滑动弧等离子体降解模拟有机废水的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑动弧放电是常温常压下的等离子体放电技术,因其处理效率高,操作简便,与环境兼容等优点而引起研究者的广泛关注。气体通过放电反应直接或者间接产生羟基自由基、臭氧、紫外线和高能冲击波,从而有效降解难生化降解的污染物。进入90年代以来国内外先后有利用滑动弧放电技术治理H_2S、SO_2、N_2O等废气的研究报道,但国内尚未有利用滑动弧放电治理废水的研究或报道。气液两相滑动弧等离子体技术有效解决了废水中难降解有机污染物的治理问题。该方法以氧气或空气作为载气来源,废水和压缩气体通过雾化喷嘴形成待处理的废水水雾,气液混合物推动起弧端形成的滑动电弧向下游移动产生气液两相滑动弧放电,产生的高能电子、紫外线、臭氧、高压激波、OH和O等活性粒子直接作用于被处理废水中的大分子有机污染物,使之开环达到降解的目的。
     为寻求气液两相滑动弧等离子体降解有机污染物的最佳工作条件,本文以苯酚和甲基紫的水溶液为研究对象,以滑动弧技术为实验手段,通过改变各种实验参数来探索常温常压下低温等离子体放电技术对水相中有机污染物的降解机制。
     实验表明,载气种类、电极参数、气液混合比和是否添加催化剂Fe~(2+)等因素,对滑动弧降解有机物的效果均有一定影响。在载气为空气,气流量为0.2m~3/h时,苯酚的降解效果最好,降解后COD值仅为降解前的8.68%。甲基紫溶液在经过滑动弧等离子体的降解后可自行分解达到自净目的,经过48小时的放置观察到降解产物中有沉淀生成,而其上层溶液的COD值则接近为零,肉眼可见降解后的溶液变得清澈透明。
Gliding arc is the subject of renewed interest, which discharged in normal temperature and pressure. The applications of plasma are constantly increasing in the field of environmental protection in recent years. The arc glides between divergent electrodes in a gas flow at atmospheric or higher pressures. Non-thermal plasma processing using gas-liquid two phase gliding arc discharge has been investigated as an alternative method for the degradation of organic compounds contained in aqueous solution. This technique is strongly attractive due to its particular working conditions (ambient temperature and atmospheric pressure). Its application is related to the chemical properties of the active radicals formed in the discharge. This paper discusses the composing mechanism of these radicals and also the function of them.
    Gas-liquid two phase gliding arc discharge can degrade organic contaminants. In order to fix on the best working condition we did lots of experiments. Use gliding arc to degrade the mixed liquor, through changing all kinds of experimental parameters. This article takes the phenol and the gentian violet solution as example to show the principles of using non-thermal plasma to degrade organic pollutant at normal temperature and atmospheric pressure.
    The experiment indicated that, carrier gas type, electrode parameter, gas-fluid mixture ratio and catalyst Fe~(2+) etc. may all effect on the degradation. And when using air as the carrier gas the velocity is 0.2m~3/ h, the degeneration effect of phenol is best. The COD value is only 8.68% left. However, the degeneration effect of gentian violet is even better, once the liquor go through the region of plasma it may decompose voluntarily. There is some deposition on the bottom of the container 48 hours after degradation, and the upper bed clear solution is lucidly, its COD value is almost zero.
引文
[1] 潘世兵,曹利平,张建立.中国水质管理的现状、问题及挑战.水资源保护,第21卷第2期:2005年3月:59-62.
    [2] 高镔,罗蓉.论科学发展观与水资源可持续利用.经济体制改革,2005(3).128-131.
    [3] 曾维华,杨志峰,蒋勇.水资源可再生能力刍议[J].水科学进展,2001,12(2):276-279.
    [4] 曾维华,张永军,祝捷,杨志峰.城市水资源社会再生能力评价信息发布系统.水资源保护:2004年第6期:12-15.
    [5] 王金南,葛察忠,张勇.中国水污染防治体制与政策[M].北京:中国环境科学出版社,2003.
    [6] 中国水资源公报 2000-2003.
    [7] 2004年北京市水资源公报.
