Wu C H, et al. Nanographite/polyaniline composite films as thecounter electrodes for dyesensitized solar cells. J. Mater. Chem.,2011,21:10384~10389.
    [93] Zhang D W, Li X D, Li H B. et al. Graphene-based counter electrode for dye-sensitizedsolar cells. Carbon,2011,49:5382~5388
    [94] Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cellsprepared by electrophoretic deposition. J. Mater. Chem.,2011,21:7548~7551
    [95] Joseph D. Roy-Mayhew, David J. Bozym, Christian Punckt, et al. Functionalized grapheneas a catalytic counter electrode in dye-sensitized solar cells. ACS Nano,2010,4(10):6203~6211
    [96] Kavan L, Yum J H, Gr tzel M. Optically transparent cathode for dye-sensitized solar Cellsbased on graphene nanoplatelets. ACS nano.2011,5:165~172
    [97] Lee K S, Lee H K, Wang D H, et al. Dye-sensitized solar cells with Pt-and TCO-freecounter electrode. Chem. Commun.,2010,46:4505~4507
    [98] Pringle J M, Armel V, MacFarlane D R. Electrodeposited PEDOT-on-plastic cathodes fordye-sensitized solar Cells. Chem. Commun.,2010,46:5367~5369
    [99] Ahmad S, Yum J H, Zhang X X, et al. Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. J. Mate.r Chem.,2010,20:1654~1658
    [100] Sun H C, Luo Y H, Zhang Y D, et al. In Situ Preparation of a Flexible Polyaniline/CarbonComposite Counter Electrode and Its Application in Dye-Sensitized Solar Cells. J. Phys.Chem. C,2010,114:11673~11679
    [101] Tai Q D, ChenB L, Guo F, et al. In situ prepared transparent polyaniline electrode and itsapplication in bifacial dye-sensitized solar cells. ACS Nano,2011,5:3795~3799
    [102] Jeon S S, Kim C, Ko J, et al. Spherical polypyrrole nanoparticles as a highly efficientcounter electrode for dye-sensitized solar cells. J. Mater. Chem,2011,21:8146~8151
    [103] Xia J B, Chena L, Yanagid S. et al. Application of polypyrrole as a counter electrode for adye-sensitized solar cell. J. Mater. Chem,2011,21:4644~4649
    [104] Wu M X, Lin X, Hagfeldt A, et al. A novel catalyst of WO2nanorod for the counterelectrode of dy-sensitized solar cells. Chem. Commun,2011,47:4535~4537
    [105] Xia J B, Yuan C C, Yanagida S. Novel counter electrode V2O5/Al for solid dye-sensitizedsolar cells. ACS Appl. Mater. Interfaces,2010,2(7):2136~2139
    [106] Chou C S, Hsiung C M, Wang C P. et al. Preparation of a counter electrode with P-type NiOand its applications in dye-sensitized solar cell. International Journal of Photoenergy.Volume2010, ID902385,9
    [107] Sun W W, Sun X H, Peng T. et al, A low cost mesoporous carbon/SnO2/TiO2nanocompositecounter electrode for dye-sensitized solar cells. J. Power Sources.2012,201:402~407
    [108] Lin J Y, Liao J H, Wei T C, et al. Honeycomb-like CoS counter electrodes for transparentdye-sensitized solar cells. Electrochemical and Solid-State Letters,2011,14(4): D41~D44
    [109] Sudhagar P, Nagarajan S, Lee Y G, et al. Synergistic catalytic effect of a composite(CoS/PEDOT:PSS) counter electrode on triiodide reduction in dye-sensitized solar cells.ACS Appl. Mater. Interfaces,2011,3:1838~1843
    [110] Xin X k, He M, Han W, et al. Low-cost copper zinc tin sulfide counter electrodes for highefficiency dye-sensitized solar cells. Angew. Chem. Int. Ed.,2011,50:11739~11742
    [111] Du Y F, Fan J Q, Zhou W H, et al. One-step synthesis of stoichiometric Cu2ZnSnSe4ascounter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, DOI:10.1021/am3000616
    [112]姜奇伟.南开大学博士论文.2010.
