水稻氮代谢基因的核苷酸多样性及其与产量性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻作为重要的粮食作物,是全世界一半以上人口主食的重要来源。氮是植物生长所必需的大量营养元素之一,是农业生产中限制作物产量的重要因素。氮肥的过量施用不仅造成了严重的环境污染,而且还提高了水稻的生产成本。水稻拥有遗传资源丰富多样的自然群体,建立在自然群体之上的关联分析方法,已成为目前水稻重要基因发掘与利用的热点和焦点。关联分析不仅是发掘新基因的一种有效手段,还是联系结构基因组学和表型组学的一座桥梁,可以直接鉴定出与表型相关的目标基因或等位变异。随着分子生物学和测序技术的不断发展,许多基因被克隆并得到功能验证。本研究主要是利用测序技术,分析水稻氮代谢基因在水稻微核心种质和普通野生稻中的核苷酸多样性,分析群体中各基因及基因之间的连锁不平衡(LD)程度,并利用关联分析研究氮代谢基因与正常和低氮条件下的产量性状之间的关系,旨在发掘氮代谢基因的重要等位变异,为选育水稻氮高效品种提供理论依据。此外,本研究还为水稻氮代谢基因的起源和进化研究奠定了一定的试验数据。主要结果如下:
     1.利用PCR扩增以及测序技术,获得7个氮代谢基因(包括OsAMT1;1、OsNRT1、OsNR1、OsGS1;1、OsNADH-GOGAT1、OsAS1和OsGDH1)在216份水稻品种(包括籼稻、粳稻和普通野生稻等)中的核苷酸序列信息。经比对拼接之后,各基因的测序序列长度范围为1608 bp (OsNADH-GOGAT1)-3506bp (OsGDH1),总的测序分析长度为16,899 bp。在7个氮代谢基因中总共检测到72个Inde1,它们主要分布在内含子和5'或3'非编码区序列;检测到330个SNP,在籼稻中有97个,粳稻中有71个,栽培稻中有103个,普通野生稻(O. rufipogon)中有240个。
     2.对7个氮代谢基因的核苷酸多样性进行了比较分析。整体上,普通野生稻的核苷酸多样性要显著地高于籼稻和粳稻。籼稻和粳稻分别保留了普通野生稻大约33.5%和23.4%的核苷酸多样性。
     3.将样本分为普通野生稻、地方品种和优良品种,进行核苷酸多样性分析后发现,氮代谢基因将近一半(45.7%)的遗传多样性都在水稻驯化(从普通野生稻到地方品种)的过程中丢失了,而在水稻品种改良(从地方品种到优良品种)的过程中基本没有什么变化。
     4.在190份栽培稻中,对6个氮代谢基因(除了OsAMT1;1)的LD分析结果表明:OsGDH1的LD水平最高,其r2均值为0.96;OsAS1(r2=0.62);OsNRT1(r2= 0.45)和OsNADH-GOGAT1(r2=0.44)表现出中等的LD水平;OsNR1(r2=0.35)和OsGS1;1(r2=0.28)则表现出相对较低的LD水平。而且,在5个氮代谢基因(OsNR1、OsNRT1、OsGS1;1、OsNADH-GOGAT1和OsGDH1)之间也检测到较高的LD水平。
     5.在190份栽培稻中,7个氮代谢基因共检测到24个主要单倍型(样本数>5),单倍型数目的变化范围为1到5个,平均每个基因有3.4个单倍型。每种单倍型(除了H1)都有明显的偏籼或偏粳的属性。单倍型分析结果表明:尽管这些氮代谢基因分别位于不同的染色体上,但在每一个亚路径中,由于较强的LD水平,籼型的单倍型总是与籼型的在一起,粳型的单倍型总是与粳型的在一起。这可能与籼、粳亚种有不同的地理起源相关。
     6.利用一般线性模型(考虑群体结构)对各氮代谢基因等位变异或单倍型与性状之间进行关联分析。整体上,OsNRT1与单株产量和结实率相关,OsNR1与千粒重相关,OsGS1:1与结实率和单株产量相关,OsNADH-GOGAT1与单株有效穗数和千粒重相关,OsAS1与单株有效穗数、每穗实粒数和单株产量相关,OsGDH1与千粒重相关。针对各氮代谢基因,分别找到了其影响表型的最优等位基因和单倍型。利用近等基因系对其中部分等位基因的遗传效应进行了验证。这些信息可应用于水稻育种实践中。
     7.与普通野生稻相比,OsAMT1;1在栽培稻(包括籼稻和粳稻)中的核苷酸多样性极低(仅为普通野生稻的2.3%),且Tajima's D和Fu和Li's D*都达到了负的显著或极显著水平,暗示OsAMT1;1受到了正选择作用。绝大部分(182/190)栽培稻含有相同的OsAMT1;1等位基因;与两个其它氮代谢基因(Loc_Os01g48960和Loc_Os02g50240)相比,OsAMT1;1在地方品种和优良品种中的核苷酸多样性显著下降。
     8.在94份栽培稻和19份普通野生稻中,对OsAMT1;1附近7个DNA片段进行了测序。结果表明,与普通野生稻相比,栽培稻的核苷酸多样性在OsAMT1;1前后大约100 kb的区域内急剧减少;EHH(Extended Haplotype Homozygosity)分析表明,在这100 kb的区域内,LD在栽培稻中维持着较高的水平而在普通野生稻中衰减得非常迅速。因此,认为OsAMT1;1受到了强的选择作用。
Rice, one of the world's most important crops, is the staple food of over half of the world's population. Nitrogen, one of the macronutrients necessary for plant growth, is an important factor limiting the crops production. Excessive application of nitrogen fertilizer not only causes serious environmental pollution, but also increases the rice production cost. Rice has rich and diverse genetic resources in the natural population. Association mapping, which based on linkage disequilibrium (LD) and used natural population as the basic research material, has become a more and more popular method to discover and utilize important genes in rice. Association mapping is not only an effective approach to discover new genes, but also a bridge to link the structural genomics and phenomics. It could directly identify the alleles that associated with the target traits. With the rapid development of molecular biology and DNA sequencing technology, lots of genes have been cloned and functional characterized. The objectives of