飞行模拟器的运动规划与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行模拟器作为一种重要的航空仿真设备,应用于飞行员的训练,可以模拟飞行器的各种复杂的运动状态,为驾驶者提供真实飞行的感觉。与用真实飞机进行飞行试验相比,飞行模拟器具有可控性,无破坏性、经济性等优点。
     本文中的六自由度飞行模拟器采用Stewart机构作为运动平台,并采用液压驱动方式。通过控制6根阀控液压缸的长度及运动速度来改变上平台的位置和姿态,并可提供6个自由度的瞬时过载功能,从而实现模拟飞机俯仰、滚转、偏航、升降、纵向和侧向移动等运动特征及其动感。
     本文通过并联机器人的反解方法,考虑Stewart工作空间的影响,利用MATLAB编制运动学反解程序,计算出Stewart六种基本运动下各杆件的长度变化,为实现运动轨迹规划控制提供了基础。应用Pro/ENGINEER软件进行运动仿真,通过对机构进行运动学与动力学分析,借助耦合强度的概念,分析了机构的耦合特性,为实现机构的控制解耦奠定了基础。最后应用PID控制策略对单通道阀控缸系统进行了控制实验研究。
     通过对Stewart机构及其电液控制系统的研究,研究了机构运动学、动力学、轨迹规划、耦合分析和适应的控制策略等方面的一些关键问题,融合飞行模拟器的机电液系统于一体进行了理论与试验研究,研究结论对提高飞行模拟器的运动控制具有一定的参考价值。
Flight Simulator is important aviation simulation equipment, which is used to train pilots. To provide the true feeling of flight, it needs to simulate all kinds of complicated motion state. Compared to the real aircraft, the flight simulator is controllable, non-destructive, economic and other advantages in flight test.
     This paper takes the six degrees of freedom as a campaign platform Stewart institutions, and adopts the hydraulic-driven approach. By controlling the length of the six hydraulic cylinders on the platform to change the position and attitude, and providing six degrees of freedom instantaneous overload, Flight Simulator can simulate aircraft pitching, trundle, drift, fluctuation, longitudinal and lateral migration.
     In this paper, parallel robot inverse method, consider the impact of Stewart workspace, using inverse kinematics compiled MATLAB program to calculate the six basic movement Stewart under changes in the length of each bar. And through the application of Pro / ENGINEER finish the simulation of software movement, through institutions kinematics and dynamic analysis, using the concept of coupling strength, analysis of the coupling characteristics of institutions. In the end, Using PID control strategy for single-channel valve-cylinder system, the control experiments.
     The study conducted by Stewart, has been on the kinematics, dynamics, trajectory planning, and coupling analysis and control strategy for some of the conclusions of the flight simulator studies have a certain reference value.
引文
1崔晓宝.飞行模拟技术的特点和发展趋势.国防科技,2001-12
    2国家军用标准《飞行模拟器术语》GJB1984-93
    3周自全,刘兴堂,余静.现代飞行模拟技术[M].北京:国防工业出版社,1997:32-35
    4王行仁.飞行实时仿真系统及技术[M].北京:北京航空航天大学出版社,1998:57-59
    5 Stewart D, A platform with six degree of freedom. Proc Instn Mech Engers, 1965, 180(15):371-386
    6闫野,赵汉元.飞行器六自由度仿真方法[J].国防科技大学学报,2005,22(3):80-83
    7 GWINNETT J E.Amusement devices:US,1,789,680[P/OL].1931-1-20
    8 BONEV I .The true origins of parallel robots [EB/OL]. http://www.parallemic,org/, Published on Jan.24,2003
    9 Gough V E.Contribution to discussion of papers on research in automobile stability. Proceedings of the Institution of Mechanical Engineers, 1967,171(12):392-395
    10 Hunt K H,Kinematic geometry of mechanisms clarendon press.Oxford,1978:78-79
    11 PALONEN T, ROKALA M, SAIRIALA H, UUSI-HEIKKLA J. Design and implementation of a water hydraulic 6-DOF motion platform for realtime simulators.Power Transmission and Motion Control, 2006,22(9):13-15
    12黄真,孔令富,方跃法.并联机器人机构学与控制[M].北京:机械工业出版社,1997.
