不同侵袭迁移能力鼻咽癌细胞蛋白组学及转移相关基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌是我国发病率较高的十大恶性肿瘤之一,世界上有80%的鼻咽癌病例发生在中国,中国南方鼻咽癌的发病率明显高于欧洲。鼻咽癌发病与EB病毒(Epstein Barr Virus)感染、遗传因素、亚硝胺摄入及环境因素(饮用水中高含量的镉、镍)等因素密切相关。鼻咽癌早期即可出现颈部淋巴结转移。是否有颈淋巴结转移是影响鼻咽癌预后的重要指标之一。转移是鼻咽癌治疗失败的主要原因,尽管诊疗技术不断进步,但由于60-85%的患者确诊时已发生临床转移,因此鼻咽癌患者的5年生存率提升缓慢。探究鼻咽癌转移的分子机制,寻找新的治疗靶点,减少转移的发生,是我们面临的巨大挑战。
     利用细胞株来研究肿瘤细胞的生物学特性是现代医学研究的重要手段。1976年我国建成了第一个高分化鼻咽癌上皮样细胞株CNE-1,1980年我国建立了首个低分化鼻咽癌上皮细胞株CNE-2,2006年Qian通过有限稀释培养的方法从CNE-2中筛选到了29个亚克隆,并发现克隆18(S-18)与母代细胞及其它亚克隆相比具有较强的侵袭和迁移活性。由于S-18是CNE-2的亚克隆,除了侵袭迁移能力不同之外,它们具有类似的遗传学和病理学特性,从而在研究中可限制个体差异性、减小遗传差异性。因此,S-18的建立为更有针对性地研究不同侵袭迁移能力鼻咽癌细胞之间的内在差异提供了一个便利而可靠的平台。
     蛋白质组学是系统生物学的基础和组成部分之一,进入后基因组学时代以后,其地位尤为突出。双向电泳(two-dimensional gel electrophoresis,2-DE)是蛋白质组学研究的经典方法之一,是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是目前唯一能将数千种蛋白质同时分离与展示的分离技术,其高分辨率、高重复性和兼具微量制备的性能是其它分离方法所无与伦比的,特别是对于表达蛋白质学的研究必不可少。双向电泳技术、计算机图像分析与大规模数据处理技术、质谱技术被称为蛋白质组研究的三大基本支撑技术。基于系统生物学、蛋白组学及相关技术的充分发展,我们希望通过这些新兴技术,从“发现的科学”的层面揭示S-18与其母代细胞之间的内在差别。
     在利用蛋白组学技术筛选到一系列差异表达蛋白之后,需要对这些蛋白进行深入的功能研究,才能充分揭示候选蛋白发挥生物活性的内在机制。基因过表达技术也就是通常所说的基因转染技术,是将外源基因导入靶细胞,使其表达相应蛋白质,从而实现对基因(或蛋白质)功能的研究或进行基因治疗的一种技术。以HIV-1为基础构建的慢病毒载体具有可感染静息状态细胞、可将目的基因整合至靶细胞基因组而长期表达、免疫反应小等优点,适于各种基因功能研究及体内基因治疗,是目前较为理想的基因转移载体。RNA干扰(RNA interference, RNAi)是与靶基因序列同源的双链RNA (double-stranded RNA, dsRNA)所诱导的一种特异性的转录后基因沉默现象(post-transcriptional gene silencing, PTGS)。自1998年Fire等发现RNA干扰(RNAi)现象以来,RNAi技术已被证实是一种特异、高效、经济的抑制基因表达手段,该技术与过表达技术互为佐证,能从另外一个角度研究基因及相应蛋白质的功能。
     本研究利用蛋白组学技术,筛查了低分化鼻咽癌细胞株CNE-2与其高转移亚克隆S-18之间的差异表达蛋白,共发现S-18细胞中有18个明显差异表达的蛋白(上调10个,下调8个)。通过生物信息学分析,确定了其中7个蛋白与肿瘤的转移有密切关系,并利用Western Blot对其中的4个蛋白(HSP27、Ezrirn、 Keratinl、VCP)在两种细胞中的表达水平进行了验证,证实了与CNE-2细胞相比,S-18细胞中HSP27和Ezrin呈明显高表达,而Keratinl8和VCP明显低表达。既往初步研究表明,HSP27和Ezrin可明显促进肿瘤细胞转移,Keratin18可稳定细胞骨架和细胞形态,因此,它们在S-18内异常表达,可能是影响S-18侵袭迁移能力的重要内在因素。
     HSP27是小HSP家族的主要成员之一,同时也是最明显而广泛诱导表达的分子伴侣之一,其对正常细胞具有保护作用,但在肿瘤细胞中通常是不良预后的标志。HSP27的致癌及促转移活性越来越受到研究者们的关注,通常认为其致癌性能可能与其抗凋亡性能相关,但对其发挥促转移活性的分子机制却知之甚少。为了进一步研究HSP27影响鼻咽癌细胞转移能力的分子机制,我们利用慢病毒载体过表达技术在鼻咽部上皮细胞NP-460(内源性HSP27水平较低)中过表达HSP27,利用RNA干扰技术沉默高转移鼻咽癌细胞S-18(内源性HSP27水平较高)中的HSP27,进一步利用Transwell实验检测了过表达或沉默相关基因后的细胞的侵袭迁移能力,并利用实时定量PCR技术检测了沉默HSP27后的S-18细胞内NF-к B、MMP2、MMP9、MMP11转录水平的变化。结果显示,过表达HSP27之后,鼻咽部上皮细胞NP-460的侵袭迁移能力明显增强;而沉默HSP27之后,S-18细胞的侵袭迁移能力明显减弱,并且细胞内的NF-к B、MMP9、MMP11转录水平明显下调,而MMP2的转录水平无明显变化。
     基于上述结果,我们确信HSP27在鼻咽癌细胞的侵袭迁移过程中发挥重要作用,并且推测HSP27促进鼻咽癌细胞侵袭迁移的机制存在以下三种可能:其一,HSP27可通过提高NF-к B的转录水平,并通过增加IKK的活性或直接促进I κ B的降解,从而强化NF-к B信号通路,引起MMP9、MMP11的活化和增强表达,从而增加鼻咽癌细胞的侵袭能力;其二,HSP27可在不影响MMP2的转录水平的情况下,直接增加鼻咽癌细胞内MMP2的活性,从而增加鼻咽癌细胞的侵袭能力;其三,HSP27可通过与F-acti、Keratin8、Keratin18等细胞骨架相关蛋白的相互作用,改变鼻咽癌细胞的变形和运动能力,从而在鼻咽癌细胞侵袭能力提升的基础上,进一步提升鼻咽癌细胞的迁移能力。
     综上所述,基于探究鼻咽癌细胞转移分子机制的目的,本研究以低分化鼻咽癌细胞株CNE-2及其高转移亚克隆S-18作为研究对象,利用蛋白组学技术比较了两种细胞的蛋白表达谱,共筛选到了18个明显差异表达蛋白,其中HSP27和Ezrin可明显促进肿瘤细胞转移,Keratin18可稳定细胞骨架和细胞形态。利用慢病毒载体过表达技术和RNA干扰技术,进一步证实了HSP27在鼻咽癌细胞转移的过程中发挥重要作用,而其促进鼻咽癌细胞转移的分子机制可能与NF-к B信号通路、基质金属蛋白酶家族(MMPs)及F-actin、Keratin8、Keratin18等细胞骨架相关蛋白密切相关。这些结果将为深入研究鼻咽癌转移的分子机制、寻找新的治疗靶点、减少转移的发生提供有益的线索。
Nasopharyngeal Carcinoma (NPC) is one of the ten most common malignant tumors in China. Eighty percent of NPC cases in all over the world exist in China. The morbility of NPC in South China is almost100times than in Europe. The etiology of NPC involves infection of Epstein Barr Virus, heredity, ingestion of nitrosamine and environmental factors (such as high concentration of Cadmium or Niccolum in drinking water). Lymph nodes metastasis might occur even in the early stage of NPC. Whether accompanied with lymph nodes metastasis is one of the most important indicators determining the prognosis of NPC. Metastasis is the chief reason for failure in NPC treatment. Despite the diagnostic and therapeutic techniques is continuously developed,60-85%patients had suffered metastasis when they got the final diagnosis, so the5-year survival rate of NPC patients is hard to be enhanced. It is a huge challenge we have to face that to explore the molecular mechanism of NPC matastasis, to search new therapy target and to prevent NPC spread from situ.