this study are (1) to investigate the nucleotide diversity of nitrogen metabolism genes in a rice mini-core collection and a panel of O. rufipogon accessions using sequencing technology, (2) to clarify the LD levels within and between different genes, and (3) to demonstrate the relationship of polymorphism sites and yield-related traits under normal and low nitrogen conditions. The alleles explored in this study would provide useful guides in rice breeding of nitrogen efficiency. In addition, this study is also aim to reveal origin and evolution of OsAMT1;1 in rice. The main results are as follows:
     1. We obtained the sequences of seven nitrogen metabolism genes (OsAMT1;1, OsNRT1, OsNR1, OsGS1;1, OsNADH-GOGAT1, OsAS1 and OsGDHl) in a panel of 216 rice accessions (including indica, japonica and its wild relatives) using the sequencing technology of PCR products. The alignment of the genes ranged from 1608 bp (OsNADH-GOGAT1) to 3506 bp(OsGDH1), with a total length of 16,899 bp. A total of 72 insertion/deletions (Indels) were identified exclusively in introns and 5' or 3' noncoding regions. Totally 330 single nucleotide polymorphisms (SNPs) were found across the 216 rice accessions, with the SNP number being 97 in indica,71 in japonica, 103 in O. sativa and 240 in O. rufipogon.
     2. The nucleotide diversity of the seven nitrogen metabolism genes was compared at the taxon level, including indica, japonica, O. sativa and O. rufipogon. Overall, the nucleotide diversity level of O. rufipogon was significantly higher than that in indica and japonica, and indica and japonica approximately maintained 33.5% and 23.4% as much diversity as O. rufipogon, respectively.
     3. The nucleotide diversity was also inverstigated in O. rufipogon, landraces and elite cultivars, and the results showed that about half (45.7%) of the nucleotide diversity of the nitrogen metabolism genes was lost during the transition from O. rufipogon to landraces while it was nearly unchanged during the transition from landraces to elite cultivars.
     4. LD plots were evaluated for six nitrogen metabolism genes (without OsAMT1;1) in 190 O. sativa, and different levels of LD were revealed. OsGDHl exhibited the highest LD level and the average value of r2 was 0.96. OsAS1 (average r2=0.62), OsNRTl (average r2=0.45) and OsNADH-GOGAT1 (average r2=0.44) showed medium LD levels, while OsNRl (average r2=0.35) and OsGSl;1 (average r2=0.28) showed the lowest LD levels. In addition, high LD levels were also observed among five genes of OsNR1, OsNRTl, OsGS1;1, OsNADH-GOGATl and OsGDH1.
     5. Totally twenty-four main haplotypes (n> 5) were observed for seven nitrogen metabolism genes in 190 O. sativa, the number of haplotypes ranged from one to five with an average of 3.4 per gene. In addition, the haplotypes (except haplotype H1) were indica-like or japonica-like. The results of haplotype analysis showed that in each sub-pathway, indica-like and japonica-like haplotypes were always linked with themselves-like haplotypes for strong LD levels, although these nitrogen metabolism genes were located on different chromosomes. This may be because indica and japonica have the different geographic origins.