    [113]王凤.南开大学硕士论文.2010.
    [114] Yeh M H, Lin L Y, Lee C P, et al. A composite catalytic film of PEDOT:PSS/TiN-NPs on aflexible counter electrode substrate for a dye-sensitized solar cell. J. Mater. Chem.,2011,21:19021~19029
    [115] Kim J Y, Lee J K, Han S B, et al. Improved tri-iodide reduction reaction of Co-TMPP/C as anon-Pt counter electrode in dye-sensitized solar cells. J. Electrochem. Sci. Tech.2010,1:75~80
    [116] Wu M X, Lin X, Wang Y D, et al. Economical Pt-free catalysts for counter electrodes ofdye-sensitized solar cells. J. Am. Chem. Soc.,2012,134:3419~3428
    [117] Oyama S T,Novel catalysts for advanced hydroprocessing: transition metal phosphides.JCatal,2003,216:343~352
    [118] Alexander A M,Hargreaves J S J.Alternative catalytic materials: carbides, nitrides,phosphides and amorphous boron alloys.Chem Soc Rev,2010,39(11):4388~4401
    [119] Jiang Q W,Li G R,Gao X P.Highly ordered TiN nanotube arrays as counter electrodesfor dye-sensitized solar cells.Chem Commun,2009,44:6720~6722
    [120] Li G R,Song J,Pan G L,et. al.Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells.Energy Environ Sci,2011,4(5):1680~1683
    [121] Kaskhedikar N A,Maier J.Lithium storage ion carbon nanostructures. Adv Mater,2009,21(25):2664~2680
    [122] Pumera M.Graphene-based nanomaterials for energy storage.Energy Environ Sci,2011,4(3):668~674
    [123] Fan Z J,Yan J,Zhi L J,et al.A three-dimensional carbon nanotube/graphene sandwich andits application as electrode in supercapacitors.Adv Mater,2010,22(33):3723~3724
    [124]朱永法.纳米材料的表征与测试技术.北京:化学工业出版社,2006
    [125]王凤.南开大学硕士论文.2010
    [126]郭鹤桐,姚素薇.基础电化学及测量.北京:化学工业出版社,2008
    [127] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338~344
    [128] Hagfeldt A, Gr tzel M. Light-induced redox reactions in nanocrystalline systems. ChemRev,1995,95:49~68
    [129] Hagfeldtt A, Boschloo G, Sun L C.Dye-sensitized solar cells.Chem Rev,2010,110:6595~6663
    [130] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-costcounter-electrode material for dye-sensitized solar cells. Angew. Chem.Int. Ed.,2010,49:3653~3656
    [131] Alexander A M, Hargreaves J S J. Alternative catalytic materials: carbides, nitrides,phosphides and amorphous boron alloys. Chem. Soc. Rev.,2010,39:4388~4401
    [132] Jiang Q W, Li G R, Gao X P. Highly ordered TiN nanotube arrays as counter electrodes fordye-sensitized solar cells. Chem. Commun.,2009,44:6720~6722
    [133] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with Titanium Nitride as a low-costcounter-electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed.,2010,49:3653~3656
    [134] Wu M X, Zhang Q Y, Xiao J Q, et. al. Two flexible counter electrodes based onmolybdenum and tungsten nitrides for dye-sensitized solar cells. J. Mater. Chem.,2011,21:10761~10766
    [135] Li G R, Song J, Pan G L, et. al. Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells. Energy Environ. Sci.,2011,4:1680~1683
    [136] Kaskhedikar N A, Maier J. Lithium storage ion carbon nanostructures. Adv. Mater.,2009,21:2664~2680
    [137] Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci.,2011,4:668~674
    [138] Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials. Energy Environ. Sci.,2011,4:1113~1132