    [8] 石秋池.学习新水法依法保护水资源.水资源保护:2003年第一期:5-9.
    [9] 李伯昌,施慧燕.长江口河段水环境现状分析.水资源保护:VOI.21 No.1 Jan.2005:39-44.
    [10] 朱惠刚.水中有机化学污染物对人体影响评价[J].中国环境科学,1987,7(4):67-8.
    [11] 沈敏.工业废水的处理.一重技术.2004年第一期:118-119.
    [12] 赵苏,杨合,孙晓巍.高级氧化技术机理及在水处理中的应用进展.能源环境保护,2004,18(3).-5-8,13
    [13] 曹霞,欧阳峰.卫生填埋场垃圾渗滤液的处理技术.中国测试技术,2004,30(1).-38-39.
    [14] 冯玉军,操卫平,李白树,朱勇.物化法处理焦化废水及回用新技术.能源环境保护,2005,19(2).-39-42.
    [15] 江萍,胡九成.曝气生物滤池处理生活污水动力学研究[J].南昌大学学报(工科版),2002,24(1):62-67.
    [16] 郭天鹏,汪诚文,陈吕军,等.升流式曝气生物滤池深度处理城市污水的工艺特性[J].环境科学,2002,23(1):58-61.
    [17] 张彭义,祝万鹏.臭氧水处理技术的进展.环境科学进展,1995,3(6).-18-24.
    [18] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    [19] Shimoiiziaka. L. S. Patent: 4094804, 1978.
    [20] 陈琳,刘国光,吕文英.臭氧氧化技术发展前瞻.环境科学与技术,2004,27(B08).-143-145,161.
    [21] Okamoto Ken-ichi et al.Bull, chem. Soc. Jpn..198558:2015~2022.
    [22] Krentler B. IACS, 1978.78:4317.
    [23] GR Peyton, F Y Huang, J H Burleson, et al. Destruction of pollutant ion water with ozone in combination with ultraviolet radiation. Wat. Res., 1982, 16: 448~453.
    [24] D.C. Schemelling, K A Gray. Photocatalytic transformation and mineralization of 2, 4, 6, 2 trinitrotoluene (TNT) in TiO2 slurries. Wat. Res., 1995, 29: 2651~2662.
    [25] 高洁,徐桂芹.光化学氧化技术去除水中有机污染物的试验研究.环境污染与防治.2002,24(5).-272-273,281.
    [26] 汪军,王毓芳.光催化降解有机污染物的进展.污染防治技术,1998,11(3).-157-159.
    [27] SUSLICK K S. Sonochemistry [J].Science, 1990,47:1 439~1 443.
    [28] DRUVERS D,DE B R,DE V A et al.Sonolysis of trichloroethylene in aqueous solution: volatile organic intermediates[J]. Ultrasonics Sonochemistry, 1996, 3(2): 83~90.
    [29] DRUVEBS D,VAN H,KIM LNI, BRAY L. Sonolysis of an aqueous mixture of trichloroethylene [J].Waste Management, 1997,(1):115~121.
    [30] CATAIIO W J,JHOMAS J. Sonochemical dechlorination of hazardous wastes in aqueous systems [J].Waste Management, 1995,15 (4):303~309.
    [31] PETRIER C. Ultrasound and Environment: sonochemical destruction of chloroaromatic derivatives [J].Environ. Sci. & Technol, 1998, 32:1316~1318.
    [32] DAVIDB, LHOTEM, FAUREV. Ultrasonic and photochemical degradation of chlorpropham and 3-chioro aniline in aqueous solution [J]. Water Research, 1998, 32(8):2451~2461.
    [33] ENTEZARI M H, KRUUS P, OTSON R. Effect of frequency on sonochemical reactions Ⅲ: dissociation of carbon disulfide [J]. Ultrasonics Sonochemistry, 1997, 4(1):49~64.
    [34] HIRM K, NAGATA Y, MAEDA Y. Decomposition of chlorofluomcari~ns and hydrofluo~d, owns in water by ultrasonic irradi—at ion [J]. Ultrasonic Sonochemistry, 1996, 3(3): 205~207.