     6. Based on general linear model considering population structure, association mapping was conducted between polymorphisms (or haplotypes) and the yield-related traits in seven environments. Overall, OsNRT1 associated with YPP and SS, OsNRl associated with TGW, OsGS1;1 associated with SS and YPP, OsNADH-GOGATl associated with PNPP and TGW, OsASl associated with PNPP, GNPP and YPP, and OsGDH1 associated with TGW. In addition, the favorable allele (or haplotype) of each nitrogen metabolism gene was identified, and the effects of some alleles (or haplotypes) were validated by using near isogenetic lines. The information explored in this study could be applied in the rice breeding programs.
     7. The nucleotide polymorphism (π) of OsAMT1; 1 in O. sativa (including indica and japonica) was as low as 2.3% of that in O. rufipogon, and the values of Tajima's D and Fu and Li's D* were both negative significant in O. sativa, suggesting OsAMT1;1 was under positive selection. Most (182/190) accessions of O. sativa have the same OsAMT1;1 allele. Compared with two other genes (Loc_Os01g48960 and Loc_Os02g50240) that were used as the control, the nucleotide diversity of OsAMT1;1 was severely reduced in landraces and elite cultivars.
     8. The nucleotide diversity of additional seven DNA fragments surrounding OsAMT1;1 was inverstigated in 94 O. sativa and 19 O. rufipogon, and the results showed that the nucleotide diversity of O. sativa was severely reduced in the OsAMT1;1 genomic region spanning approximately 100 kb long compared with O. rufipogon. EHH (Extended Haplotype Homozygosity) analysis showed that LD remained high levels across the 100 kb genomic region around OsAMT1;1 in O. sativa, but fell rapidly in O. rufipogon. All the results suggest that OsAMT1;1 was under strong selection.
引文
1.曹树青,陆巍,翟虎渠,等.用水稻苗期叶绿素含量相对稳定期估算水稻剑叶光合功能期的方法研究.中国水稻科学,2001,15(4):309-313
    2.陈范骏,米国华,春亮,等.玉米氮效率的杂种优势分析.作物学报,2004,30(10):1014-1018
    3.陈范骏,米国华,崔振岭,等.玉米杂交种氮效率遗传相关与通径分析.玉米科学,2002,10(1):10-14
    4.陈雨,潘大建,刘斌,等.华南地方稻种资源初级核心种质构建.植物遗传资源学报,2008,9(3):322-327
    5.崔艳华,邱丽娟,常汝镇,等.植物核心种质研究进展.植物遗传资源学报,2003,4(3):279-284
    6.盖钧镒,赵团结.中国大豆育种的核心祖先亲本分析.南京农业大学学报,2001,24(2):20-23
    7.黄明勤,杨素铀,张仲明,等.硝酸还原酶活力与作物耐肥性的研究.Ⅵ.玉米幼苗硝酸还原酶活力与品种耐肥性的关系.作物学报,1987,13(1):19-22
    8.贾继增,黎裕.植物基因组学与种质资源新基因发掘.中国农业科学,2004,37(11):1585-1592
    9.江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径.中国水稻科学,2002,16(3):261-264
    10.金伟栋,洪德林.太湖流域粳稻地方品种核心种质的构建.江苏农业学报,2007,23(6):516-525
    11.李长涛,石春海,吴建国,等.利用基因型值构建水稻核心种质的方法研究.中国水稻科学,2004,18(3):218-222
    12.李晓玲,李金泉,卢永根.水稻核心种质的构件策略研究.沈阳农业大学学报,2007,38(5):681-687
    13.李自超,张洪亮,曹永生,等.中国地方稻种资源初级核心种质取样策略研究.作物学报,2003,29(1):20-24
    14.李自超,张洪亮,曾亚文,等.云南地方稻种资源核心种质取样方案研究.中国农业科学,2000,33(5):1-7
    15.林栲,李海鹏.DNA水平上检测正选择方法的研究进展.遗传,2009,31(9):896-902
    16.林振武,陈敬祥,汤玉玮.硝酸还原酶活力与作物耐肥性研究.Ⅰ.不同耐肥性的水稻、玉米、小麦的硝酸还原酶活力.中国农业科学,1983,3:37-43
    17.林振武,郑朝峰,吴少伯,等.硝酸还原酶活力与植物耐肥性的研究.Ⅱ.籼、粳稻对硝态氮的吸收与同化.植物学报,1986,12(1):9-14
    18.凌启鸿.作物群体质量.上海:科学技术出版社,2000,96-107
    19.刘克峰,刘建斌,贾月慧.土壤、植物营养与施肥.气象出版社,2004,192-195
    20.陆景陵.植物营养学.北京:中国农业大学出版社,2002,23-35
    21.马立珊.农田氮素管理与环境质量和作物品质.见:朱兆良,文启孝主编,中国土壤氮素.南京:江苏科学技术出版社,1992,267-287
    22.潘瑞炽,董愚得.植物生理学.北京:高等教育出版社,1995
    23.石庆华,李木英,涂起红.杂交水稻根系N素营养效率及其生理因素研究.杂交水稻,2002,17(4):45-48
    24.孙强,林秀云,李明生,等.吉林省稻种资源核心种质构建的研究.吉林农业科学,2006,31(1):21-24
    25.孙永建.以优良恢复系为背景的水稻导入系的遗传效应研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    26.田郎,方家林,黄华孙.作物种质资源核心种质研究及其应用.江西农业大学学报(自然科学版),2003,25:1-5
    27.童汉华.水稻氮高效资源筛选及相关基因的分子定位.[硕士学位论文].武汉:华中农业大学图书馆,2004
    28.吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响.中国农业科学,1995,28:104-107
    29.吴良欢,陶勤南.水稻叶绿素计诊断追氮法研究.浙江农业大学学报,1999,25:135-138
    30.吴平,印莉萍,胡彬.植物营养分子生理学.北京:科学出版社,2001,1-98
    31.向春阳,关义新.玉米氮素效率基因型差异的研究进展.玉米科学,2002,10(1): 75-77
    32.徐福荣,汤翠凤,余藤琼,等.利用叶绿素仪SPDA值筛选耐低氮水稻种质.分子植物育种,2005,3(5):695-700
    33.杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展.作物学报,2007,33(4):523-530
    34.余叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社,1998
    35.郁晓敏,方萍,向成斌.拟南芥低氮耐性突变体的初步筛选.植物营养与肥料学报,2004,10(4):441-443
    36.张云桥,吴荣生,蒋宁,等.水稻的氮素利用效率与品种类型的关系.植物生理通讯,1989,2:127-143
    37.钟代斌,陆雅海,郭龙彪,等.氮高效水稻种质资源筛选的初步研究.植物遗传资源科学报,2001,2(4):16-20
    38.周琦,王文.DNA水平自然选择作用的检测.动物学研究,2004,25(1):73-80
    39.周少川,柯苇,陈建伟.谈育种学中的优良种质及其衍生系统.广东农业科学,1998年增刊:1-5
    40.朱新开,盛海君,顾晶,等.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究.麦类作物学报,2005,25(2):46-50
