基于电磁谐振的宽频周期吸波结构设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达吸波材料是指能够有效吸收衰减入射电磁波的一类材料,其核心是在薄的厚度下获得宽频段高强度吸收。然而,任何厚度的吸波材料都存在一个对应的使用频段,而通过提高磁导率或进行多层吸波材料设计拓展带宽的传统方法已经远远不能满足当前需求,特别是在L、S波段。因此,拓展吸收带宽、突破低频吸收瓶颈成为当前电磁波吸波技术领域亟需解决的核心问题。
     与传统吸波材料不同,周期吸波结构侧重于利用人工结构聚集入射的电磁场,再通过介质损耗吸收被聚集的能量。由于这种特别的吸波方式,周期吸波结构有望解决上述宽频吸收难题。本文以电阻膜、磁性吸波涂层或磁性薄膜构成的周期吸波结构为研究对象,通过分析电磁场及其能量损耗分布,建立等效电路模型,构建吸收性能与等效集总参数、结构参数之间的关系,解决吸波材料的宽频及低频吸收难题,取得了以下主要成果:
     1.采用等效电路理论,建立了周期吸波结构宽频吸收的约束方程,发现了常规图案在宽频吸收中的不足。
     (1)对电阻膜周期吸波结构的等效电路理论进行反演计算,得出宽频吸收的约束方程,方程定量揭示了吸收峰与等效参数之间的关系,并给出了实现吸收峰所需的理想电阻曲线。
     (2)将约束方程用于分析长方形、正方形和方环形等电阻膜吸波结构的吸收特点,研究了这些结构的低频单谐振吸收缺陷,发现单一表面电流分布是造成该缺陷的原因。
     2.基于约束方程进行多谐振设计,提高了电阻膜吸波结构的低频宽频吸收性能。
     (1)根据约束方程中吸收峰与等效参数之间的关系,提出了一种低频双谐振吸收的梯形耦合型周期吸波结构,理论分析、数值计算以及实验证明了这种结构可以将单元内外内的耦合作用有机结合在一起,实现了表面电流的频散分布,拓展了低频吸收带宽。
     (2)根据约束方程中的理想电阻曲线,提出了基于非均匀表面电阻设计的多谐振型周期吸波结构,并建立相应的设计方法,这种设计理念兼容了空间电荷引起的相对近场作用以及表面电流引起的相对远场作用,从而引入多谐振机制,拓展了低频吸收频带。
     3.通过周期结构的多谐振设计,拓展了磁性吸波涂层的吸收带宽。
     (1)针对具有频散电磁参数的磁性吸波涂层,通过局域场作用调节谐振特性,设计了一种低频双谐振吸收的针尖耦合型周期吸波结构,与传统的非磁性周期吸波结构不同,这种结构的能量耗散包含磁损耗和介电损耗,多损耗机制进一步拓展了周期吸波结构的吸收带宽。
     (2)通过在磁性吸波涂层内部嵌入金属阵列,激发频散的电磁相互作用,不仅在中高频段提高常规的干涉吸收能力,而且在低频段引入尺寸谐振吸收,进一步增加了吸收带宽。
     4.创新性地提出了金属磁性薄膜型周期吸波结构。
     (1)结合金属磁性薄膜的电磁特性与周期结构设计理论,提出了磁场定向型吸波结构,发现薄膜阵列对入射磁场的重定向作用,使磁场被薄膜的高磁损耗吸收掉,克服了磁性薄膜中高电导率导致的阻抗严重失配问题。
     (2)结合不同薄膜的电磁特性与磁场定向作用,进行多谐振设计,发现薄膜导电性决定了电磁响应形式,高导电性薄膜起重定向作用,低导电性薄膜起损耗吸收作用,为多谐振宽频结构设计提供了新思路。
The aim of the radar absorbing material, a class of materials used to effectivelyabsorb incident electromagnetic waves, is to obtain the highest absorption within thewidest operating waveband in the least thickness. However, any traditional absorbingmaterial with a certain thickness operates only in a limited frequency band. Thetraditional methods to expand the absorption bandwidth, such as increasing materialpermeability and carrying out multilayer design, have no longer met the challenge ofmilitary and civil application. As a result, to expand the absorption bandwidth andimprove the absorption at low frequency becomes fatal problems in the field ofelectromagnetic wave absorption.
     Different from traditional radar absorbing material, periodic absorbing structures(PAS) utilize the ability of controlling incident electromagnetic fields to introduce highabsorption. Due to the special ability, PAS are promising broadband absorbing material.In this thesis, the design of PAS consisting of resistive film, magnetic coating materialor magnetic film is studied. Based on the electromagnetic field and surface currentdistribution, an equivalent circuit model is built to analyze the relationships ofabsorption, equivalent circuit parameters and structure parameters. The aim is to expandabsorption bandwidth, especially the absorption bandwidth in the low frequency band.