     It is an important approach in the modern medical research to probe the biological property of tumor cells by using cell strain. The first high differentiated NPC epithelial cell strain, CNE-1, was established in1976, then the low differentiated one, CNE-2, was established in1980in China. In2006, Qian isolated29subclones from CNE-2by limited dilution methods. And it was found that clone18(S-18) possesses stronger capacity in invasion and migration comparing with the parental cell line and other subclones. Since S-18is derived from CNE-2, except the different metastastic ability, it has similar property in heredity, pathology and biology with CNE-2. The individual variant will be the minimum when investigation is performed between these two cell lines. So the isolation of S-18provides a convenient and reliable platform for exploring the underlying mechanism between NPC cells with different metastatic capacity.
     Proteomics is one of the basis and components of the systemic biology. Its role becomes more and more important with the coming of post genomic era. Two-dimensional gel electrophoresis (2-DE) is a classic method in proteomic researches, by which the protein mix detracted from cells, tissues or other bio-samples can be analyzed. So far,2-DE is the only technique which can isolate and indicate thousands of proteins from samples. It has higher resolution, better reproducibility and more feasible for micropreparation than other methods and is especially necessary for the expression proteomics.2-DE, computer based image analysis and large scale datamation are the supporting techniques in proteomics researches. By utilizing these advanced techniques in the system biology and proteomics, we hope to disclose the underlying differences between S-18cells and their parental cells on the level of "discovery science".
     After proteins significantly expressed are identified by proteomics screening, it is necessary to explore the functions of these proteins so that the underlying molecular mechanisms can be revealed. Gene-overexpression technique, also well known as gene-transfection technique, is a method that to study the functions of genes (proteins) or to perform gene therapy by transduction of exogenous genes into target cells so that the corresponding proteins are expressed. The lentivector based on HIV-1is an prospective gene-transfer vector for gene function study and gene therapy as it can transfect non-dividing cells, can stably and constantly express candidate proteins by integrating target gene into the host genome, and can avoid strong immune response. RNA interference (RNAi) is a phenomenon of post-transcriptional gene silencing (PTGS) which is induced by double-stranded RNA which is sequence-homologous with target gene. Since it was discovered by Fire in1998, RNAi has been proved to be a specific, efficient and economic approach to inhibit gene expression. Combined with gene-overexpression technique, RNAi can be used to further demonstrate functions of genes and corresponding proteins in an opposite direction.
     In the present study, proteomic technique was used to profile the differently expressed proteins between NPC cell line CNE-2and its high metastatic subclone S-18, and eighteen proteins were found (10proteins are up-regulated and8proteins are down-regulated in S-18cell line). Through bioinformatics analysis, seven of the eighteen proteins were believed concerning closely with cancer metastasis. And the expression levels of four proteins in the two cell lines were further verified by Western Blot. That is, compared with CNE-2, S-18has higher heat shock protein27(HSP27) and Ezrin level, and lower Keratin18and vasolin containing protein (VCP) level. Previous studies indicated that HSP27and Ezrin could significantly promote metastatic ability of cancer cells, and Keratinl8had the property to stabilize cell skeleton and cell morphology. The abnormal expression of these genes may be the important internal factors that result in the high metastatic potential of S-18.
     HSP27is the chief member of small HSP family, and is also the most obvious and extensive induced one of the chaperons. HSP27perform protective role in normal cells, however, it is usually a marker for bad prognostic in cancer patients. More and more researchers pay attention to the carcinogenetic and metastasis-enhancing potential of HSP27. It is commonly regarded that the carcinogenetic property of HSP27is associated with its anti-apoptosis capacity. But we know very little about the underlying mechanism of metastasis-enhancing potential of HSP27. In order to further the study about the molecular mechanism of HSP27in cancer metastasis, we utilized lentivector to over-expressed HSP27in NP-460, which is a normal nasopharyngeal epithelial cell line with low endogenous HSP27level; and used RNA interference technique to decrease the high HSP27level in S-18cell line. Then we used transwell test to determine the invasive and migratory ability overexpressed or silenced cells, and utilized real time PCR to detect the transcription levels of NF-κ B, MMP2, MMP9and MMP11in HSP27-silenced S-18cells. Data indicated that the invasive and migratory capacity of NP-460was significantly enhanced after HSP27was overexpressed, and the invasive and migratory capacity of S-18was significantly attenuated accompanying with the levels of NF-κ B, MMP9and MMP11were significantly downregulated after HSP27was inhibited. Interestingly, the transcriptional level of MMP2was not influenced with inhibition of HSP27.
     Based on the above data, we believe that HSP27plays a vital role in metastatic process of NPC cells, and we hypothesize it is via the following three probable mechanisms that HSP27promotes the metastatic ability of NPC cells. Firstly, HSP27can activate the NF-κ B signal pathway by enhancing the transcriptional level of NF-K B, by increasing the activity of IKK or by directly promoting the degradation of I κ B, then MMP9and MMP11will be upregulated and activated, so that the invasive capacity of NPC cells are enhanced. Secondly, HSP27can promote the activity of MMP2without influencing its transcriptional level. Thirdly, HSP27can enhance the deformability and motility of NPC cells by interacting with F-actin, Keratin8and Keratin18, which are cytoskeleton proteins.