    41. Abiko T, Obara M, Ushioda A, et al. Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots:candidates for providing carbon skeletons to NADH-glutamate synthase. Plant Cell Physiol, 2005,46(10):1724-1734
    42. Agrama H A, Yan W, Lee F N, et al. Genetic assessment of a mini-core subset developed from the USDA rice genebank. Crop Sci,2009,49:1336-1346
    43. Andersen J R, Lubberstedt T. Functional markers in plant. Trends Plant Sci,2003, 8(11):554-560
    44. Ansorge W J. Next-generation DNA sequencing techniques. New Biotechnol, 2009,25(4):195-203
    45. Aranzana M J, Kim S, Zhao K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. Plos Genet,2005,1(5):e60
    46. Banziger M, Betran F J, Lafitte H R. Efficiency of high nitrogen selection environments for improving maize for low nitrogen target environments. Crop Sci,1996,37:1103-1109
    47. Barneix A J, James D M, Watson E F, et al. Nitrate assimilation and growth of steptoe barley and one of its nitrate reductase deficient mutants. Ann Bot,1985, 56(5):711-718
    48. Becker T W, Caboche M, Carrayol E, et al. Nucleotide-sequence of a tobacco cDNA encoding plastidic glutamine synthetase and light inducibility, organ specificity and diurnal rhythmicity in the expression of the corresponding genes of tobacco and tomato. Plant Mol Biol,1992,19:367-379
    49. Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves:localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta,2000,211: 800-806
    50. Behl R, Tischner R, Raschke K. Induction of a high-capacity nitrate-uptake mechanism in barely roots prompted by nitrate uptake through a constitutive low-capacity mechanism. Planta,1988,176:235-240
    51. Biswas S, Akey J M. Genomic insights into positive selection. Trends Genet, 2006,22(8):437-446
    52. Bradbury P J, Zhang Z W, Kroon D E, et al. TASSEL:Software for association mapping of complex traits in diverse samples. Bioinformatics,2007,23(19): 2633-2645
    53. Brown A H D. The case for core collection. In Brown A H D, Frankel O H, Marshall R D, et al. The use of plant genetic resources. Cambridge:Ambridge University Press,1989,136-156
    54. Cacco G, Saccomani M, Ferrari G. Changes in the uptake and assimilation efficiency for sulfate and nitrate in maize hybrids selected during the period 1930 through 1975. Physiol Plant,1983,58:171-174
    55. Caicedo A L, Williamson S H, Hernandez R D, et al. Genome-wide patterns of nucleotide polymorphism in domesticated rice. Plos Genet,2007,3(9):e163
    56. Campbell W H. Nitrate reductase structure function and regulation:bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol,1999,50:277-303
    57. Clark R M, Linton E, Messing J, et al. Pattern of diversity in the genomic region near the maize domestication gene tbl. Proc Natl Acad Sci USA,2002,101(3): 700-707
    58. Cockram J, White J, Zuluaga D L, et al. Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA,2010, doi:10.1073/pnas.1010179107
    59. Crawford D L, Segal J A, Barnett J L. Evolutionary analysis of TATA-less proximal promoter function. Mol Biol Evol,1999,16(2):194-207
    60. Crawford N M, Glass A E M. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci,1998,3:389-395
    61. Delseny M, Han B, Hsing Y I. High throughput DNA sequencing:the new sequencing revolution. Plant Sci,2010,179:407-422
    62. Dembinski E, Bany S. The amino acid pool of high and low protein rye inbred lines(Scale cereale L.). Plant Physiol,1991,138:494-496
    63. Ding Z H, Wang C R, Chen S, et al. Diversity and selective sweep in the OsAMT1;1 genomic region of rice. BMC Evol Biol,2011,11:61
    64. Doczi R, Brader G, Pettko-Szandtner A, et al. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell,2007,19:3266-3279
    65. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature,1997,386:485-488
    66. Dubois F T, Gonzalez-Moro M B, Estabillo J M, et al. Glutamate dehydrogenase in plants:is there a new story for an old enzyme? Plant Physiol Biochem,2003, 41:565-576
    67. Dunwell J M, Purvis A, Khuri S. Cupins:the most functionally diverse protein superfamily? Phytochem,2004,65:7-17
    68. Ebana K, Kojima Y, Fukuoka S, et al. Development of mini core collection of Japanese rice landrace. Breeding Sci,2008,58:281-291
    69. Edwards J W, Goruzzi G M. Photorespiration and light act in concert to regulate the expression of the nuclear gene for chloroplast glutamine synthetase. Plant Cell, 1989,1:241-248