    [139] Kamat P V. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett.,2011,2:242~251
    [140] Fan Z J, Yan J, Zhi L J, et al. A three-dimensional carbon nanotube/graphene sandwich andits application as electrode in supercapacitors. Adv. Mater.,2010,22:3723~3724
    [141] Muthuswamy E, Kharel P R, Lawes G, et al. Control of phase in phosphide nanoparticlesproduced by metal nanoparticle transformation: Fe2P and FeP. ACS Nano,2009,3:2383~2393
    [142] Ni Y, Jina L and Hong J. Phase-controllable synthesis of nanosized nickel phosphides andcomparison of photocatalytic degradation ability. Nanoscale,2011,3:196~200
    [143] Ni Y, Tao A, Hu G, et al. synthesis, characterization and properties of hollow nickelphosphide nanospheres. Nanotechnology,2006,17:5013~5018
    [144] Li J, Ni Y, Liana K, et al. Hydrothermal synthesis of Ni12P5hollow microspheres,characterization and photocatalytic degradation property. J. Colloid Interface Sci.,2009,332:231~236
    [145] Henkes A E, Vasquez Y, Schaak R E. Converting metalsinto phosphides: A general strategyfor the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc.,2007,129,1896~1897
    [146] Sato K, Saito R, Oyama Y, et al. D-band Raman intensity of graphitic materials as afunction of laser energy and crystallite size. Chem. Phys. Lett.,2006,427:117~121
    [147] Subrahmanyam K S, Vivekchand S R C, Govindaraj A, et al. A study of graphenes preparedby different methods: characterization, properties and solubilization. J. Mater. Chem.,2008,18:1517~1523
    [148] Wang H L, Robinson J T, Li X L, et al. Solvothermal reduction of chemically exfoliatedgraphene sheets. J. Am. Chem. Soc.,2009,131(29):9910~9911
    [149] Fang X M, Ma T L, Guan G Q, et al. Effect of the thickness of the Pt film coated on acounter electrode on the performance of a dye-sensitized solar cell. J. Electroanal. Chem.,2004,570(2):257~263
    [150] Murakami T N, Gr tzel M. Counter electrodes for DSC: Application of functional materialsas catalysts. Inorganica. Chimica. Acta,2008,361(3):572~580
    [151] Halme J, Vahermaa P, Miettunen K, et al. Device physics of dye solar cells. Adv. Mater.,2010,22(35): E210~E234
    [152] Longo C, Marco A, Paoli D. Dye-sensitized solar cells: A Successful combination ofmaterials. J. Braz. Chem. Soc.,2003,14(6):889~901
    [153] Tang Y T, Pan X, Zhang C N, et al. Influence of different electrolytes on the reactionmechanism of a Triiodide/Iodide redox couple on the platinized FTO glass electrode indye-sensitized solar cells. J. Phys. Chem. C,2010,114(9):4160~4167
    [154] Han L Y, Koide N, Chiba Y, et al. Improvement of efficiency of dye-sensitized solar cellsby reduction of internal resistance. Appl. Phys. Lett.,2005,86(21):213501.
    [155]唐娟,程凯,张韧等.化学镀镍–磷的研究与应用,电镀与涂饰,2011,30:24-27
    [156] Ramasamy E, Lee W J, Lee D Y, et al. Spray coated multi-wall carbon nanotube counterelectrode for tri-iodide (I-3) reduction in dye-sensitized solar cells. Electrochem. Commun.,2008,10(7):1087~1089
    [157] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-costcounter-electrode material for dye-sensitized solar cells. Angew. Chem. Inter. Ed.,2010,49:3653~3656
    [158]阎晓琦.南开大学博士论文.2003.