     Altogether, for the goal to explore the molecular mechanisms of metastasis of NPC cells, NPC cell line CNE-2and its high metastatic subclone S-18were selected as the researching objects. Proteomics was utilized to profile the proteins differently expressed between the two cell lines and eighteen proteins were identified. Among these proteins, HSP27and Ezrin can promote metastasis of tumor cells, Keratin18has the property to stabilize cytoskeleton and cell shape. By using lentivectors and RNA interference technique, the metastasis-enhancing function of HSP27in NPC cells was verified. The molecular mechanisms of HSP27in promoting metastasis may be closely associated to NF-κ B signal pathway, activity of MMPs and its interaction with the cytoskeleton-related proteins such as F-actin, Keratin8and Keratin18. These findings will provide useful clues for further studying mechanisms of metastasis, finding new therapy targets and reducing metastasis of NPC.
引文
[1]Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev, 2006, 15: 1765-1777
    [2]曹素梅,郭翔,李宁炜,等.广东籍鼻咽癌患者家族聚集性研究.肿瘤防治研究,2006,33:283-285
    [3]Adham M, Kurniawan AN, Muhtadi AI, et al. Nasopharyngeal carcinoma in Indonesia: epidemiology, incidence, signs, and symptoms at presentation. Chin J Cancer, 2012, doi: 10.5732/cjc.011.10328
    [4]司勇锋,陶仲强.鼻咽癌病因学和防治研究.中国耳鼻咽喉头颈外科,2010,17:163-165
    [5]http://www.yunnan.com.cm/2008page/health/html/2009-08/13/content_870341.htm
    [6]Jiang R, Cabras G, Sheng W, et al. Synergism of BARF1 with Ras induces malignant transformation in primary epithelial cells and human nasopharyngeal epithelial cells. Neoplasia, 2009,11:964-973
    [7]黄腾波.鼻咽癌高发现场综合防治研究进展.中国肿瘤,1998,7:18
    [8]邓洪,余可华.广西百色地区鼻咽癌与微量元素研究.中国肿瘤临床,1995,22:524-525
    [9]Old LJ, Boyse EA, Oettgen HF, et al. Precipitating antibody in human serum to an antigen present in cultured burkitt's lymphoma cells. Proc Natl Acad Sci,1966,56:1699-1704
    [10]Lu SJ, Day NE, Degos L, et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature, 1990,346:470-471
    [11]Hou DF, Wang SL, He ZM, et al. Expression of CYP2E1 in human nasopharynx and its metabolic effect in vitro. Molecular and Cellular Biochemistry,2007,1:93-100
    [12]Qian CN, Berghuis B, Tsarfaty G. Preparing the "soil":the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res,2006,66(21):10365-76
    [13]李刚.miR-10b在鼻咽癌转移中的功能和调控机制研究(博十论文).南方医科大学,2009
    [14]Zhang SZ, Gao XK, and Zeng Y. Cytogenetic studies of an epithelial cell line derived from a pooly differentiated nasopharyngeal carcinoma. Acta Genetica Sinica, 1983,10:498-503
    [15]Zhang S, Wu Y, Zeng Y, et al. Cytogenetic studies on an epithelioid cell line derived from nasopharyngeal carcinoma. Hereditas.1982,97:23-28
    [16]Huang DP, Ho JH, Poon YF, et al. Establishment of a cell line (NPC/HK1) from a differentiated squamous carcinoma of the nasopharynx. Int J Cancer, 1980,26:127-32
    [17]Gu SY, Tang WP, Zeng Y, et al. An epithelial cell line established from poorly differentiated nasopharyngeal carcinoma. Aizheng, 1983,2:70-72
    [18]Qian CN, Berghuis B, Tsarfaty G, et al. Preparing the "soil":the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res,2006,66:10365-10376
    [19]Hughes AL. Evolution in the post-genome era. Perspect Biol Med, 2009,52:332-337
    [20]Chin L, Andersen JN, Futreal PA. Cancer genomics:from discovery science to personalized medicine. Nat Med,2011,17: 297-303
    [21]Auffray C, Imbeaud S, Roux-Rouquie M, et al. From functional genomics to systems biology: concepts and practices. C R Biol, 2003,326:879-92
    [22]http://bbs.biogo.net/simple/?t166999.html
    [23]Gruber MP, Geraci MW. Practical cancer genetics, genomics and proteomics. J Insur Med, 2005,37:190-200
    [24]Sa-Correia I, Teixeira MC.2D electrophoresis-based expression proteomics: a microbiologist's perspective. Expert Rev Proteomics, 2010, 7:943-53
    [25]Gu SY, Tang WP, Zeng, Y, et al. An epithelial cell line established from poorly differentiated nasopharyngeal carcinoma. Aizheng, 1983,2:70-72
    [26]Zhang S, Wu Y, Zeng Y, et al. Cytogenetic studies on an epithelioid cell line derived from nasopharyngeal carcinoma. Hereditas.1982,97:23-28
    [27]Qian CN, Berghuis B, Tsarfaty G. Preparing the "soil":the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res,2006,66:10365-10376
    [28]杨光华.病理学(第5版).人民卫生出版社.北京,2001
    [29]Qian SB, McDonough H, Boellmann F, et al. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature, 2006, 23:551-555
    [30]Garrido C, Gurbuxani S, Ravagnan L, et al. Heat shock proteins:endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun, 2001,286:433-442
    [31]Garrido C, Ottavi P, Fromentin A, et al. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res, 1997, 57:2661-2667
    [32]Garrido C, Mehlen P, Fromentin A, et al. Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin- protecting effect of Hsp27. Eur J Biochem,1996,237:653-659
    [33]Mehlen P, Schulze-Osthoff K, et al. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem, 1996,271:16510-16514
    [34]Parcellier A, Gurbuxani S, Schmitt E, et al. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun, 2003,304: 505-512
    [35]Gorman AM, Szegezdi E, Quigney DJ, et al. Hsp27 inhibits 6-hydroxydopamine- induced cytochrome c release and apoptosis in PC12 cells. Biochem Biophys Res Commun, 2005,327: 801-810
    [36]Mehlen P, Mehlen A, Godet J, et al. hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem, 1997, 272:31657-31665
    [37]Shakoori AR, Oberdorf AM, Owen TA, et al. Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells. J Cell Biochem, 1992,48:277-287
    [38]Spector NL, Ryan C, Samson W, et al. Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J Cell Physiol, 1993,156:619-625
    [39]Spector NL, Mehlen P, Ryan C, et al. Regulation of the 28 kDa heat shock protein by retinoic acid during differentiation of human leukemic HL-60 cells. FEBS Lett, 1994,337:184-188
    [40]Chaufour S, Mehlen P, Arrigo AP. Transient accumulation, phosphorylation and changes in the oligomerization of Hsp27 during retinoic acid-induced differentiation of HL-60 cells: possible role in the control of cellular growth and differentiation. Cell Stress Chaperones, 1996, 1:225 - 235