    70. Eichelberger K D, Lambert R J, Below F E, et al. Divergent phenotypic recurrent selection for nitrate reductase activity in maize. I. Selection and correlated responses. Crop Sci,1989,29:1393-1397
    71. Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies. Genetics, 2003,164:1567-1587
    72. Fan C C, Yu X Q, Xing Y Z, et al. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet,2005,110:1445-1452
    73. Fan C C, Yu S B, Wang C R, et al. A causal C-A mutation in the second ex on of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet,2009,118(3):465-472
    74. Fan X R, Jia L J, Li Y L, et al. Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot,2007. 58(7):1729-1740
    75. Fan X R, Shen Q R, Ma Z Q, et al. A comparison of nitrate transport in four different rice (Oryza sativa L.) cultivars. Sci China (Ser. C Life Sciences),2005, 48:897-911
    76. Fay J C, Wu C I. Hitchhiking under positive Darwinian selection. Genetics,2000, 155(3):1405-1413
    77. Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol,2003,54:357-374
    78. Foyer C H, Champngym L, Valadier M H. Partitioning of photosynthetic carbon: the role of nitrate activation of protein kinases. Oxford:Clarendon Press,1996: 35-51
    79. Frink C R, Waggoner P E, Ausubel J H. Nitrogen fertilizer:retrospect and prospect. Proc Natl Acad Sci USA,1999,96:1175-1180
    80. Fu Y X, Li W H. Statistical tests of neutrality of mutations. Genetics,1993, 133(3):693-709
    81. Garris A J, McCouch S R, Kresovich S. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics,2003,165:759-769
    82. Gazzarrini S, Lejay L, Gojon A, et al. Three functional transporters for constitutive, diurnally regulated, and starvation-inducted uptake of ammonium into Arabidopsis roots. Plant Cell,1999,11:937-984
    83. Goldman N and Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol,1994,11:725-736
    84. Gong Z Z, Dong C H, Lee H, et al. A dead box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell,2005,17:256-267
    85. Gonzalez D, Bowen A J, Carroll T S, et al. The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED 14 (SWP) and CDK8 (HEN3) to repress transcription. Mol Cell Biol,2007, 27(15):5306-5315
    86. Guo Y, Halfter U, Ishitani M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell,2001,13:1383-1400
    87. Hansen M, Kraft T, Ganestam S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res,2001,77(1):61-66
    88. Harjes C E, Rocheford T R, Bai L, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science,2008,319:330-333
    89. Hayakawa T, Yamaya T, Mae T, et al. Changes in the content of two glutamate synthase proteins in spikelets of rice(Oryza sativa) plants during ripening. Plant Physiol,1993,101:1257-1262
    90. He H J, Wang Q, Zheng W W, et al. Function of nuclear transport factor 2 and Ran in the 20E signal transduction pathway in the cotton bollworm, Helicoverpa armigera. BMC Cell Biol,2010,11:1
    91. Hoque M S, Masle J, Udvardi M K, et al. Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct Plant Biol,2006, 33(2):153-163
    92. Huang N C, Liu K H, Lo H J, et al. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell,1999,11:1381-1392
    93. Huang X H, Wei X H, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet,2010, doi:10.1038/ng.695
    94. Kaiser B N, Rawat S R, Siddiqi M Y, et al. Functional analysis of an Arabidopsis T-DNA "knockout" of the high-affinity NH4+ transporter AtAMT1;1. Plant Physiol,2002,130:1263-1275
    95. Kant P, Kant S, Gordon M, et al. STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol,2007, 145(3):814-830
    96. Kariali E, Kuanar S R, Mohapatra P K. Individual tiller dynamics of two wild Oryza species in contrasting habitats. Plant Prod Sci,2008,11(3):355-360
    97. Kawachi T, Sueyoshi K, Nakajima A, et al. Expression of asparagine synthetase in rice(Oiyza sativa) roots in response to nitrogen. Physiol Plant,2002,114: 41-46
    98. Keith B, Dong X N, Ausubel F M, et al. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci USA,1991, 88(19):8821-8825
    99. Khuri S, Bakker F T, Dunwell J M. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol,2001,18(4):593-605
    100.Konishi S, Izawa T, Lin S Y, et al. An SNP caused loss of seed shattering during rice domestication. Science,2006,312:1392-1395
    101.Kovach M J, Sweeney M T, McCouch S R. New insights into the history of rice domestication. Trends Genet,2007,23(11):578-587
    102.Kraakman A T, Niks R E, Van den Berg P M, et al. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004,168:435-446