    [35] OTSON I M, BARBIER P E Oxidation Kinetics of natural organic matter by sonolysis and ozone [J].Water re. arch, 1994, 28(6):1383~1391.
    [36] LORIMER J P, MASON J J, CUTHBERT J C. Effect of ultrasound on the degradation of aqueous native dextran [J]. Ultrasonics Sonochemistry, 1995,2(1):55~62.
    [37] PETBIEBE. Sonochemical degradation of phenol in dilute aqueous solution [J]. Phy. Chem., 1994, 98:10 514~10 520.
    [38] TRABELSI E AIT-LYAZIDI H. BATSIMBA B, et al. Oxidation of phenol in wastewater by sonoelectrochemistry [J]. Chem. Eng. Sci., 1996, 51(10):1857~1865
    [39] KU Y, CHEN K Y, LEE K C. Ultrasonic destruction of 2-ehtorophenol in aqueous solution [J]. Water Research, 1997, 31 (4):929~935.
    [40] 蒋永生,唐华龙,超声波在废水处理中的应用研究现状.重庆工商大学学报:自然科学版,2005,22(1).-25-29.
    [41] Christopher J, Mufti no, Phillio E. Savage Total organic carbon disappearance kinetics for the supercritical water oxidation of monosubstituted phenols. Envimn. Sci. Technol.,1999,33:1911~1915
    [42] M. Jose Cocem, et al.Study of alternatives for the design of arm bile unit for wastewater treatment by supercritical water oxidation. Journal of Chemical Technology and Biotechnology, 2001,7G:257~264
    [43] Suresh A., Pishamdy, John W. Fisher. Supercritical water oxidation of solid paniculates. Ind. Eng. Chem. Res., 1996, 35: 4471~4478.
    [44] 洪荷芳,李正山,王欢.一种新兴的高级氧化技术——超临界水氧化法.环境污染治理技术与设备,2004,5(4).-62-65.
    [45] Chih-Ju G Jou, Tai H S. Application of granulated activated carbon packed-bed reactor in microwave radiation field to treat BTX [J] Chemosphere, 1998, 37(4): 685~698.
    [46] 傅敏,丁培道,李仁炳,吴四维.微波辐射处理亚甲基蓝染料废水的实验研究.水处理技术:2005,31(1),-29-31.
    [47] 冯建敏,邓宇,李兰青子.微波辐射法处理酸性黄染料废水的研究.印染助剂.2005,22(6).-25-26.
    [48] 涂文锋,胡兆吉,熊丽芳.废水处理中电凝聚气浮技术的研究现状与进展,过滤与分离,2005,15(2).-13-16.
    [49] 丁忠浩,吴迪,王刚.电凝聚法脱除高浓度印染废水CODcr研究.武汉科技大学学 报:自然科学版,2005,28(2).-179-181.
    [50] 钟发平,陶维正.泡沫镍生产中电沉积镍废水的膜分离技术.电池,2002年S1期.
    [51] 李天成,李鑫钢,王大为,袁绍军,姜斌,孙津生,冯霞.电沉积-生物膜复合工艺处理含Cr~(3+)废水.农业环境科学学报,2002年06期.
    [52] 王庆生,黄秉禾.提金含氰废水中电沉积铜的热力学分析[J].环境科学研究,1999,12(3):18-21.
    [53] 周荣丰,肖华,卢亮,马鲁铭,徐文英.催化铁内电解-生化法处理印染废水.环境科学研究,2005年02期.
    [54] 徐学基,诸定昌.气体放电物理.复旦大学出版社:上海 1996,8.
    [55] 吴石麟,吴爱华.等离子体技术简介.唐钢科技,1991:Vol(2).
    [56] Fridman, Alexander; Nester, Sergei; Kennedy; Lawrence A.; Saveliev, Alexei; Mutaf-Yardimci, Ozlem Gliding arc gas discharge Progress in Energy and Combustion Science Volume: 25, Issue: 2, April, 1998, pp. 211~231.
    [57] Kogelschatz, Y.; Eliasson, B. Chapter 26, Ozone Generation and Applications. In Handbook of Electrostatic Processes; Chang, J. S., Kelly, A. J., Crowley, J. M., Eds.; Marcel Dekker: New York, 1995.