    [41]Jaattela M. Escaping cell death:survival proteins in cancer. Exp Cell Res, 1999, 248:30-43
    [42]Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med, 2004, 10: 201-204
    [43]Martin TA, Harrison G, Mansel RE, et al. The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol,2003,46:165-186
    [44]Poullet P, Gautreau A, Kadare G, et al. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J Biol Chem, 2001,276:37686-37691
    [45]Khanna C, W an X, Bose S, et al. The membrane- cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med,2004,10:182-188
    [46]Yu Y, Khan J, Khanna C, et al. Expression prof iling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med, 2004, 10:175-256
    [47]王龙云,高叶梅,涂青松,等Ezrin和E-cadherin在鼻咽癌组织中的表达及意义.中南大学学报(医学版),2010,35:969-975
    [48]Meng Y, Wu Z, Yin X, et al. Keratin 18 attenuates estrogen receptor-amediated signaling by sequestering LRP16 in cytoplasm. BMC Cell Biol,2009,10:96
    [49]Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res, 2007,313:2021-2032
    [50]Gires O, Andratschke M, Schmitt B, et al. Cytokeratin 8 associates with the external leaflet of plasma membranes in tumour cells. Biochem Biophys Res Commun, 2005,328:1154-1162
    [51]Kralovich KR, Li L, Hembrough T A, et al. Characterization of the binding sites for plasminogen and tissue-type plasminogen activator in cytokeratin 8 and cytokeratin 18. J Protein Chem,1998,17:845-854
    [52]Chu YW, Runyan RB, Oshima RG, et al. Expression of complete keratin filaments in mouse L cells augments cell migration and invasion. Proc Natl Acad Sci, 1993,90:4261-4265
    [53]Matthias C, Mack B, Berghaus A, et al. Keratin 8 expression in head and neck epithelia. BMC Cancer, 2008,8:267-275
    [54]Schaller G, Fuchs I, Pritze W, et al. Elevated keratin 18 protein expression indicates a favorable prognosis in patients with breast cancer. Clin Cancer Res, 1996, 2:1879-1885
    [55]Tsujimoto Y, Tomita Y, Hoshida Y, et al. Elevated expression of valosin- containing protein (p97) is associated with poor prognosis of prostate cancer. Clin Cancer Res, 2004, 10: 3007-3012
    [56]Yamamoto S, Tomita Y, Hoshida Y, et al. Increased expression of valosin- containing protein (p97) is associated with lymph node metastasis and prognosis of pancreatic ductal adenocarcinoma. Ann Surg Oncol,2004, 11:165-172
    [57]Dai RM, Li CC. Valosin-containing protein is a multi-ubiquilin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol,2001,3:740-744
    [1]Konig J, Zarnack K, Luscombe NM, et al. Protein-RNA interactions:new genomic technologies and perspectives. Nat Rev Genet, 13:77-83
    [2]蒋英芝,贺连华,刘建军.蛋白质功能研究方法及技术.生物技术通报,2009,25:38-43
    [3]Gray CH, William EB. Modern Protein Chemistry-Practical Aspects. CRC Press, Washington DC,2002:1-20
    [4]夏其昌,曾嵘.蛋白质化学与蛋白质组学.科学出版社,北京,2006:10-25
    [5]Frappier L, Verrijzer CP. Gene expression control by protein deubiquitinases. Curr Opin Genet Dev,2011,21:207-213
    [6]Ahearn IM, Haigis K, Bar-Sagi D, et al. Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol,2011,13:39-51
    [7]Arango-Argoty GA, Jaramillo-Garzon JA, Rothlisberger S, et al. Prediction of protein subcellular localization based on variable-length motifs detection and dissimilarity based classification. Conf Proc IEEE Eng Med Biol Soc, 2011,201:945-948
    [8]Wilkins MR, Arthur JW, Junius FK, et al. Information management for proteomics: a perspective. Expert Rev Proteomics, 2008,5:663-678
    [9]Mayne SL, Patterton HG. Bioinformatics tools for the structural elucidation of multi- subunit protein complexes by mass spectrometric analysis of rotein-protein cross-links. Brief Bioinform, 2011,12:660-71
    [10]Zhang Y, Wang Y, Wang C. Gene overexpression and gene silencing in Birch using an Agrobacterium-mediated transient expression system. Mol Biol Rep, 2012,39:5537-5541
    [11]Rodriguez JA, Li M, Yao Q, et al. Gene overexpression in pancreatic adenocarci- noma: diagnostic and therapeutic implications. World J Surg, 2005,29:297-305
    [12]叶美玲,王少元.基因转染技术及其在白血病研究中的应用.医学综述,2010,16:1934-1936
    [13]Wu CL, Kandarian SC. Protein overexpression in skeletal muscle using plasmid- based gene transfer to elucidate mechanisms controlling fiber size.Methods Mol Biol,2012, 798:231-43
    [14]Xiang G, Kim K, Liu D. Nonviral gene delivery:what we know and what is next. AAPS J, 2007,9:92-104
    [15]Graham FL, Van der Eb AJ. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology, 1973,52:456-467
    [16]王冰,张树彪,周集体.阳离子脂质体介导的基因转移机制.中国组织工程与临床康复,2011,15:1459-1462
    [17]丁菲,徐宇虹.在体电脉冲基因导入技术研究进展.生物技术通报,2010,10,82-85
    [18]Recillas-Targa F. Multiple strategies for gene transfer, expression, knockdown, and chromatin influence in mammalian cell lines and transgenic animals. Mol Biotechnol,2006,34: 337-354
    [19]David V, Schaffer JT, Koerber K. Molecular engineering of viral gene delivery vehicles. Annu Rev Biomed Eng, 2008, 10:169-194
    [20]Pierre L, Sylvie F, Noufissa O, et al. Gene delivery systems:bridging the gap between recombinant viruses and artificial vectors. Adv Drug Delve Rev, 1998, 30:5-11
    [21]Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996, 272:263-267
    [22]Naldini L, Blomer U, Gage F H, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Nat Acad Sci,1996,92:11382-11388
    [23]Zufferey R, Nagy D, Mandel R J, et al. Mutiply attenuated lentiviral vector achieved efficient gene delivery in vivo. Nat Biotechnol,1997, 15:871-875
    [24]江千里,王健民,江汕,等.经典方法与LaSRT法测定绿色荧光蛋白标记重组病毒滴度的研究,第一军医大学学报,2003,23:1101-1103
    [25]王淑艳,张愚.慢病毒载体的设计及应用进展.中国生物工程杂志,2006,26:70-75
    [26]Ferry N, Pichard V, Sebastien Bony DA, et al. Retroviral vector-mediated gene therapy for metabolic diseases:an update. Curr Pharm Des, 2011,17:2516-2527
    [27]Dalba C, Bellier B, Kasahara N, et al. Replication-competent vectors and empty virus-like particles:new retroviral vector designs for cancer gene therapy or vaccines.Mol Ther, 2007, 15: 457-466
    [28]Lois C, Hong EJ, Pease S, et al. Germ line transmission and tissue specific expression of transgenes delivered by lentiviral vectors. Science, 2002, 295:868-872
    [29]Pfeifer A, Ikawa M, Dayn Y, et al. Transgenesis by lentiviral vectors:Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA, 2002,99:2140-2145