    103.Kronzucher H J, Iddiqi M Y, Glass A D M. Kinetics of NH4+ influx in spruce. Plant Physiol,1996,110:773-779
    104.Kumar A, Kaiser B N, Siddiqi M Y, et al. Functional characterisation of OsAMT1.1 overexpression lines of rice, Oryza sativa. Funct Plant Biol,2006, 33(4):339-346
    105.Kumar A, Silim S N, Okamoto M, et al. Differential expression of three members of the AMT1 gene family encoding putative high-affinity NH4+ transporters in roots of Oiyza sativa subspecies indica. Plant Cell Environ,2003,26:907-914
    106.Kumar R G, Shah K, Dubey R S. Salinity induced behavioral changes in maltase dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance. Plant Sci,2000,156:23-34
    107.Lam H M, Coschigano K T, Oliveira I C, et al. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol,1996,47:569-593
    108.Li B Z, Mike M, Li S M, et al. Molecular basis and regulation of ammonium transporter in rice. Rice Sci,2009,16(4):314-322
    109.Li C B, Zhou A L, Sang T. Rice domestication by reducing shattering. Science, 2006,311:1936-1939
    110.Li D Y, Liu H Z, Zhang H J, et al. OsBIRH1, a DEAD-box RNA helicase with functions in modulating defense responses against pathogen infection and oxidative stress. J Exp Bot,2008,59(8):2133-2146
    111.Li H G, Xue D W, Gao Z Y, et al. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J,2009, 57:593-605
    112.Lian X M, Wang S P, Zhang J W, et al. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol,2006,60:617-631
    113.Lian X M, Xing Y Z, Yan H, et al. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet,2005,112:85-96
    114.Librado P, Rozas J. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data. Bioinformatics,2009,25(11):1451-1452
    115.Lin C C, Kao C H. Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regul,1996, 18:233-238
    116.Lin C M, Koh S, Stacey G, et al. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol,2000,122:379-388
    117.Lin Z W, Griffith M E, Li X R, et al. Origin of seed shattering in rice(Oryza sativa L.). Planta,2007,226:11-20
    118.Liu B, Chen Z Y, Song X W, et al. Oryza sativa Dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell,2007,19(9): 2705-2718
    119.Liu K H, Huang C Y, Tsay Y F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell,1999,11(5): 865-74
    120.Liu Q P, Feng Y, Zhu Z J. Dicer-like (DCL) proteins in plants. Funct Integr Genomics,2009,9:277-286
    121.Londo J P, Chiang Y C, Huang K H, et al. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA,2006,103(25):9578-9583
    122.Loque D, von Wiren N. Regulatory levels for the transport of ammonium in plant roots. J Exp Bot,2004,55(401):1293-1305
    123.Loque D, Yuan L X, Kojima S, et al. Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis root. Plant J,2006,48:522-534
    124.Ma K, Xiao J H, Li X H, et al. Sequence and expression analysis of the C3HC4-type Ring finger gene family in rice. Gene,2009,444:33-45
    125.Mae T, Makino A, Ohira K. Changes in the amount of ribulose bisphosphate carboxylase synthesized and degraded during the life span of rice leaf(Oryza saliva L.). Plant Cell Physiol,1983,24(6):1079-1086
    126.Maxam A M, Gilbert W. A new method for seuencing DNA. Proc Natl Acad Sci USA,1977,74(2):560-564
    127.McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res,2002,9:199-207
    128.McDonald J H, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature,1991,351:652-654
    129.McNally K L, Childs K L, Bohnert R, et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA,2009,106(30):12273-12278
    130.Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot,2002,53:979-987
    131.Migge A, Bork C, Hell R, et al. Negative regulation of nitrate reductase gene expression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco. Planta,2000,211:587-595
    132.Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J,1982,74:562-568
    133.Nagaoka S, Takano T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot,2003,54(391):2231-2237
    134.Nakano K, Suzuki T, Hayakawa T, et al. Organ and cellular localization of asparagine synthetase in rice plants. Plant Cell Physiol,2000,41(7):874-880
    135.Nei M. Molecular Evolutionary Genetics. New York:Columbia Univ. Press,1987
    136.Nordborg M, Borevitz J O, Bergelson J, et al. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet,2002,30:190-193