     1. According to the equivalent circuit theory, constraint equations of broadbandabsorption are built, and defects of PAS with common pattern are presented.
     (1) Based on the equivalent circuit theory, the constraint equations of broadbandabsorption are obtained by the inverse calculation method. The equations reveal therelationship between absorption and equivalent parameters. The equations also calculatethe ideal equivalent resistance for high absorption.
     (2) By analyzing the absorption characteristics of resistive-type periodic absorbingstructures with rectangle, square and square ring pattern, defects of sole resonantabsorption in low frequency band are found. The reason turns out to be thenon-dispersive surface current distribution.
     2. According to the constraint equations, multi-resonances are designed to improvethe absorption of resistive-type PAS in low frequency band.
     (1) A resistive-type PAS with trapezoids-coupling pattern is proposed to deal with the constraint condition between absorption and equivalent parameters. Theoreticalanalysis, mathematical calculation and experiment show that the couplings between andwithin unit cells realize the dispersive distribution of surface current to excite doubleresonances in the structure. The designed structure effectively improves absorption inlow frequency band.
     (2) A resistive-type PAS with non-homogeneous sheet resistances is proposed todeal with the constraint condition of equivalent resistance. The structure excites threeresonances by introducing relative near-field interaction and relative far-field interaction.These resonances effectively expand the absorption bandwidth in low frequency band.
     3. By loading periodic structures, multi-resonances are designed to improve theabsorption of magnetic-type PAS in low frequency band.
     (1) Through partly adjusting resonant characteristics in the magnetic coatingmaterial of dispersive electromagnetic parameters, magnetic-type PAS with needle-pointpattern is proposed to realize double-resonance absorption in low frequency band.Different from traditional non-magnetic PAS, the magnetic-type PAS achievesbroadband absorption by both dielectric and magnetic loss.
     (2) Through exciting dispersive electromagnetic responses, metal array which isembedded in the magnetic layer can further expand the absorption bandwidth. The arrayimprove the usual interference absorption in high frequency band while introducedimensional resonant absorption in low frequency band.
     3. Some unique PASs consisting of metal magnetic film arrays are innovativelyproposed.
     (1) Combining the PAS design theory and the electromagnetic characteristic ofmagnetic film, magnetic-field-controlling structure is proposed. It is found that themagnetic field is re-oriented by the film array, and then absorbed through the highpermeability of the film. The design solves the impedance-mismatching problemcausing by the high conductivity.
     (2) Combining the different electromagnetic characteristic and re-oriented effect ofdifferent films, a multi-resonance structure is proposed. In the design, theelectromagnetic responses can be determined by the conductivity. The film of highconductivity re-orients the direction of magnetic field while the film of low conductivity.The design provides new method for design of multiband absorber.
引文
[1] D. Lynch. Introduction to RF Stealth[M]. Raleigh, NC: SciTech Publishing,2004
    [2] E. F. Knott, J. F. Shaeffer, M. T. Tuley. Radar Cross Section[M]. Raleigh, NC: SciTechPublishing,2004
    [3] D. C. Jenn. Radar and Laser Cross Section Engineering[M]. Reston, VA: American Institute ofAeronautics and Astronautics,2005