    [30]Lai Z, Brady RO. Gene transfer into the central nervous system in vivo using a recombinant lentivirus vector. J Neurosci Res,2002,67:363-371
    [31]Zufferey R. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol,1998,72:9873-9880
    [32]Yu X, Zhan X, Cheng L, et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Molecular Therapy, 2003,7:827-838
    [33]Cooray S, Howe SJ, Thrasher AJ. Retrovirus and lentivirus vector design and methods of cell conditioning. Methods Enzymol,2012, 507:29-57
    [34]侯云德.现代分子病毒学选论.科学出版社.北京,1994:284-309
    [35]Pike-Overzet K, Rodijk M, Ng YY, et al. Correction of murine Ragl deficiency by self-inactivating lentiviral vector-mediated gene transfer. Leukemia, 2011,25:1471-1483
    [36]Zhou S, Mody D, DeRavin SS, et al. A self-inactivating lentiviral vector for SCID-X1 gene therapy that does not activate LMO2 expression in human T cells. Blood, 2010, 116:900-908
    [37]Biacchesi S, M Bearzotti, E Bouguyon, et al. Heterologous Exchanges of the Glycoprotein and the Matrix Protein in a Novirhabdovirus. J Virol,2002,76:2881-2889
    [38]Albertini AA, Merigoux C, Libersou S, Characterization of Monomeric Intermediates during VSV Glycoprotein Structural Transition. PLoS Pathog, 2012, 8: e1002556
    [39]Anderson DB, Laquerre S, Ghosh K, et al. Pseudotyping of glycoprotein-D deficient herpes simplex virus type 1 with vesicular stomatitis virus glycoprotein G enables mutant virus attachment and entry. J Virol, 2000, 74:2481-2487
    [40]孙成群,彭金美,吴东来,等.水疱性口炎病毒糖蛋白基因的克隆和表达.中国预防兽医学报,2005,27:250-256
    [41]Hong Y, Peng Y, Mi M, et al. Lentivector expressing HBsAg and immunoglobulin Fc fusion antigen induces potent immune responses and results in seroconversion in HBsAg transgenic mice. Vaccine,2011,29:3909-3916
    [42]He Y, Zhang J, Mi Z, et al. Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immuno, 2005, 174:3808-3817
    [43]张磊,刘庆友,胡天,等.第三代慢病毒高效率包装系统的建立.基因组学与应用生物学.2009,28:326-330
    [44]Jiang L, Lai YK, Zhang J, et al. Targeting S100P inhibits colon cancer growth and metastasis by Lentivirus-mediated RNA interference and proteomic analysis. Mol Med,2011,17:709-716
    [45]Chen Y, Lin MC, Wang H, et al. Proteomic analysis of EZH2 downstream target proteins in hepatocellular carcinoma. Proteomics, 2007, 7:3097-3104
    [46]Li XY, Lai YK, Zhang JF, et al. Lentivirus-mediated RNA interference targeting Bax inhibitor-1 suppresses ex vivo cell proliferation and in vivo tumor growth of nasopharyngeal carcinoma. Hum Gene Ther,2011,22:1201-1208
    [47]Chen Y, Lin MC, Yao H, et al. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. Hepatology, 2007,46:200-208
    [48]Naumann N, De Ravin SS, Choi U, et al. Simian immunodeficiency virus entivector corrects human X-linked chronic granulomatous disease in the NOD/SCID mouse xenograft. Gene Ther, 2007,14:1513-1524
    [49]Parouchev A, Nguyen TH, Dagher 1, et al. Efficient ex vivo gene transfer into non-human primate hepatocytes using HIV-1 derived lentiviral vectors.J Hepatol,2006,45:99-107
    [50]Limberis MP, Bell CL, Heath J, et al. Activation of transgene-specific T cells following lentivirus-mediated gene delivery to mouse lung. Mol Ther, 2010,18:143-150
    [51]Barry S, Brzezinski M, Yanay O, et al. Sustained elevation of neutrophils in rats induced by lentivirus-mediated G-CSF delivery. J Gene Med, 2005,7:1510-1516
    [52]Jiang QL, Wang JM., Jiang S, et al. Large-scale real-time titration of green-fluorescence-protein-marked recombinantretrovirus:comparison with standard titration method. Diyi Junyi Daxue Xuebao,2003,23:1101-1103
    [1]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998,391:806-811
    [2]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411:494-498
    [3]Wiederschain D, Wee S, Chen L, et al. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle, 2009, 8:498-504
    [4]Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature, 2009, 457: 396-404
    [5]Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 2003,9:347-351
    [6]Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 infection in human T cells by Ientiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA. 2003,100:183-188
    [7]蒋英芝,贺连华,刘建军.蛋白质功能研究方法及技术.生物技术通报,2009,25:38-43
    [8]Ehrnsperger M, Graber S, Gaestel M, et al. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J,1997,16:221-229
    [9]Shashidharamurthy R, Koteiche HA, Dong J, et al. Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem,2005,280:5281-5289
    [10]Lelj-Garolla B, Mauk AG. Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem,2006,281:8169-8174
    [11]Theriault JR, Lambert H, Chavez-Zobel AT, et al. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem,2004, 279:23463-23471
    [12]Garrido C. Size matters:of the small HSP27 and its large oligomers. Cell Death Differ, 2002, 9:483-485
    [13]Dorion S, Landry J. Activation of the mitogen-activated protein kinase pathways by heat shock. Cell Stress Chaperones, 2002, 7:200-206
    [14]Casado P, Zuazua-Villar P, del Valle E, et al. Vincristine regulates the phosphorylation of the antiapoptotic protein HSP27 in breast cancer cells. Cancer Lett, 2007, 247:273-282
    [15]Bruey JM, Paul C, Fromentin A, et al. Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene, 2000, 19:4855-4863
    [16]Parcellier A, Schmitt E, Brunet M, et al. Small heat shock proteins HSP27 and alphaB-crystallin:cytoprotective and oncogenic functions. Antioxid Redox Signal, 2005,7: 404-413
    [17]Geisler JP, Tammela JE, Manahan KJ, et al. HSP27 in patients with ovarian carcinoma: still an independent prognostic indicator at 60 months follow-up. Eur J Gynaecol Oncol,2004,25: 165-168
    [18]Vargas-Roig LM, Gago FE, Tello O, et al. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer, 1998,79:468-475
    [19]Thanner F, Siitterlin MW, Kapp M, et al. Heat shock protein 27 is associated with decreased survival in node-negative breast cancer patients. Anticancer Res, 2005,25:1649-1653
    [20]De AK, Roach SE. Detection of the soluble heat shock protein 27 (hsp27) in human serum by an ELISA. J Immunoassay Immunochem.2004;25(2):159-70