    137.Olasagasti F, Lieberman K R, Benner S, et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nat Nanotechnol, 2010,5(11):798-806
    138.Olsen K M, Caicedo A L, Polato N, et al. Selection under domestication:evidence for a sweep in the rice waxy genomic region. Genetics,2006,173:975-983
    139.Orsel M, Filleur S, Fraisier V, et al. Nitrate transport in plants:which gene and which control? J Exp Bot,2002,53:825-833
    140.Palaisa K A, Morgante M, Williams M, et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell,2003,15:1795-1806
    141.Palaisa K A, Morgante M, Tingey S, et al. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA,2004,101(26):9885-9890
    142.Peterman T K, Goodman H M. The glutamine synthetase gene family of Arabidopsis thaliana:light-regulation and differential expression in leaves, roots and seeds. Mol Genet and Genomics,1991,230:145-154
    143.Pritchard J K, Stephen M, Donnelly P. Inference on population structure using multilocus genotype data. Genetics,2000,155:945-959
    144.Qiu X H, Xie W B, Lian X M, et al. Molecular analyses of the rice glutamate dehydrogenase gene family and their response to nitrogen and phosphorous deprivation. Plant Cell Rep,2009,28:1115-1126
    145.Rakshit S, Rakshit A, Matsumura H, et al. Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theor Appl Genet,2007,114:731-43
    146.Ram S G, Thiruvengadam V, Vinod K K. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J Appl Genet,2007,48(4):337-345
    147.Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA,2001,98(20):11479-11484
    148.Sabeti P C, Reich D E, Higgins J M, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature,2002,419:832-837
    149.Sang T, Ge S. Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev,2007,17:533-538
    150.Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA,1977,74(12):5463-5467
    151.Sasakawa H, Yamamoto Y. Comparison of the uptake of nitrate and ammonium by rice seedlings. Plant Physiol,1978,62(4):665-669
    152.Sechley K A, Yamaya T, Oaks A. Compartment of nitrogen assimilation in higher Plants. Int Rev Cytol,1992,134:85-163
    153.Shendure J, Ji H. The next generation DNA sequencing. Nat Biotechnol,2008, 26(10):1135-1145
    154.Shi W W, Yang Y, Chen S H, et al. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breeding,2008,22:185-192
    155.Sitaraman J, Bui M, Liu Z C. LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development. Plant Physiol,2008,147:672-681
    156.Sohlenkamp C, Wood C C, Roeb G W, et al. Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol,2002,130:1788-1796
    157.Sonoda Y, Ikeda A, Saiki S, et al. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol,2003a, 44(7):726-734
    158.Sonoda Y, Ikeda A, Saiki S, et al. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol,2003b, 44(12):1396-1402
    159:StatSoft Inc. STATISTICA version 7.1. Website:http://www.statsoft.com
    160.Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol,1995,108:451-457
    161.Suzuki A, Rothstein S. Structure and regulation of ferredoxin-dependent glutamate synthase from Arabidopsis thaliana:cloning of cDNA, expression in different tissues of wild-type and gltS mutant strains, and light induction. Eur J Biochem,1997,243:708-718
    162.Sweeney M T, Thomson M J, Cho Y G, et al. Global dissemination of a single mutation conferring white pericarp in rice. Plos Genet,2007,3(8):1418-1424
    163.Szalma S J, Buckler E S, Snook M E, et al. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet,2005,110:1324-1333
    164.Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot,2007,58:2319-2327
    165.Tabuchi M, Sugiyama K, Ishiyama K, et al. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J,2005,42:641-651
    166.Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics,1989,123:585-595
    167.Tamura W, Hidaka Y, Tabuchi M, et al. Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids,2010, doi 10.1007/s00726-010-0531-5
    168.Tang T, Lu J, Huang J Z, et al. Genomic variation in rice:genesis of highly polymorphic linkage blocks during domestication. Plos Genet,2006,2:e199
    169.Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L.). Theor Appl Genet,2000,100: 697-712
    170.Thompson J D, Gibson T J, Plewniak F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    171.Thomson M J, Septiningsih E M, Suwardjo F, et al. Genetic diversity analysis of traditional and improved Indonesian rice(Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet,2007,114:559-568