    [4] K. J. Vinoy, R. M. Jha. Radar Absorbing Materials from Theory to Design andCharacterization[M]. Boston/Dordrecht/London: Kluwer Academic Publishers,1996
    [5]李言荣,林媛,陶伯万,等.电子材料[M].北京:清华大学出版社,2013
    [6]刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007
    [7]邓龙江,谢建良,梁迪飞,等.磁性材料在RAM中的应用及其进展[J].功能材料,1999,30:118-121
    [8]王永杰,许轶,芦艾,等.电磁屏蔽与吸波材料研究进展[J].化工新型材料,2009,37:24-29
    [9]邱琴,张晏清,张雄.电磁吸波材料研究进展[J].电子元件与材料,2009,28:78-81
    [10]崔玉理,贺鸿珠.吸波材料的研究现状及趋势[J].上海建材,2011,1:1-4
    [11]杨国栋,康永,孟前进.微波吸波材料的研究进展[J].应用化工,2010,39:584-589
    [12]王国强.吸波材料及其在手机电磁兼容设计中的应用[J].设计与实现,2010,18:62-66
    [13]康永.吸波材料研究进展[J].江苏陶瓷,2011,1:1-3
    [14] W. W. Salisbury. Absorbent Body for Electromagnetic Waves[P]. United States, Utility Patent,2599944,1952
    [15] B. Chambers, A. Tennant. Optimised Design of Jaumann Radar Absorbing Materials Using aGenetic Algorithm[J]. IEE Proceedings-radar, Sonar Nuvigvigation,1996,143:23-30
    [16] H. Nornikman, F. Malek. ParametrIc Studies of the Pyramidal Microwave Absorber Using Ricehusk[J]. Progress In Electromagnetics Research,2010,104:145-166
    [17]何燕飞,龚荣洲,王鲜,等.蜂窝结构吸波材料等效电磁参数和吸波特性研究[J].物理学报,2008,57:5261-5266
    [18] B. Zheng, Z. Shen. Wideband Radar Absorbing Material Combining High-impedanceTransmission Line and Circuit Analogue Screen[J]. Electronics Letters,2008,44:318-319
    [19] B. A. Munk. Frequency Selective Surfaces Theory and Design[M]. New York: John Wiley&Sons,2000
    [20] Y. Cheng, H. Yang, Z. Cheng, et al. Perfect Metamaterial Absorber Based on a Split-ring-crossResonator[J]. Applied Physics A,2010,102:99-103
    [21] P. G. Balmaz, O. J. F. Martin. Electromagnetic Resonances in Individual and Coupled Split RingResonators[J]. Journal of Applied Physics,2002,92:2929-2936
    [22] N. Landy, S. Sajuyigbe, J. Mock, et al. Perfect Metamaterial Absorber[J]. Physical ReviewLetters,2008,100:207402
    [23] E. F. Knott, J. F. Shaeffer, M. T. Tuley. Radar Cross Section(Second Edition)[M]. Raleigh, NC:Scitech Publishing,2004
    [24] N. Engheta. Thin Absorbing Screens Using Metamaterial Surfaces[J]. IEEE Antennas andPropagation Society International Symposium,2002,2:392-395
    [25] D. Sievenpiper, L. Zhang, R. F. J. Broas, et al. High-impedance Electromagnetic Surfaces with aForbidden Frequency Band[J]. IEEE Transactions on Microwave Theory and Techniques,1999,47:2059-2074
    [26] F. C. Seman, R. Cahill, V. F. Fusco. Low Profile Salisbury Screen Radar Absorber with HighImpedance Ground Plane[J]. Electronics Letters,2009,45:10-11
    [27] Q. Gao, Y. Yin, D. B. Yan, et al. Application of Metamaterials to Ultra-thin Radar-absorbingMaterial Design[J]. Electronics Letters,2005,41:936-937
    [28] S. Simms, V. Fusco. Thin Radar Absorber Using Artificial Magnetic Ground Plane[J].Electronics Letters,2005,41:1311-1312
    [29] K. B. Alici, F. Bilotti, L. Vegni, et al. Experimental Verification of Metamaterial BasedSubwavelength Microwave Absorbers[J]. Journal of Applied Physics,2010,108:083113
    [30] S. Simms, V. Fusco. Tunable Thin Radar Absorber Using Artificial Magnetic Ground Plane withVariable Backplane[J]. Electronics Letters,2006,42:1197-1198
    [31] D. L. Vu, V. T. Pham, T. V. Do, et al. The Electromagnetic Response of Different MetamaterialStructures[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology,2011,1:045016
    [32] Y. Pang, H. Cheng, Y. Zhou, et al. Upper Bound for the Bandwidth of Ultrathin AbsorbersComprising High Impedance Surfaces[J]. IEEE Antennas and Wireless Propagation Letters,2012,11:224-227
    [33] S. Gu, J. P. Barrett, T. H. Hand, et al. A Broadband Low-reflection Metamaterial Absorber[J].Journal of Applied Physics,2010,108:064913
    [34] I. Liberal, I. S. Nefedov, I. Ederra, et al. Reconfigurable Artificial Surfaces Based on ImpedanceLoaded Wires Close to a Ground Plane[J]. IEEE Transactions on Antennas and Propagation,1921,60:1921-1930