    [21]Feng JT, Liu YK, Song HY, et al. Heat-shock protein 27:a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics, 2005,5: 4581-4588
    [22]Rocchi P, Beraldi E, Ettinger S, et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res, 2005,65:11083-11093
    [23]Miyake H, Muramaki M, Kurahashi T, et al. Enhanced expression of heat shock protein 27 following neoadjuvant hormonal therapy is associated with poor clinical outcome in patients undergoing radical prostatectomy for prostate cancer. Anticancer Res, 2006, 26:1583-1587
    [24]Rocchi P, So A, Kojima S, et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res, 2004, 64: 6595-6602
    [25]Thomas X, Campos L, Mounier C, et al. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk Res, 2005,29:1049-1058
    [26]Garrido C, Fromentin A, Bonnotte B, et al. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res. 1998,58: 5495-5499
    [27]Bruey JM, Paul C, Fromentin A, et al. Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene, 2000, 19:4855-4863
    [28]Lemieux P, Oesterreich S, Lawrence JA, et al. The small heat shock protein hsp27 increases invasiveness but decreases motility of breast cancer cells. Invasion Metastasis, 1997,17: 113-123
    [29]Karin M, Cao Y, Greten FR, et al. NF-kB in cancer: from innocent bystander to major culprit. Nature Rev,2002,2:301-310
    [30]王蓓蒂,李佩玲.基质金属蛋白酶在宫颈肿瘤中的表达及其意义.中国优生与遗传杂志,2012,20:123-126
    [31]Olszynski K, Zimowska M. Structure and function of matrix metalloproteinases. Postepy Biochem, 2009,55:76-84
    [32]Kim EH, Lee HJ, Lee DH, et al. Inhibition of heat shock protein 27-mediated resistance to DNA damaging agents by a novel PKC delta-V5 heptapeptide. Cancer Res. 2007. 67: 6333-6341
    [33]Garrido C, Brunet M, Didelot C, et al. Heat shock proteins 27 and 70:anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 2006,5:2592-2601
    [34]Hoang AT, Huang J, Rudra-Ganguly N, et al. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol, 2000, 156: 857-864
    [35]Song H, Ethier SP, Dziubinski ML, et al. Stat3 modulates heat shock 27kDa protein expression in breast epithelial cells. Biochem Biophys Res Commun, 2004,314:143-150
    [36]Tian T, Hao J, Xu A,et al.Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer Sci,2007,98:1265-1274
    [37]Wei L, Liu TT, Wang HH, et al. Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-KB. Breast Cancer Res, 2011,13:R101 [Epub ahead of print]
    [38]Xu L, Chen S, Bergan RC. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene, 2006, 25:2987-2998
    [39]Chang E, Heo KS, Woo CH, et al. MK2 SUMOylation regulates actin filament remodeling and subsequent migration in endothelial cells by inhibiting MK2 kinase and HSP27 phosphorylation. Blood, 2011,117:2527-2537
    [40]Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kB as the matchmaker. Nat Immunol,201,12:715-723
    [41]Huxford T, Hoffmann A, Ghosh G. Understanding the logic of IkB:NF-kB regulation in structural terms. Curr Top Microbiol Immunol,2011,349:1-24
    [42]Solt LA, May MJ. The IkappaB kinase complex:master regulator of NF-kappaB signaling. Immunol Res,2008,42:3-18
    [43]Kew RR, Penzo M, Habiel DM, et al. The IKKa-Dependent NF-kB p52/Re1B Noncanonical Pathway Is Essential To Sustain a CXCL12 Autocrine Loop in Cells Migrating in Response to HMGB1. J Immunol,2012 [Epub ahead of print]
    [44]Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kB signaling pathways. Nat Immunol, 2011,12:695-708
    [45]Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, et al. HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol,2003,23:5790-5802
    [46]Guo K, Kang NX, Li Y, et al. Regulation of HSP27 on NF-kappaB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis. BMC Cancer, 2009,9:100
    [47]郑国光.核因子K κB与炎症和肿瘤.白血病淋巴瘤杂志,2005,14:290-295
    [48]Gilmore TD. Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene, 1999, 18:6925-6937
    [49]Zhang M, Zhu GY, Gao HY, et al. Expression of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in gastric adenocarcinoma. J Surg Oncol, 201,103: 243-247
    [50]Bond M, Fabunmi RP, Baker AH, et al. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines:an absolute requirement for transcription factor NF-kB. FEBS Lett, 1998,435:29-34
    [51]Itoh Y. MT1-MMP:a key regulator of cell migration in tissue. IUBMB Life, 2006, 58:589-96
    [52]Sela-Passwell N, Rosenblum G, Shoham T, et al. Structural and functional bases for allosteric control of MMP activities:can it pave the path for selective inhibition? Biochim Biophys Acta, 2010,1803:29-38
    [53]Damodharan U, Ganesan R, Radhakrishnan UC. Expression of MMP2 and MMP9 (gelatinases A and B) in human colon cancer cells. Appl Biochem Biotechnol,2011,165: 1245-1252
    [54]崔爱荣,张建生,刘围娜,等.COX-2与MMP-9肝外胆管癌中的表达及其对预后的影响.河北医科大学学报,2008,29:547-549
    [55]Mukherjee S, Roth MJ, Dawsey SM, et al. Increased matrix metalloproteinase activation in esophageal squamous cell carcinoma. J Transl Med, 2010, 8:91
    [56]Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression:a mini-review, Med Sci Monit, 2009,15:RA32-40
    [57]Paek SH, Kim DG, Park CK, et al. The role of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinase in microcystic meningiomas. Oncol Rep, 2006, 16:49-56
    [58]Basset P, Wolf C, Chambon P. Expression o f the strome lysin-3 gene in fibroblastic cells of invasive carcinomas of the breast and other human tissues:a review. Breast Cancer Res Treat, 1993,24:185-193
    [59]Schuetz CS, Bonin M, Clare SE, et al. Progress ion-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res, 2006, 66: 5278-5286
    [60]Nakopoulou L, Panayotopoulou EG, Giannopoulou I, et al. Strome lysin-3 protein expression in invasive breast cancer: relation to proliferation, cell survival and patients'outcome. Mod Pathol,2002,15:1154-1161
    [61]Dos Remedios CG, Chhabra D, Kekic M, et al. Actin binding proteins:regulation of cytoskeletal micro filaments. Physiol Rev, 2003,83:433- 473
    [62]Mounier N, Arrigo AP. Actin cytoskeleton and small heat shock proteins:how do they interact?. Cell Stress Chaperones, 2002,7:167- 176
    [63]Gerthoffer WT, Gunst SJ. Invited review:Focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol,2001,91: 963-972