    13高英杰.并联机器人控制策略与电液速度模糊控制系统的研究[D]. [燕山大学硕士学位论文].1990:56-58
    14汪劲松,段广洪,杨向东. VAMITY虚拟轴机床制造[J].技术与机床,1998(2):42-43
    15吴江宁.并联式六自由度平台及控制研究[D]. [浙江大学博士学位论文].1996:23-26
    16杨灏泉.飞行模拟器六自由度运动系统及其液压伺服系统的研究[D]. [哈尔滨工业大学博士学位论文].2002:35-37
    17郝轶宁.并联式六自由度电液伺服摆动台的控制研究[D]. [北京理工大学博士学位论文].2003:68-69
    18 MASARU U. Structure and characteristics of parallel manipulators[J]. Advancd Robotics, 1994,8(6):545-547
    19王洪瑞.液压6-DOF并联机器人操作手运动和力控制的研究[M].保定:河北大学出版社,2001:35-36
    20陈学生.并联机器人位置正解工作空间及尺度综合问题研究[D]. [哈尔滨工业大学博士学位论文].2002:26-27
    21 MURTHY V, WALDRON K J. Position kinematics of the generalized lobster arm and its series-parallel dual[J]. ASME J.of Mech. Des, 1992,114:406-413
    22 BHASKAR D, MRUTHYUNJAYA T S. The Stewart platform manipulator:a review[j]. Mechanism and machine Theory,2000,35:15-40
    23高峰.并联机器人设计理论及其关键应用技术研究[J].河北工业大学学报,2004,33(2):83-99
    24汪劲松,黄田.并联机床—机床行业面临的机遇与挑战[J].中国机械工程,1999,10(10):1103-1107
    25 ELMAS A, HUSEYIN A, SAIT N. The Stewart platform mechanisn-a review[J]. Transactions on Engineering, Computing and Technology, 2004,2(12):106-109
    26 MERLET J P. Parallel robots(Second Edition)[M]. Dordrecht, the Netherlands: Springer, 2006:48-49
    27 KONG X W, GOSSELIN C M. Type synthesis of parallel mechanism[M]. Berlin Heidelberg, Germany: Springer,2007:55-56
    28 EARL C F, ROONEY J. Some kinematic structures for robot manipulatordesigns[J]. Journal of Mechanisms, Transmissions and Automation in Design,1983, 105(4):15-22
    29 FICHTER E F, Mcdowell E D. A novel design for a robot arm.Proceedings of Internationan Computer Technology Conference, 1980,3(8):250-256
    30 FICHTER E F, Mcdowell E D. Determining the motions of joints on a parallel connection manipulators.Prceedings of the Sixth World Congress on the Theory of Machines and Mechanisms,1984,6(10): 1003-1006
    31 HUNT K H. Structural kinematics of in-parallel-actuated robot arms[J]. Journal of Mechanisms, Transmissions and Automation in Design,1983,105(4): 705-712
    32 Y.B He,H.Zhaoy,Y.zhu. Neural network self-learning variable-robustness adaptive tracking control for eleetro-hydraulic servo system. 3nd International SymPosiumon Test and Measurement, Xi’an,June,1999:265-268
    33 CARRICATO M, PARENTI-CASTELLI V. Singularity-free fully isotropic translational parallel mechanisms[J]. International Journal of Robotics Research, 2002, 21(2):161-174
    34 CARRICATO M, PARENTI-CASTELLI V. A novel fully decoupled two-degrees-of-freedom parallel wrist[J]. The International Journal of Robotics Research, 2004,23(6):661-667
    35 KONG X W, GOSSELIN C M. Type synthesis of Linear Translational Parallel Manipulators[M]. Advances in Robot Kinematics-Theory and Applications. Kluwer Academic Publishiers,2002.
    36 KONG X W, GOSSELIN C M. Type synthesis of 3-DOF translational parallel manipulators based on screw theory[J]. ASME Journal of Mechanical Design,2004,126(1):83-92
    37 GRIGORE G. Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations[J]. European Journal of Mechanics A/Solids, 2004,23:1021-1039
    38张勇.可约并联机构设计理论与方法研究[D]. [燕山大学博士学位论文].2006:56-59
    39 GAO F, ZHANG Y, LI W M. Type synthesis of 3-DOF reducible translational mechanisms[J]. Robotica, 2005,23:239-245
    40 PARENTI-CASTELLI V, DI GREGORIO R. Influence of manufacturing errors on the kinematic performance of the 3-UPU parallel mechanism.Working Accuracy of Parallel Kinematics, 2000,4:85-100
    41 Georg Nawratil. New performance indices for 6-dof UPS and 3-dof RPR parallel manipulators. Mechanism and Machine Theory, 2008,10:23-30
    42 Huiping Shen, Tingli Yang, Lv-zhong Ma.Synthesis and structure analysis of kinematic structures of 6-dof parallel robotic mechanisms. Mechanism and Machine Theory, 2005, 40(10):1164-1180
    43 BHATTACHARYA S, HATWAL H, GHOSH A. On the optimum design of Stwart platform type parallel manipulators[J]. Robotica, 1995,13(2):133-140