    [35] I. Liberal, I. Ederra, R. Gonzalo. Theory of Ferromagnetic Wires Resonating in the Proximity ofa Ground Plane: Application to Artificial Impedance Surfaces[J]. Journal of Applied Physics,2012,111:064911
    [36] Y. Tsuda, T. Yasuzumi, O. Hashimoto. A ThinWave Absorber Using Closely Placed DividedConductive Film and Resistive Film[J]. IEEE Antennas and Wireless Propagation Letters,2011,10:892-895
    [37] A. Kazemzadeh, A. Karlsson. On the Absorption Mechanism of Ultra Thin Absorbers[J]. IEEETransactions on Antennas and Propagation,2010,58:3310-3315
    [38] H. T. Chen. Interference Theory of Metamaterial Perfect Absorbers[J]. Optics Express,2012,20:7165-7172
    [39] M. H. Li, H. L. Yang, X. W. Hou. Perfect Metamaterial Absorber with Dual Bands[J]. ProgressIn Electromagnetics Research,2010,108:37-49
    [40] L. Huang, H. Chen. Muti-band and Polarization Insensitive Metamaterial Absorber[J]. ProgressIn Electromagnetics Research,2011,113:103-110
    [41] X. Shen, T. J. Cui, J. Zhao, et al. Polarization-independent Wide-angle Triple-bandMetamaterial Absorber[J]. Optics Express,2011,19:9401-9407
    [42] J. Lee, S. Lim. Bandwidth-enhanced and Polarisation-insensitive Metamaterial Absorber UsingDouble resonance[J]. Electronics Letters,2011,47:8-9
    [43] L. Li, Y. Yang, C. Liang. A Wide-angle Polarization-insensitive Ultra-thin MetamaterialAbsorber with Three Resonant Modes[J]. Journal of Applied Physics,2011,110:063702
    [44] F. Ding, Y. Cui, X. Ge, et al. Ultra-broadband Microwave Metamaterial Absorber[J]. AppliedPhysics Letters,2012,100:103506
    [45] Y. Liu, F. D. Flaviis, G. A. Alexópoulos. A Thin X-band Microwave Absorber Using a CenterShorted Spiral Medium[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:271-274
    [46] H. Li, L. H. Yuan, B. Zhou, et al. Ultrathin Multiband Gigahertz Metamaterial Absorbers[J].Journal of Applied Physics,2011,110:014909
    [47] Y. R. Padooru, A. B. Yakovlev, C. S. R. Kaipa, et al. Circuit Modeling of MultibandHigh-impedance Surface Absorbers in the Microwave Regime[J]. Physical Review B,2011,84:035108
    [48] F. Costa, A. Monorchio. Multiband Electromagnetic Wave Absorber Based on ReactiveImpedance Ground Planes[J]. IET Microwaves, Antennas&Propagation,2010,4:1720-1727
    [49] Y. Pang, H. Cheng, Y. Zhou, et al. Analysis and Enhancement of the Bandwidth of UltrathinAbsorbers Based on High-impedance Surfaces[J]. Journal of Physics D: Applied Physics,2012,45:215104
    [50] L. Sun, H. Cheng, Y. Zhou, et al. Broadband Metamaterial Absorber Based on CouplingResistive Frequency Selective Surface[J]. Optics Express,2012,20:4675-4680
    [51] H. Wakatsuchi, S. Greedy, C. Christopoulos, et al. Customised Broadband MetamaterialAbsorbers for Arbitrary Polarisation[J]. Optics Express,2010,18:22187-22198
    [52] A. Kazemzadeh, A. Karlsson. Multilayered Wideband Absorbers for Oblique Angle ofIncidence[J]. IEEE Transactions on Antennas and Propagation,2010,58:3637-3646
    [53] A. K. Zadeh, A. Karlsson. Capacitive Circuit Method for Fast and Efficient Design of WidebandRadar Absorbers[J]. IEEE Transactions on Antennas and Propagation,2009,57:2307-2314
    [54] F. Che Seman, R. Cahill, V. F. Fusco, et al. Design of a Salisbury Screen Absorber UsingFrequency Selective Surfaces to Improve Bandwidth and Angular Stability Performance[J]. IETMicrowaves, Antennas&Propagation,2011,5:149-156
    [55] F. C. Seman, R. Cahill. Performance enhancement of Salisbury Screen Absorber UsingResistively Loaded Spiral FSS[J]. Microwave and Optical Technology Letters,2011,53:1538-1541