    [58] Simek, M.; Clupek, M. Efficiency of Ozone Production by Pulsed Positive Corona Discharge in Synthetic Air. J. Phys. D: Appl. Phys. 2002, 35, 117.
    [59] Van Veldhuizen, E. M. Electrical Discharges for Environmental Purposes, Fundamentals, and Applications; Nova Science Publishers: Huntington, New York, 2000.
    [60] Vongle A, SeeligerR, Steenback M. Zeit.Fur Physik, 1933, 85:144.
    [61] Simek, M.; Clupek, M. Efficiency of Ozone Production by Pulsed Positive Corona Discharge in Synthetic Air. J. Phys. D: Appl. Phys. 2002, 35, 117.
    [62] Kanazawa S, Kogama M, Okazaki S et al. J. phys.D., 1988, 21:838.
    [63] Yokoyama T, Kogoma M, Kanazawa S et al.J.Phys.D., 1990,23:347.
    [64] Okazaki S, kogoma M, Uehara M et al. J. Phys.D., 1993, 26:889.
    [65] kogoma M, Okazaki S. J. Phys.D.,1994,27:1985.
    [66] Sawada Y, Okazaki S, Kogoma M. J. Phys.D., 1995, 28:1661.
    [67] Part R, Koh Y J, Babukutty Y et al. Polymer, 2000, 41:7355.
    [68] Roth J R, Lamussi M, Liu c.Proc.19th IEEE Int. Conl. on Plasma Science. Tampa, FL, 1-3 June 1992.
    [69] Roth J R, Industrial Plasma Engineering: Vol.1. Principles. Philadelphia, PA: Inst.of Physics Publ., 1995.
    [70] Gadri R, Roth J R, montie TC et al. Surf. Coatings. Technol., 2000, 131:528.
    [71] Montie TC, Wintenberg K K. Roth J R. IEEE Trans, Plasma Sci., 2000, 28:41.
    [72] Roth J R, Sherman DM, Gadri RB et al. IEEE Trans, Plasma Sci., 2000, 28:56.
    [73] Wintenberg K K, Roth J R,et al. IEEE Trans, Plasma Sci.,2000,28:64.
    [74] Gheranli N, Gouda G, Gat E et al. Plasma Sources Sci. Technol., 8000. 9:340.
    [75] Massiners F et al. J.Appl.Phys., 1998, 83:2950.
    [76] 张锐,刘鹏,詹如娟.大气压辉光放电研究现状及应用前景.物理,2004,33(6).-430-434.
    [77] A. Hickling, Modem Aspect of Electrochemistry 6, JO Bockris & BE Conway, London, 1971, p. 329.
    [78] A. Hickling, M.D. Ingrain, Trans. Faraday Soc. (60) 1964.783.
    [79] S.K. Sengupta, R. Singh, A.K. Srivastava, Indian J. Chem. 37 (1998).558.
    [80] K. Harada, T. Iwasaki, Nature 250 (1974).426.
    [81] 梅云霞,唐晓亮.低温等离子体及其在材料表面改性中的应用.现代物理知识,2004,16(3).-40-43.
    [82] Chang J S, et al. Corona Discharge Processes [J]. IEEE Trans. On Plasma Science, 1991,19(6):1152~1165.
    [83] Masuda S, et al. Control of NOx by Positive and Negative Pulsed Corona Discharge [J]. IEEE/IAS Annu. Conf,. 1986: 1173~1182.
    [84] 许德玄.磁电雾化电晕放电低温等离子体及其应用.中原工学院学报.2003,14(B08),-59-61.
    [85] 严国奇,潘理黎,黄小华.脉冲电晕放电烟气脱硫脱硝技术.环境技术,2005,23(3).-1-3,10.
    [86] 邱鸿恩,吴丹,王睿.烟气同时脱硫脱硝技术进展.化学工业与工程技术.2004,25(6).-1-5.
    [87] 姜雨泽.脉冲放电烟气脱硫脱硝技术的发展与探讨.电力设备,2005,6(5).-10-12.
    [88] 王凤春,董丽敏,池晓春,杨嘉祥.水对电晕放电脱硫脱硝影响的研究.哈尔滨理 工大学学报,2004,9(2).-79-81,89.