    [159] Kong F Z, Zhang X B, Xiong W Q, et al. Continuous Ni-layer on multiwall carbonnanotubes by an electroless plating method. Surface and coating technology,2002,155(1):33~36
    [160]闫洪.现代化学镀镍.北京:国防工业出版社,1999
    [161] Caturla F, Molina F, Molina S M, et al. Electroless plating of graphite with copper andnickel. J. Electrochem. Soc.,1995,142(12):4084~4090
    [162] Ang L M, Hor T S A, Xu G Q, et al. Decoration of activated carbon nanotubes with copperand Nickel. Carbon,2000,38:363~372
    [163] Ramasamy E, Lee W J, Lee D Y, et al. Nanocarbon counter electrode for dye sensitizedsolar cells. Appl. Phys. Lett.,2007,90(17):173103
    [164] Fabregat-Santiago F, Bisquert J, Palomares E, et al. Correlation between photovoltaicperformance and impedance spectroscopy of dye-sensitized solar cells based on ionicliquids. J. Phys. Chem. C,2007,111(17):6550~6560
    [165] Halme J, Toivola M, Tolvanen A, et al. Charge transfer resistance of spray deposited andcompressed counter electrodes for dye-sensitized nanoparticle solar cells on plasticsubstrates. Sol. Energy Mater. Sol. Cells,2006,90(7-8):872~886
    [166] Fang X M, Ma T L, Akiyama M, et al. Flexible counter electrodes based on metal sheet andpolymer film for dye-sensitized solar cells. Thin Solid Films,2005,472(1-2):242~245
    [167] Miettunen K, Halme J, Toivola M, et al. Initial performance of dye solar cells on stainlesssteel substrates. J. Phys. Chem.C,2008,112(10):4011~4017
    [168] Kim S S, Nah Y C, Noh Y Y, et al. Electrodeposited Pt for cost-efficient and flexibledye-sensitized solar cells. Electrochim. Acta.,2006,51(18):3814~3819
    [169]Wang, M K, Anghel A M, Marsan B, et al. CoS supersedes Pt as efficient electrocatalystfor triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc.,2009,131(44):15976~15977
    [170] Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, et al. A novel method for preparingan active nickel phosphide catalyst for HDS of dibenzothiophene. J. Catal.,2009,263(1):4~15
    [171] Wang X, Clark P, Oyama T S. Synthesis, characterization, and hydrotreating activity ofseveral iron group transition metal phosphides. J. Catal.,2002,208:321~331
    [172] Chiang R K, Chiang R T. Formation of hollow Ni2P nanoparticles based on the nanoscaleKirkendall effect. Inorg. Chem.,2007,46:369~371
    [173] Henkes A E, Vasquez Y, Schaak R E. Converting metalsinto phosphides: a general strategyfor the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc.,2007,129:1896~1897
    [174] Maneeprakorn W, Nguyen C Q, Malik M A, et al. Synthesis of the Nickelselenophosphinates [Ni(Se2PR2)2](R=Pr, Bu, and Ph) and their use as single sourceprecursors for the deposition of Nickel phosphide or Nickel selenide nanoparticles. DaltonTrans.,2009,12:2103~2108
    [175] Oyama S T, Wang X, Lee Y K, et al. Active phase of Ni2P/SiO2in hydroprocessingreactions. J. Catal.,2004,221(2):263~273
    [176] Wang X J, Wan F Q, Gao Y J, et al. Synthesis of high-quality Ni2P hollow sphere via atemplate-free surfactant-assisted solvothermal route. J. Cryst. Growth,2008,310(10):2569~2574
    [177] Liu J W, Chen X Y, Shao M W, et al. Surfactant-aided solvothermal synthesis of dinickelphosphide nanocrystallites using red phosphorus as starting materials. J. Cryst. Growth,2003,252(1-3):297~301
    [178] Guan Q X, Li W, Zhang M H, et al. Alternative synthesis of bulk and supported nickelphosphide from the thermal decomposition of hypophosphites. J. Catal.,2009,263:1~3
    [179]Fabregat-Santiago F, Bisquert J, Palomares E, et al. Correlation between photovoltaicperformance and impedance spectroscopy of dye-sensitized solar cells based on ionicliquids. J. Phys. Chem. C,2007,111(17):6550~6560
    [180]黄翔,刘宗义,戴金辉等.一种磷化物的水热合成工艺.中国专利,CN101659403A200910018549.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700