    [56] Y. N. Kazantsev, A. V. Lopatin, N. E. Kazantseva, et al. Broadening of Operating FrequencyBand of Magnetic-Type Radio Absorbers by FSS Incorporation[J]. IEEE Transactions onAntennas and Propagation,2010,58:1227-1235
    [57] A. V. Lopatin, Y. N. Kazantsev, N. E. Kazantseva, et al. Radio Absorbers Based on MagneticPolymer Composites and Frequency-selective Surfaces[J]. Journal of CommunicationsTechnology and Electronics,2008,53:1114-1122
    [58] H. Y. Chen, H. B. Zhang, L. J. Deng. Design of an Ultra-Thin Magnetic-type Radar AbsorberEmbedded With FSS[J]. IEEE Antennas and Wireless Propagation Letters,2010,9:899-901
    [59] A. Fallahi, M. Mishrikey, C. Hafner, et al. Efficient Procedures for the Optimization ofFrequency Selective Surfaces[J]. IEEE Transactions on Antennas and Propagation,2008,56:1340-1349
    [60] L. Sun, H. Cheng, Y. Zhou, et al. Design of a Lightweight Magnetic Radar Absorber EmbeddedWith Resistive FSS[J]. IEEE Antennas and Wireless Propagation Letters,2012,11:675-678
    [61] Y. Zou, Y. Qing, L. Jiang, et al. Improved Microwave Absorption of Carbonyl Iron Powder bythe Array of Subwavelength Metallic Cut Wires[J]. IEEE Journal of Selected Topics inQuantum Electronics,2010,16:441-445
    [62] R. Huang, L. B. Kong, S. Matitsine. Bandwidth Limit of an Ultrathin Metamaterial Screen[J].Journal of Applied Physics,2009,106:074908
    [63] R. F. Huang, Z. W. Li, L. B. Kong, et al. Analysis and Design of an Ultra-thin MetamaterialAbsorber[J]. Progress In Electromagnetics Research B,2009,14:407-429
    [64] D. Sj berg. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues,with Application to Electromagnetic Absorbers[J]. European Journal of Physics,2008,29:721-734
    [65] F. Costa, A. Monorchio, G. Manara. Analysis and Design of Ultra Thin ElectromagneticAbsorbers Comprising Resistively Loaded High Impedance Surfaces[J]. IEEE Transactions onAntennas and Propagation,2010,58:1551-1558
    [66] Y. q. Pang, Y. j. Zhou, J. Wang. Equivalent Circuit Method Analysis of the Influence ofFrequency Selective Surface Resistance on the Frequency Response of MetamaterialAbsorbers[J]. Journal of Applied Physics,2011,110:023704
    [67] S. Kato, T. Yasuzumi, O. Hashimoto, et al. An Experimental Equation on Surface Impedance ofShort Carbon Fibers and Apply to Wave Absorber[J]. Microwave and Optical TechnologyLetters,2011,53:166-169
    [68] A. Noor, Z. Hu. Dual Polarised Wideband Metamaterial Radar Absorbing Screen Based onResistive Hilbert curve Array[J]. Electronics Letters,2009,45:130-131
    [69] J. Yang, Z. Shen. A Thin and Broadband Absorber Using Double-square Loops[J]. IEEEAntennas and Wireless Propagation Letters,2007,6:388-391
    [70] L. K. Ford, B. Chambers. Improvement in the Low Frequency Performance of GeometricTransition Radar Absorbers Using Square Loop Impedance Layers[J]. IEEE Transactions onAntennas and Propagation,2008,56:133-141
    [71] K. L. Ford, B. Chambers. Application of Impedance Loading to Geometric Transition RadarAbsorbent Material[J]. IEEE Transactions on Electromagnetic Compatibility,2007,49:339-345
    [72] D. G. Holtby, K. L. Ford, B. Chambers. Geometric Transition Radar Absorbing Material Loadedwith a Binary Frequency Selective Surface[J]. IET Radar, Sonar&Navigation,2011,5:483-488
    [73] F. Costa, A. Monorchio. A Frequency Selective Radome With Wideband AbsorbingProperties[J]. IEEE Transactions on Antennas and Propagation,2012,60:2740-2747
    [74] F. Costa, S. Genovesi, A. Monorchio. A Frequency Selective Absorbing Ground Plane forLow-RCS Microstrip Antenna Arrays[J]. Progress In Electromagnetics Research,2012,126:317-332
    [75] B. A. Munk, P. Munk, J. Pryor. On Designing Jaumann and Circuit Analog Absorbers (CAAbsorbers) for Oblique Angle of Incidence[J]. IEEE Transactions on Antennas and Propagation,2007,55:186-193