    [89] 石零.我国脉冲电晕法处理烟气技术研究.概述江汉大学学报:自然科学版,2003,31(3).-22-25.
    [90] 魏恩宗,高翔,骆仲泱,倪明江,岑可法.电晕放电烟气脱硝机理探讨.电站系统工程.2003,19(5).-1-3.
    [91] 越君科,王保健,等.脉冲电晕等离子体烟气脱硫试验研究.中国工程学,2002,4(2).-74-78.
    [92] 毛本将,王保健.等离子体烟气脱硫脱硝工业试验装置.电力环境保护,2000,16(3).-5-7.
    [93] 王文春,李学初.NO、N2气体中电晕放电高能电子密度分布的光谱实验研究.环境科学学报,1998,18(1).-51-55.
    [94] 张彦彬.放电等离子体法脱硫脱硝技术的基础实验研究.静电,1997,12(2).-2-4.
    [95] 周黎明,杨兰均.高压脉冲电晕放电脱硫脱硝技术.高电压技术,1995,21(3).-25-28.
    [96] 李胜利,李劲.脉冲电晕放电对印染废水脱色效果的实验研究.环境科学,1996,17(1).-13-15.
    [97] 李坚,马广大.电晕法处理VOCs的机理分析与实验.西安建筑科技大学学报,2000,32(1).-24-27.
    [98] 陈银生,张新胜,等.高压脉冲电晕放电等离子体降解废水中苯酚.环境科学学报,2002,22(5).-566-569.
    [99] 陈银生,张新胜,等.脉冲电晕放电等离子体降解苯酚废水的研究.化学反应工程与工艺,2002,18(4).-353-357.
    [100] 陈银生,张新胜,戴迎春,袁渭康.脉冲电晕放电等离子体降解4—氯酚废水的研究.高校化学工程学报,2003,17(1).-71-75.
    [101] 陈银生,张新胜,戴迎春,袁渭康.脉冲电晕放电等离子体降解含4—氯酚废水.化工学报,2003,54(9).-1269-1273.
    [102] 何正浩,邵瑰玮,王万林,李劲,李胜利,杨怀远,张瑜,杜建敏.脉冲电晕放电处理焦化废水的研究.高电压技术,2003,29(4).-29-31.
    [103] 邵瑰玮,李劲,王万林,李胜.脉冲电晕放电下焦化废水脱硫的研究.环境科学,2004,25(2).-77-80.
    [104] 邵瑰玮,李劲.脉冲电晕放电下焦化废水脱硫的研究.水处理信息报导, 2004(3).-62-62.
    [105] 沈拥军,储金宇.高压脉冲电晕放电等离子体降解水中苯酚.水处理技术,2005,31(3).-53-55.
    [106] 沈拥军,卫忠元,吴向阳.气中电晕放电对水中苯酚的氧化.江苏环境科技,2004,17(1).-4-5,8.
    [107] 王良,夏磊,唐晓亮,邱高.介质阻挡放电等离子体及其工业应用.现代物理知识.2005,17(2).-40-43.
    [108] 王晓明,史文祥,赵莹,唐宇,张建功,管磊.基于等离子体反应器的室内空气净化装置研究.环境污染治理技术与设备.2004,5(6).-90-93.
    [109] 赵之骏,吴玉萍,张仁熙,侯惠奇.高频介质阻挡放电烟气脱硫研究.化学报,2004,62(23).-2308-2312.
    [110] 商克峰,李杰,吴彦.非热等离子体脱硫脱氮技术的应用研究进展.中原工学院学报.2003,14(B08).-52-53,67.
    [111] 汤红,白敏冬,沈欣军,依成武.强电离介质阻挡放电脱硫的实验研究.中原工学院学报.2003,14(B08).-68-70,88.
    [112] 汤红,白希尧,沈欣军,胡又平,白敏冬.介质阻挡放电模拟烟气脱硫.大连海事大学学报:自然科学版,2003,29(2).-57-59.
    [113] 张春润,王斌,资新运,曲明辉,贺宇,姜大海.介质阻挡放电净化汽车尾气NOx和HC的应用研究.高技术通讯,2004,14(3).-92-96.