    [1]Ritossa F. A new puffing pattern induced by heat shock and DNP in drosophila. Experimentia. 1962; 18:571-3
    [2]Qian SB, McDonough H, Boellmann F, el al. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature, 2006, 440:551-555
    [3]Garrido C, Gurbuxani S, Ravagnan L, et al. Heat shock proteins:endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun, 2001,286:433-442
    [4]Garrido C, Ottavi P, Fromentin A, et al. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res, 1997, 57:2661-2667
    [5]Garrido C, Mehlen P, Fromentin A, et al. Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin- protecting effect of Hsp27. Eur J Biochem,1996, 237:653-659
    [6]Mehlen P, Schulze-Osthoff K, et al. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem, 1996,271:16510-16514
    [7]Parcellier A, Gurbuxani S, Schmitt E, et al. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun,2003,304: 505-512
    [8]Gorman AM, Szegezdi E, Quigney DJ, et al. Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochem Biophys Res Commun, 2005,327: 801-810
    [9]Mehlen P, Mehlen A, Godet J, et al. hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem, 1997, 272:31657-31665
    [10]Shakoori AR, Oberdorf AM, Owen TA, et al. Expression of heat shock genes during differentiation of mammalian osteoblasts and promyelocytic leukemia cells. J Cell Biochem, 1992,48:277-287
    [11]Spector NL, Ryan C, Samson W, et al. Heat shock protein is a unique marker of growth arrest during macrophage differentiation of HL-60 cells. J Cell Physiol,1993,156:619-625
    [12]Spector NL, Mehlen P, Ryan C, et al. Regulation of the 28 kDa heat shock protein by'retinoic acid during differentiation of human leukemic HL-60 cells. FEBS Lett, 1994,337:184-188
    [13]Chaufour S, Mehlen P, Arrigo AP. Transient accumulation, phosphorylation and changes in the oligomerization of Hsp27 during retinoic acid-induced differentiation of HL-60 cells: possible role in the control of cellular growth and differentiation. Cell Stress Chaperones,1996, 1:225 - 235
    [14]Jaattela M. Escaping cell death:survival proteins in cancer. Exp Cell Res, 1999, 248:30-43
    [15]Ehrnsperger M, Graber S, Gaestel M, et al. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J,1997,16: 221-229
    [16]Shashidharamurthy R, Koteiche HA, Dong J, et al. Mechanism of chaperone function in small heat shock proteins:dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem, 2005,280:5281-5289
    [17]Lelj-Garolla B, Mauk AG. Self-association and chaperone activity of Hsp27 are thermally activated. J Biol Chem,2006,281:8169-8174
    [18]Theriault JR, Lambert H, Chavez-Zobel AT, et al. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem,2004,279:23463-23471
    [19]Garrido C. Size matters:of the small HSP27 and its large oligomers. Cell Death Differ, 2002, 9:483-485
    [20]Dorion S, Landry J. Activation of the mitogen-activated protein kinase pathways by heat shock. Cell Stress Chaperones, 2002,7:200-206
    [21]Casado P, Zuazua-Villar P, del Valle E, et al. Vincristine regulates the phosphorylation of the antiapoptotic protein HSP27 in breast cancer cells. Cancer Lett, 2007, 247:273-282
    [22]Bruey JM, Paul C, Fromentin A, et al. Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene, 2000, 19:4855-4863
    [23]Sakamoto H, Mashima T, Yamamoto K, et al. Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification. J Biol Chem, 2002,277:45770-45775
    [24]Oya-Ito T, Liu BF, Nagaraj RH. Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27. J Cell Biochem, 2006, 99:279-291
    [25]Rocchi P, Jugpal P, So A, et al. Small interference RNA targeting heat-shock protein 27 inhibits the growth of prosiatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int,2006,98:1082-1089
    [26]Rocchi P, Beraldi E, Ettinger S, et al. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Cancer Res, 2005,65:11083-11093
    [27]Garrido C, Bruey JM, Fromentin A, et al. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J, 1999,13:2061-2070
    [28]Concannon CG, Omenius S, Samali A. Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr, 2001,9:195-201
    [29]Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol,2000,2:645-652
    [30]Paul C, Manero F, Gonin S, et al. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol,2002,22:816-834
    [31]Guay J, Lambert H, Gingras-Breton G, et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci,1997,110:357-368
    [32]Chauhan D, Li G, Hideshima T, et al. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood, 2003,102:3379-3386
    [33]Mehlen P, Kretz-Remy C, Preville X, et al. Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J, 1996,15:2695-2706
    [34]Arrigo AP, Virot S, Chaufour S, et al. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal,2005,7:414-422
    [35]Rogalla T, Ehrnsperger M, Preville X, et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem, 1999, 274:18947-18956
    [36]Wyttenbach A, Sauvageot O, Carmichael J, et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet, 2002, 11:1137-1151
    [37]Biggs WH 3rd, Meisenhelder J, Hunter T, et al. Protein kinase B/Akt-mediated phosphor-rylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A, 1999,96:7421-7426
    [38]Ozes ON, Mayo LD, Gustin JA, et al. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999, 401:82-85
    [39]Rane MJ, Pan Y, Singh S, et al. Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem,2003,278:27828-27835
    [40]Charette SJ, Lavoie JN, Lambert H, et al. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol,2000,20:7602-7612
    [41]Parcellier A, Schmitt E, Gurbuxani S, et al. HSP27 is a ubiquitin-binding protein involved in 1-kappaBalpha proteasomal degradation. Mol Cell Biol, 2003,23:5790-5802
    [42]Parcellier A, Brunet M, Schmitt E, et al. HSP27 favors ubiquitination and proteasomal degradation of p27Kipl and helps S-phase re-entry in stressed cells. FASEB J, 2006,20: 1179-1181
    [43]Marin-Vinader L, Shin C, Onnekink C, et al. Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock. Mol Biol Cell, 2006, 17:886-894
    [44]Akbar MT, Lundberg AM, Liu K, et al. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J Biol Chem,2003,278:19956-19965