    [76] B. Zhu, Z. Wang, C. Huang, et al. Polarization Insensitive Metamaterial Absorber with WideIncident Angle[J]. Progress In Electromagnetics Research,2010,101:231-239
    [77] Y. Qiu Xu, P. Heng Zhou, H. Bin Zhang, et al. A Wide-angle Planar Metamaterial AbsorberBased on Split Ring Resonator Coupling[J]. Journal of Applied Physics,2011,110:044102
    [78] B. Wang, T. Koschny, C. Soukoulis. Wide-angle and Polarization-independent ChiralMetamaterial Absorber[J]. Physical Review B,2009,80:033108
    [79] O. Luukkonen, F. Costa, C. R. Simovski, et al. A Thin Electromagnetic Absorber for WideIncidence Angles and Both Polarizations[J]. IEEE Transactions on Antennas and Propagation,2009,57:311-31259
    [80] S. A. Tretyakov, S. I. Maslovski. Thin Absorbing Structure for All Incidence Angles Based onthe Use of a High-impedance Surface[J]. Microwave and Optical Technology Letters,2003,38:175-178
    [81] A. Tennant, B. Chambers. A Single-Layer Tuneable Microwave Absorber Using an ActiveFSS[J]. IEEE Microwave and Wireless Components Letters,2004,14:46-47
    [82] Y. Kotsuka, K. Murano, M. Amano, et al. Novel Right-Handed Metamaterial Based on theConcept of Concept of “Autonomous Control System of Living Cells” and Its AbsorberApplications[J]. IEEE Transactions on Electromagnetic Compatibility,2010,52:556-565
    [83] B. Zhu, Y. Feng, J. Zhao, et al. Polarization Modulation by Tunable ElectromagneticMetamaterial Reflector/Absorber[J]. Optics Express,2010,18:23196-23203
    [84] C. Mias, J. H. Yap. A Varactor-Tunable High Impedance Surface With aResistive-Lumped-Element Biasing Grid[J]. IEEE Transactions on Antennas and Propagation,2007,55:1955-1962
    [85] F. Costa, A. Monorchio, G. P. Vastante. Tunable High-Impedance Surface With a ReducedNumber of Varactors[J]. IEEE Antennas and Wireless Propagation Letters,2011,10:11-13
    [86] J. Hao, W. Yan, M. Qiu. Super-reflection and Cloaking Based on Zero Index Metamaterial[J].Applied Physics Letters,2010,96:101109
    [87] W. X. Jiang, T. J. Cui. Radar Illusion Via Metamaterials[J]. Physical Review E,2011,83:026601
    [88] N. I. Zheludev. The Road Ahead for Metamaterials[J]. Science,2010,328:582-583
    [89] W. Lu, J. Jin, Z. Lin, et al. A simple Design of an Artificial Electromagnetic Black Hole[J].Journal of Applied Physics,2010,108:064517
    [90] Q. Cheng, T. J. Cui, W. X. Jiang, et al. An Omnidirectional Electromagnetic Absorber Made ofMetamaterials[J]. New Journal of Physics,2010,12:063006
    [91] H. Oraizi, A. Abdolali, N. Vaseghi. Application of Double Zero Metamaterials as RadarAbsorbing Materials for the Reduction of Radar Cross Section[J]. Progress In ElectromagneticsResearch,2010,101:323-337
    [92] W. Ren, Y. Nie, X. Xiong, et al. Enhancing and Broadening Absorption Properties of FrequencySelective Surfaces Absorbers Using FeCoB-based Thin Film[J]. Journal of Applied Physics,2012,111:07E703
    [93] Z. Wei-Ren, Z. Xiao-Peng, B. Shi, et al. Highly Symmetric Planar Metamaterial AbsorbersBased on Annular and Circular Patches[J]. Chinese Physics Letters,2010,27:014204
    [94]赵德林,宋耀良,朱艳萍.一种新的基于谐振型高阻抗表面的微波吸波屏[J].南京理工大学学报(自然科学版),2010,34:136-140
    [95] C. Gu, S. B. Qu, Z.-B. Pei, et al. A Metamaterial Absorber with Direction-selective andPolarisation-insensitive Properties[J]. Chinese Physics B,2011,20:037801
    [96]鲁磊,屈绍波,夏颂,等.极化无关双向吸收超材料吸波体的仿真与实验验证[J].物理学报,2013,62:103701
    [97]师小强,弓巧侠,段智勇,等.一种宽频带超材料吸波体的设计及其特性[J].光子学报,2013,2013:405-409
    [98]廖章奇,聂.彦,王.鲜,等.频率选择表面谐振特性在吸波材料中的应用[J].电子元件与材料,2010,29:44-47
    [99]张朝发,李焕喜.含容性频率选择表面铁氧体吸波材料的实验研究[J].功能材料与器件学报,2008,40:417-410
    [100]刘海韬,程海峰,王军,等.利用容性频率选择表面改善单层雷达吸波材料吸波性能[J].功能材料与器件学报,2010,16:143-147
    [101]陈良,徐彬彬,张世鸿,等.电阻贴片频率选择表面(FSSR)的吸波性能研究[J].电波科学学报,2006,21:548-552