    172.Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet,2001,28(3):286-289
    173.Tian Z X, Qian Q, Liu Q Q, et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA,2009,106(51):21760-21765
    174.Tsay Y F, Chiu C C, Tsai C B, et al. Nitrate transporters and peptide transporters. FEBS Lett,2007,581:2290-2300
    175.UNEP. Global environment outlook 2000. United Nations environment programme and London earthscan,1999, Nairobi, Kenya
    176.Vailleau F, Daniel X, Tronchet M, et al. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plant in response to pathogen attack. Proc Natl Acad Sci USA,2002,99(15):10179-10184
    177.Vidmar J J, Zhuo D, Siddiqi M Y, et al. Regulation of high affinity nitrate transporter genes and high affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol,2000,123:307-318
    178.Wang C R, Chen S, Yu S B. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet, 2010,122(5):905-913
    179.Wang E T, Kodama G, Baldi P, et al. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci USA,2006,103(1): 135-140
    180.Wang R L, Stec A, Hey J, et al. The limits of selection during maize domestication. Nature,1999,398:236-239
    181.Watterson G A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol,1975,7:256-276
    182.Whitfeld P R. A method for the detemination of nucleotide sequence in polyribonucleotides. Biochem J,1954,58(3):390-396
    183.Wilson L M, Whitt S R, Ibanez A M, et al. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004,16:2719-2733
    184.Xie X B, Song M H, Jin F X, et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oiyza rufipogon. Theor Appl Genet,2006,113: 885-894
    185.Yamanaka S, Nakamura I, Watanabe K N, et al. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor Appl Genet,2004,108: 1200-1204
    186.Yamaya T, Obara M, Nakajima H, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot,2002,53: 917-925
    187.Yan J B, Kandianis C B, Harjes C E, et al. Rare genetic variation at Zea mays crtRB1 increases b-carotene in maize grain. Nat Genet,2010,42(4):322-327
    188.Yang G P, Saghai Maroof M A, Xu C G, et al. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet,1994,245:187-194
    189.Yang W H, Peng S B, Huang J L, et al. Using leaf color charts to estimate leaf nitrogen status of rice. Agron J,2003,95:212-217
    190.Ye X, Al-Babili S, Kloti A, et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science,2000, 287(5451):303-305
    191.Yonezawa K, Nomura T, Morishuma H. Sampling strategies in core collections. In:Hodgkin T, Brown A H D, van Hintum Th J L, Morales E A V. Core Collection of Plant Genetic Resources. London, UK:IPGR Press,1995,35-54
    192.Yoon H, Miller S P, Pabich E K, et al. SSL1, a suppressor of a HIS4 5'-UTR stem-loop mutation, is essential for translation initiation and affects UV resistance in yeast. Gene Dev,1992,6:2463-2477
    193.Yoshida S. Fundamentals of rice crop science. Philippines:The International Rice Research Institute,1981
    194.Yu J M, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotech,2006,17:155-160
    195.Yu J M, Pressoir G, Briggs W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006,38(2):203-208
    196.Zhang D L, Zhang H L, Wang M X, et al. Genetic structure and differentiation of Oryza sativa L. in China revealed by microsatellites. Theor Appl Genet,2009, 119:1105-1117
    197.Zhang H L, Zhang D L, Wang M X, et al. A core collection and mini core collection of Oryza sativa L. in China. Theor Appl Genet,2010,122:49-61
    198.Zhang L B, Zhu Q H, Wu Z Q, et al. Selection on grain shattering genes and rates of rice domestication. New Phytol,2009,184(3):708-720
    199.Zhang N, Xu Y. Akash M, et al. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theor Appl Genet,2005, 110:721-729
    200.Zhang Q F. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007,104(42):16402-16409
    201.Zhu C S, Gore M, Buckler E S, et al. Status and prospects of association mapping in plants. Plant Genome,2008,1:5-20
    202.Zhu Q H, Zheng X M, Luo J C, et al. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives:severe bottleneck during domestication of rice. Mol Biol Evol,2007,24(3):875-888
    203.Zieserl J F, Rirenhank W L, Hagemen R H. Nitrate reductase activity, protein content and yield of four maize hybrids at varying plant populations. Crop Sci, 1963,3:27-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700