    [114] 赵文华,张旭东.电极尺寸对介质阻挡放电冷等离子体去除NO的影响.环境污染治理技术与设备,2004,5(1).-51-53.
    [115] 赵文华,张旭东.介质阻挡放电去除NO的实验研究.环境科学学报,2004,24(1).-107-110.
    [116] 赵文华,张旭东.反应器特征参数对介质阻挡放电去除NO的影响.清华大学学报:自然科学版,2003,43(11).-1515-1518.
    [117] 余刚,余奇,顾璠,徐益谦.介质特性对介质阻挡放电脱除NO影响试验研究.热能动力工程,2003,18(5).-475-477.
    [118] 刘彤,宋志民.介质阻挡放电等离子体直接分解NOx的影响因素.环境科学,2000,21(5).-80-82.
    [119] 孙琪,朱爱民,牛金海,徐勇,宋志民.介质阻挡放电引发氮氧化物等离子体化学 反应.物理化学学报,2005,21(2).-192-196.
    [120] 王良,唐晓亮,严治仁,邱高.介质阻挡放电参数诊断及对材料表面改性的研究.上海纺织科技,2005,33(6).-16-18.
    [121] 姜东峰,范国梁,宋崇林,黄齐飞,侯岩峰.介质阻挡放电低温等离子体对柴油机排放物的影响.燃烧科学与技术,2005,11(2).-131-136.
    [122] 吴玉萍,赵之骏,张建良,侯惠奇.介质阻挡放电降解苯乙烯的研究.中国环境科学,2003,23(6).-653-653.
    [123] 侯健,张振满.介质阻挡放电常压降解哈隆的研究.环境化学,1998,17(1).-45-49.
    [124] 王喜眉,田晓梅,孙奉娄.介质阻挡放电净化汽车尾气中CO的实验研究.山西科技,2005(1).-117-118.
    [125] 孙岩洲,邱毓昌,荣命哲,袁兴成.介质阻挡放电与介质阻挡电晕放电用于空气脱硫的比较.西安交通大学学报,2004,38(10).-1022-1025.
    [126] Kimberly Kelly—Wintenberg, Daniel M, Sherman, et al.Air filter sterilization using a one atmosphere uniform glow discharge plasma (the Vol filter). IEEE Trans. on Plasma Science, 2000, 28(Ⅰ):64~70.
    [127] 黄建军,余建华.射频气体放电激励电压电流及相位传感器的研制.仪表技术与传感器,2000(11).-1-2,8.
    [128] 李育崔,吴鼎.微波谐振腔气体放电的功率吸收与电子密度.福州大学学报:自然科学版,2001,29(3).-11-13.
    [129] 唐军旺,杨黄河.微波放电脱除NO.高等学校化学学报,2002,23(4).-632-635.
    [130] I.V. Kuznetsova, N. Y. Kalashnikov, A. F. Gutsol, A. A. Fridman, and L. A. Kennedy. Effect of "overshooting" in the transitional regimes of the low-current gliding arc discharge. JOURNAL OF APPLIED PHYSICS: VOLUME 92, NUMBER 8, 15 OCTOBER 2002.
    [131] Moussa, David; Brisset, Jean-Louis. Disposal of spent tributyl phosphate by gliding arc plasma Journal of Hazardous Materials Volume: 102, Issue: 2-3, August 29, 2003, pp. 189~200.
    [132] A. Czernichowski, C. Fouillac, I. Czernichowski, H. Lesueur, J. Chapelle, Procede de traitement electrochimique d'un gaz contenant de l'hydrogene sulfure, French Pat. No. 89.05356 (1989).
    [133] A. Czernichowski, Pure Appl. Chem. 66 (6) (1994) 1301-1310.
    
    [134] A. Czernichowski, T. Czech, Pol. J. Appl. Chem XXXIX (z4), 585-590.
    
    [135] B. Benstaali, D. Moussa, A. Addou, J.L. Brisset, Eur. Phys. J. AP 4 (1998) 171-179.