    [102]程用志,聂彦,龚荣洲,等.基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计[J].物理学报,2013,62:044103
    [103]李有权,王利伟,张光甫,等.集总电阻加载的超薄吸波材料设计[J].国防科技大学学报,2009,31:58-61
    [104]王莹,程用志,聂彦,等.基于集总元件的低频宽带超材料吸波体设计与实验研究[J].物理学报,2013,62:074101
    [105]顾超,屈绍波,裴志斌,等.基于电阻膜的宽频带超材料吸波体的设计[J].物理学报,2011,60:087802
    [106]杨帆,伍瑞新,赵天恩,等.随机分布频率选择表面对材料电磁波吸收性能影响的实验研究[J].微波学报,2007,23:29-32
    [107]超材料吸波体设计及其雷达散射截面分析.超材料吸波体设计及其雷达散射截面分析[J].电波科学学报,2012,1219-1224
    [108]杨欢欢,曹祥玉,高军,等.基于超材料吸波体的低雷达散射截面微带天线设计[J].物理学报,2013,62:064103
    [109]徐欧,朱敏,徐金平,等.双层方环可电控FSS吸波屏设计和实验研究[J].电波科学学报,2009,24:837-844
    [110] R. Liu, T. Cui, D. Huang, et al. Description and Explanation of Electromagnetic Behaviors inArtificial Metamaterials Based on Effective Medium Theory[J]. Physical Review E,2007,76:026606
    [111] X. Chen. Inverse Problems in Electromagnetics[D]. Unite State: Massachusetts Institute ofTechnology,2005
    [112] D. R. Smith, D. C. Vier, T. Koschny, et al. Electromagnetic Parameter Retrieval fromInhomogeneous Metamaterials[J]. Physical Review E,2005,71:036617
    [113] D. R. Smith. Analytic Expressions for the Constitutive Parameters of MagnetoelectricMetamaterials[J]. Physical Review E,2010,81:036605
    [114] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from Conductors and EnhancedNonlinear Phenomena[J]. IEEE Transactions on Microwave Theory and Techniques,1999,1999:2075-2084
    [115] T. J. Cui, D. R. Smith, R. Liu. Metamaterials Theory, Design and Applications[J]. Springer,2010,
    [116] J. Zhou, E. N. Economon, T. Koschny, et al. Unifying approach to left-handed materialdesign[J]. OPTICS LETTERS,2006,31:3620-3622
    [117] C. C. Chen. Transmission Through a Conducting Screen Perforated Periodically withApertures[J]. IEEE Transactions on Microwave Theory and Techniques,1970,18:627-622
    [118] K. W. Whites, R. Mittra. An Equivalent Boundary-Condition Model for Lossy Planar PeriodicStructures at Low Frequencies[J]. IEEE Transactions on Antennas and Propagation,1996,44:1617-1629
    [119] H. Lamb. On Reflection and Transmission of Electric Waves by a Metallic Grating[J].Proceeding of the London Mathematical Society,1898,523:207-224
    [120] G. G. Macfarlane. Sruface Impedance of an Infinite Parallel-wire Grid at Oblique Angles ofIncidence[J]. Journal of the Institution of Electrical Engineers-Part IIIA: Radiolocation,1947,93:1523-1527
    [121] W. E. Groves. Transmission of Electromagnetic Waves through Pairs of Parallel Wire Grids[J].Journal of Applied Physics,1953,24:845-854
    [122] E. A. Lewis, J. P. Casey. Electromagnetic Reflection and Transmission by Gratings ofResistive Wires[J]. Journal of Applied Physics,1952,23:605-608
    [123] S. A. Tretyakov. Analytical Modeling in Applied Electromagnetics[M]. Boston: Artech House,2003
    [124] O. Luukkonen. Artificial Impedance Surfaces[D]. Finland: TKK Helsinki University ofTechnology,2009
    [125] J. B. Pendry, D. Schurig, D. R. Smith. Controlling Electromagnetic fields[J]. Science,2006,312:1780-1782
    [126] D. Schurig, J. J. Mock, B. J. Justice, et al. Metamaterial Electromagnetic Cloak at MicrowaveFrequencies[J]. Science,2006,314:977-980
    [127] J. A. Kong. Electromagnetic Wave Theory[M]. New York: Wiley,1990
    [128] N. Marcuvitz. Waveguide Handbook[M]. New York: McGraw-Hill Book Company,1986
    [129] J. r. Musil, F. Zacek. Microwave Measurements of Complex Permittivity by Free SpaceMethods and Their Applications[M]. New York: Elsevier,1986
    [130] E. L. Ginzton. Microwave Measurements[M]. New York: McGraw-Hill,1957
    [131] R. Collier, D. Skinner. Microwave Measurements(3rd Edition)[M]. London: Institution ofEngineering and Tenology,2007
    [132] F. Costa, S. Genovesi, A. Monorchio. On the Bandwidth of High-impedance FrequencySelective Surfaces[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:1341-1344