    44 MILLER K. Optimal design and modeling of spatial parallel manipulators[J]. Int. J. Robot. Res., 2004,23(2):127-140.
    45 PITTENS K H, PODHORODESKI R P. A family of Stewart platforms with optimal dexterity[J].J. Robotic Syst., 1993,10(4):473-479
    46 GAO F, GUY F, GRUVER W A. Criteria based anaysis and design of three-degree-of-freedom plannar robotic manipulators.Proceeding of IEEE International Conference on Robotics and Automation,1997,4: 468-473
    47 Raghava M. The Stewart Platform of General Geometry Has 40 Configurations, Trans. ASME J. Mechanical Design, 1993,115:277-282
    48 Houssem Abdellatif, Bodo Heimann.Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism.Mechanism and Machine Theory, 2008,6:85-98
    49 Huang Zhen. Modeling Fomulation of 6-DOF multi-loop Parallel Manipulators. Part-2: Dynamic Modeling and Example, Proc. of the 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, 1985, 1(2),163-170
    50 Kumar V. Characterization of Workspaces of Parallel Manipulators. ASME.J.Mech. Des, 1992, 23(14):368-375
    51 Gosselin C M.and Angeles J. Singularity Analysis of Closed-Loop Kine-matic Chains. IEEE Trans.on Rob, 1990, 6(3):281-290
    52 Fichter E F. A Stewart platform-Based Manipulator:General Theory and Practical Construction, Int.J.of Rob. Res.,1986,5(2):157-182
    53 Masory O.and Wang J. Workspace Evalution of Stewart Platforms. ASME, 1992, (45):337-346
    54高峰,黄玉美.3-RPS并联机构工作空间分析的球坐标搜索法.西安理工大学学报,2001,17(3):239-242
    55吴生富.并联机器人工作空间的研究.机器人,1991,13(3):33-39
    56王奇志,潭民,徐心和.一类具有对称结构的并联机器人的工作空间.机器人,2001,23(4):322-325
    57 Duan Haibin, Wang Daobo, Yu Xiufen. Realization of nonlinear PID with feed-forward controller for 3-DOF flight simulator and hardware-in-the-loop simulation. Journal of Systems Engineering and Electronics, 2008, 19(2):342-345
    58 Rong-Maw Jan, Chung-Shi Tseng, Ren-Jun Liu. Robust PID control design for permanent magnet synchronous motor: A genetic approach. Electric Power Systems Research, 2008, 78(7): 1161-1168
    59 Magdi S. Mahmoud, El-Kébir Boukas, Abdulla Ismail,Robust adaptive control of uncertain discrete-time state-delay systems.Computers & Mathematics with Applications,2008,55(12):2887-2902
    60 HongBo Guo, YongGuang Liu, GuiRong Liu, HongRen Li. Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding mode.Control Engineering Practice, 2007, In Press, Corrected Proof, Available online 26
    61 Wu Dongsu, Gu Hongbin.Adaptive Sliding Control of Six-DOF Flight Simulator Motion Platform.Chinese Journal of Aeronautics, 2007, 20(5):425-433
    62叶正茂,张辉,张晋,等.飞行模拟器的洗出算法研究.机床与液压,2006(6):177-180
    63 Amir Poursamad, Morteza Montazeri.Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control Engineering Practice, 2008, 16(7):861-873
    64 S.H. Hosseini, A.H. Etemadi.Adaptive neuro-fuzzy inference system based automatic generation control.Electric Power Systems Research,2008,7(7):1230-1239
    65 K.T. Chen, C.H. Chou, S.H.Chang, Y.H. Liu. Adaptive fuzzy neural network control on the acoustic field in a duct.Applied Acoustics, 2008, 69(6):558-565
    66 Jiang Wang, Zhen Zhang, Huiyan Li. Synchronization of FitzHugh–Nagumo systems in EES via H∞variable universe adaptive fuzzy control.Chaos, Solitons & Fractals, 2008, 36(5):1332-1339
    67 S.P. Moustakidis, G.A. Rovithakis, J.B. Theocharis. An adaptive neuro-fuzzy tracking control for multi-input nonlinear dynamic systems.Automatica, 2008, 44(5):1418-1425
    68高英杰,王益群.并联机器人电液速度控制系统的模糊-线性复合控制.机器人,1996,18(3):163-l66.
    69 Jinkun Liu, Peng He, Lianjie Er. Zero phase error control based on neural compensation for flight simulator servo system.Journal of Systems Engineering and Electronics, 2006, 17(4):793-797
    70翟传润,赵克定,张治国,等.基于神经网络的电液飞行模拟器抗负载干扰控制策略.哈尔滨工业大学学报,2000,32(1):98-101
    71万亚民,王孙安,杜海峰.液压并联机器人的动态神经网络控制研究.西安交通大学学报,2004,9(38):955-958
    72 Nilsson, N.J. A mobile automation :an application of artificial intelligence techniques. Proceedings of the 1st International Joint Conference on Artificial Intelligence. Washington D.C, 1969, 3(6):509-520
    73 Hwang, Y.K.and Ahuja,N. Gross motion planning A survey. ACM Computing Surveys, 1992, 24(3):219-292
    74杨向东.关于机器人运动规划的研究.[清华大学博士学位论文].1994:25-28
    75王伟,傅新,谢海波,等.基于AMESim的液压并联机构建模及耦合特性仿真.浙江大学学报,Nov.2007 Vol. 4 No.11
    76王启明,张建民,张同庄.变轴数控机床重复定位精度评定策略探讨[J].北京理工大学学报,2001,21(4): 45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700