    
    [136] B. Benstaali, D. Moussa, L. Sauvage, A. Addou, B.G Cheron, J.L. Brisset, in: T. Herbert, U. Murphy (Eds.), Proceedings of the Sixth International Symposium on High Pressure Low Temperature Plasma Chemistry, Hakone VI, Cork, Ireland, 1998, pp. 41-46.
    [137] D. Moussa, F. Moras, B. Benstaali, A. Addou, J.L. Brisset, Bull. Union. Phys. 811 (1999) 223-236.
    [138] B. Benstaali, P. Boubert, B.G. Cheron, A. Addou, J.L. Brisset, in: Proceedings of the 14th International Symposium on Plasma Chememistry, vol. 2, Prague, Czech Republic, 1999, pp. 939-944.1.
    [139] B. Benstaali, P. Boubert, B.G Cheron, A. Addou, J.L. Brisset, Plasma Chem. Plasma Proc. 22 (4) (2002)553-571.
    [140] Lesueur,H., Czernichowski,A., Chapelle,J., Production of Syntheic (CO+H2) Gas from CH4 Oxidation by CO2 in a Giliding-discharge Electroreactor. Journal de Physique 51:C557~C564, 1990.
    [141] Pellerin,S., Richard,E, Chapelle.J., Cormier.J.- M.and Musiol,K. :Heat String Model of Momthermal Regimes of Gliding Arc Discharge in Air Flow. Journal of Applied Hysics.87:1632~1641, 2000.
    [142] Czernibowski,A., Nassar,H., Ranaivosoloarimanana,A., Fridman,A.A., Simek.M., , Musiol,K., Pawelec, E. and Dittrichova,L.: Spectral and Electrical Diagnostics ofGliding Arc. Acta Physical Polonica A 89:595-603, 1996.
    [143] Mutaf-Yardimci, O., Saveliev, A.V., Fridman, A.A. and Kennedy, L.A.: Thermal and Nonthermal Regimes of Gliding Arc Discharge in Air How. Journal of Applied Physics. 87:1632-1641, 2000.
    [144] Frank-Kamenetski, D.A.. Diffusion and heat transfer in chemical kinetics. Moscow, Nauka, p491, 1987.
    [145] Dalaine V., Cormier J.M., Lefaucheux P.. A gliding discharge applied to H2S destruction. Journal Applied Physics. 1998, 83(5):2435-2441.
    
    [146] Benstaali B., Boubert P., Cheron B.G, Addou A.,and Brisset J.L.. Density and rotational temperature measurements of the OH° and NO° radicals produced by a gliding arc in humid air. Plasma Chemistry and Plasma Processing, 2002, 22(4): 553~571.
    [147] Joshi, A. A.; Locke, B. R.; Arce, P.; Finney, W. C. Formation of Hydroxyl Radicals, Hydrogen Peroxide and Aqueous Electrons by Pulsed Streamer Corona Discharge in Aqueous Solution. J.Hazard. Mater. 1995, 41, 3.
    [148] Sato, M.; Ohgiyama, T.; Clements, J. S. Formation of Chemical Species and Their Effects on Microorganisms Using a Pulsed High-Voltage Discharge in Water. IEEE Trans. Ind. Appl.1996, 32, 106.
    [149] Sun, B.; Sato, M.; Harano, A.; Clements, J. S. Non-Uniform Pulse Discharge-Induced Radical Production in Distilled Water. J. Electrostatics 1998, 43, 115.
    [150] Sun, B.; Sato, M.; Clements, J. S. Optical Study of Active Species Produced by a Pulsed Streamer Corona Discharge in Water. J. Electrostatics 1997, 39, 189.
    [151] Sunka, P.; Babicky, V.; Clupek, M.; Lukes, E; Simek, M.; Schmidt, J.; Cernak, M. Generation of Chemically Active Species by Electrical Discharges in Water. Plasma Sources Sci. Technol.1999, 8, 258.
    [152] 孙亚兵,任兆杏.非平衡态等离子体技术在环境保护领域的应用.环境科学研究,Vol.26.1990:534-541.
    [153] Eliasson B and Kogelschatz U. 1991 IEEE Trans. Plasma Sci.19 1063~77.