    [133] K. N. Rozanov. Ultimate Thickness to Bandwidth Ratio of Radar Absorbers[J]. IEEETransactions on Antennas and Propagation,2000,48:1230-1234
    [134] Y. C. Qing, W. C. Zhou, S. Jia, et al. Electromagnetic and Microwave Absorption Properties ofCarbonyl Iron and Carbon Fiber Filled Epoxy/silicone Resin Coatings[J]. Applied Physics A,2010,100:1177-1181
    [135] J.-W. Kim, S.-S. Kim. Microwave Absorbers of Two-layer Composites Laminate for WideOblique Incidence Angles[J]. Materials&Design,2010,31:1547-1552
    [136] S. K. Goudos. Design of Microwave Broadband Absorbers Using a Self-adaptive DifferentialEvolution Algorithm[J]. International Journal of RF and Microwave Computer-AidedEngineering,2009,19:364-372
    [137] T. Liu, P. H. Zhou, J. L. Xie, et al. Extrinsic Permeability of Fe-based Flake Composites fromIntrinsic Parameters: A comparison Between the Aligned and Random Cases[J]. Journal ofMagnetism and Magnetic Materials,2012,324:519-523
    [138] T. Liu, P. H. Zhou, J. L. Xie, et al. The Hierarchical Architecture Effect on the MicrowaveAbsorption Properties of Cobalt Composites[J]. Journal of Applied Physics,2011,110:033918
    [139] J. D. Jackson. Classical Electrodynamics[M]. New York: Wiley,1999
    [140] P. G. Luan. Power Loss and Electromagnetic Energy Density in a Dispersive MetamaterialMedium[J]. Physical Review E,2009,80:046601
    [141] Shivanand, K. J. Webb. Electromagnetic Field Energy Density in Homogeneous NegativeIndex Materials[J]. Optics Express,2012,20:11370-11381
    [142] T. J. Klemmer, K. A. Ellis, L. H. Chen, et al. Ultrahigh Frequency Permeability of SputteredFe–Co–B thin films[J]. Journal of Applied Physics,2000,87:830-833
    [143] M. Munakata, S. Aoqui, M. Yagi. B-Concentration Dependence on Anisotropy Field of CoFeBThin Film for Gigahertz Frequency Use[J]. IEEE Transactions on magnetics,2005,41:3262-3264
    [144] X. Chen, Y. G. Ma, C. K. Ong. Magnetic Anisotropy and Resonance Frequency of PatternedSoft Magnetic Strips[J]. Journal of Applied Physics,2008,104:013921
    [145] G. Chai, D. Xue, X. Fan, et al. Extending the Snoek’s Limit of Single Layer Film in (CoZrCu)Multilayers[J]. Applied Physics Letters,2008,93:152516
    [146] T. Dastagir, W. Xu, S. Sinha, et al. Tuning the Permeability of Permalloy Films for On-chipInductor Applications[J]. Applied Physics Letters,2010,97:162506
    [147] S. Ohnuma, H. Fujimori, T. Masumoto, et al. FeCo–Zr–O Nanogranular Soft-magnetic ThinFilms With a High Magnetic Flux Density[J]. Applied Physics Letters,2003,82:946-948
    [148] Y. Liu, C. Y. Tan, Z. W. Liu, et al. FeCoSiN Film with Ordered FeCo Nanoparticles Embeddedin a Si-rich Matrix[J]. Applied Physics Letters,2007,90:112506
    [149] G. Lu, H. Zhang, J. Q. Xiao, et al. Influence of Sputtering Power on the High FrequencyProperties of Nanogranular FeCoHfO thin films[J]. Journal of Applied Physics,2011,109:07A327
    [150] L. Zhen, Y. X. Gong, J. T. Jiang, et al. Synthesis of CoFe/Al2O3Composite Nanoparticles asthe Impedance Matching Layer of Wideband Multilayer Absorber[J]. Journal of AppliedPhysics,2011,109:07A332
    [151] H. Lu, Y. Jiang, J. Yang, et al. Microwave Magnetic Properties of Laminates with ThinFeCoBSi Films[J]. Journal of Wuhan University of Technology-Mater Sci Ed,2011,26:857-860
    [152] H.-P. Lu, M.-G. Han, L. Cai, et al. Fabrication and Electromagnetic Wave AbsorptionProperties of Amorphous Ni-P Nanotubes[J]. Chinese Physics B,2011,20:060701
    [153] B. Zhu, Y. Feng, J. Zhao, et al. Switchable Metamaterial Reflector/Absorber for DifferentPolarized Electromagnetic Waves[J]. Applied Physics Letters,2010,97:051906

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700