    [154] Chang J S, Lawless P A and Yamamoto T 1991 IEEE Trans. Plasma Sci. 19 1152~66.
    [155] Kulikovski A A. 1997 IEEE Trans. Plasma Sci. 25 439~46.
    [156] Naidis G V 1997 J. Phys. D: Appl. Phys. 30 1214~18.
    [157] Staehelln J and Holgne J .1985 Environ. Sci. Technol. 19 1206.
    [158] Goheen S C, Mong G M, Pillay G and Camaioni D M 1994 First Int. Conf. Advanced Oxidation Technology for Water and Air Remediation (London, Ontario, 1994) pp 83~4.
    [159] Bailey P S 1972 Reactivity of ozone with various organic functional groups important to water purification Ozone in Water and Wastewater Treatment ed F L Evans (Ann Arbor, MI: Ann Arbor Science) ch 3.
    [160] Bailey P S 1978 Ozonation of Organic Chemistry: Olefinic Compounds vol. 1. (New York: Academic).
    [161] Singer P C and Gurol M D 1983 Water Res. 17 1163.
    [162] Gurol M D and Singer P C 1983 Water Res. 17 1171.
    
    [163] Sharma A K, Locke B R, Arce P and Finney W C 1993 Hazardous Waste & Hazardous Materials 10 209.
    [164] M. Kurahashi, S. Katsura and A. Mizuno, Radical Formation Due to Discharge inside Bubble in Liquid,Journal of Electrostatics,1997,42,93.
    [165] M. sato, T. Ohgiyama and J. S. clements, Formation of chemical Species and Their Effects on Microorganisms Using a Pulsed High-voltage Discharge in Water, IEEE Trans. Ind.Appl, 1996,32(1),106.
    [166] B.sun, M. Sato and J.S. Clements, Use of a Pulsed High-voltage Discharge for Removal of Organic Compounds in Aqueous Solution, J. Phys. D: Appl. Phys., 1999, 32, 1908.
    [167] AM Anpilov, E M Barkhudarov, Yu B Bark, Yu V Zadiraka, M Christof, Yu N Kozlov, I A Kossyi, V A Kop'ev, V P Silakov, M I Taktakishvili, S M Temchin. Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J. Phys. D: Appl. Phys. 34(2001)993-999.
    [168] Szew czuk A , Siew in skiM , Slow in sk a R. Colorimetric assay of penicillin amides activity using phenylacetyl-am inobenzoic acid as substrate[J ]. A nal Biochem, 1980, 103: 166-169.
    [169] Horton RM. Methods in Molecular Biology, vol 15: PCR Protocols [M ]. New Jersey: Humana Press, 1993. 251-263.
    [170] Jinzhang Gao, Yongjun Liu, Wu Yang, Lumei Pu, Jie Yu, Quanfang Lu. Oxidative degradation of phenol in aqueous electrolyte induced by plasma from a direct glow discharge Plasma Sources Sci. Technol. 12 (2003) 533-538.
    [171] Bing Sun, Masayuki Sato, J S Clements. Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution. J. Phys. D: Appl. Phys. 32 (1999) 1908-1915.
    [172] Halliwell B and Gutteridge J. M C. 1985 Free Radicals in Biology and Medicine (Oxford: Oxford University Press).
    [173] Nickelson M G, Cooper W J, Kurucz C N and Waite T D 1992 Environ. Sci. Technol. 26 144.
    [174] Carey J H. 1992 Water Poll. Res. J. Canada 27.
    [175] Kokufuta E, Shibasaki T, Sodeyalna T and Harada K 1985Chem. Lett. 1569.
    [176] Joschek H I and Miller S I. 1966 J. Am. Chem.Soc. 88 (14) 3269.
    [177] Sharifian H and Kirk DW. 1986 J. Electrochem. Soc. 133 921.
    [178] Andresen P and Luntz A C. 1980 J. Chem. Phys. 72 5842.
    [179] Luntz A C and Andresen P. 1980 J. Chem. Phys. 72 5851.
    [180] 徐积功.有机化学基础[M].北京:高等教育出版社,1987,597-585.
    [181] 朱承柱.等离子体技术降解水相中有机污染物的机理研究.复旦大学硕士学位论文,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700