    [45]Garrido C, Solary E. A role of HSPs in apoptosis through "protein triage"? Cell Death Differ, 2003,10:619-620
    [46]Liao W, Li X, Mancini M, et al. Proteasome inhibition induces differential heat shock protein response but not unfolded protein response in HepG2 cells. J Cell Biochem, 2006,99: 1085-1095
    [47]Zatloukal K, Stumptner C, Fuchsbichler A, et al. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol,2002,160:255-263
    [48]Chauhan D, Li G, Shringarpure R, et al. Blockade of Hsp27 overcomes Bortezomib/ proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res,2003,63:6174-6177
    [49]Garrido C, Fromentin A, Bonnotte B, et al. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res, 1998,58: 5495-5499
    [50]Lemieux P, Oesterreich S, Lawrence JA, et al. The small heat shock protein hsp27 increases invasiveness but decreases motility of breast cancer cells. Invasion Metastasis, 1997, 17: 113-123
    [51]Rocchi P, So A, Kojima S, et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res, 2004,64: 6595-6602
    [52]Parcellier A, Schmitt E, Brunet M, et al. Small heat shock proteins HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal, 2005,7: 404-413
    [53]Geisler JP, Tammela JE, Manahan KJ, et al. HSP27 in patients with ovarian carcinoma: still an independent prognostic indicator at 60 months follow-up. Eur J Gynaecol Oncol, 2004, 25: 165-168
    [54]Ciocca DR, Oesterreich S, Chamness GC, et al. Biological and clinical implications of heat shock protein 27,000 (Hsp27):a review. J Natl Cancer Inst, 1993,85:1558-1570
    [55]Sarto C, Valsecchi C, Magni F, et al. Expression of heat shock protein 27 in human renal cell carcinoma. Proteomics,2004,4:2252-2260
    [56]Vargas-Roig LM, Gago FE, Tello O, et al. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer, 1998,79:468-475
    [57]Thanner F, Sutterlin MW, Kapp M, et al. Heat shock protein 27 is associated with decreased survival in node-negative breast cancer patients. Anticancer Res, 2005,25:1649-1653
    [58]Miyake H, Muramaki M, Kurahashi T, et al. Enhanced expression of heat shock protein 27 following neoadjuvant hormonal therapy is associated with poor clinical outcome in patients undergoing radical prostatectomy for prostate cancer. Anticancer Res, 2006, 26:1583-1587
    [59]Xu L, Chen S, Bergan RC. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene, 2006, 25:2987-2998
    [60]De AK, Roach SE. Detection of the soluble heat shock protein 27 (hsp27) in human serum by an ELISA. J Immunoassay Immunochem, 2004, 25:159-170
    [61]Feng JT, Liu YK, Song HY, et al. Heat-shock protein 27:a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics, 2005.5: 4581-4588
    [62]Thomas X, Campos L, Mounier C, et al. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk Res, 2005,29:1049-1058
    [63]Garrido C, Brunet M, Didelot C, et al. Heat shock proteins 27 and 70:anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 2006, 5:2592-2601
    [64]Hoang AT, Huang J, Rudra-Ganguly N, et al. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol, 2000, 156: 857-864
    [65]Song H, Ethier SP, Dziubinski ML, et al. Stat3 modulates heat shock 27kDa protein expression in breast epithelial cells. Biochem Biophys Res Commun,2004,314:143-150
    [66]Tanaka Y, Fujiwara K, Tanaka H, Maehata K, Kohno I. Paclitaxel inhibits expression of heat shock protein 27 in ovarian and uterine cancer cells. Int J Gynecol Cancer, 2004, 14:616 620
    [1]曹富民,王小玲,张祥宏,等.食道鳞状细胞癌热休克蛋白27、70表达及临床意义.中国肿瘤临床,2004,31:462-465
    [2]曹富民,张祥宏,刑灵霄,等.热休克蛋白27基因在食管鳞状上皮细胞癌变过程中的表达.中国癌症杂志,2005,15:109-112
    [3]Kawanishi K, Shiozaki H, Doki Y, et al. Prognostic significance of heat shock protein 27 and 70 in patients with squamous cell carcinoma of the esophagus. Cancer, 1999, 85:1649-1657
    [4]Nakajana M, Kuwano H, Miyazaki T, et al. Significant correlation between expression of heat shock protein 27,70 and lymphocyte infiltration in esophageal squamous cell carcinoma. Cancer Lett,2002,178:99-106
    [5]Lambot MA, Peny MO, Fayt I, et al. Overexpression of 27 kDa heat shock protein relates to poor histological differentiation in human esophageal squamous cell carcinoma. Histopathology, 2000, 36:326-330
    [6]夏书华,胡海,胡莉萍,等.食管鳞状上皮癌中表达失调蛋白的研究.癌症,2002,21:11-15
    [7]Chen JH, Chen LM, Xu LY, etal. Expression and siginificance of heat shock proteins in esophageal squamous cell carcinoma. Zhonghua Zhong Liu Za Zhi,2006,28:758-761
    [8]Cao FM, Zhang XH, Yan X, et al. Expression and prognostic significance of survivin and caspas-3 in esophageal squamous cell carcinoma and their relationship with HSPs expression. Zhonghua Zhong Liu Za Zhi,2005,27:416-419
    [9]Cao FM, Zhang XH, Yan X, et al. Prognostic significance of natural killer cells and dendritic cells infiltration in esophageal squamous cell carcinoma. Ai Zheng, 2005,24:232-236
    [10]Takeno S, Noguchi T, Takahashi Y, et al. Immunohistochemical and clinicopathologic analysis of response to neoadjuvant therapy for esophageal squamous cell carcinoma. Dis Esophagus, 2001,14:149-154
    [11]Miyazaki T, Kato H, Faried A, et al. Predictors of response to chemo-radiotherapy and radiotherapy for esophageal squamous cell carcinoma. Anticancer Res, 2005,25:2749-2755
    [12]Muzio L, Campisi G, Farina A, et al. Prognostic value of Hsp27 in head and neck squamous cell carcinoma: a retrospective analysis of 57 tumors. Anticancer Res, 2006, 26:1343-1349
    [13]Suzuki H, Suginura H, Hashinoto K, et al. Overexpression of heat shock protein 27 is associated with good prognosis in the patient with oral squamous cell carcinoma. Br J of Oral Maxillofac Surg, 2007, 45.123-129
    [14]Lo WY, Tsai MH, Tsai Y, et al. Identification of overexpressed proteins in oral squamous cell carcinoma by clinical proteomic analysis. Clin Chim Acta, 2007, 376:101-107
    [15]He QY, Chen J, Kung HF, et al. Identification of tumor-associated proteins in tongue squamous cell carcinoma by proteomics. Proteomics, 2004,4:146-148
    [16]张宁宁,盛士虎,陈丹,等.Hsp27在舌鳞癌中的表达及意义.北京口腔医学,2010,18:146-148
    [17]Mohtasham N, Babakoohi S, Montaser-kouhsari L, et al. The expression of heat shock proteins27 and 105 in squamous cell carcinoma of the tongue and relationship with clinicopathological index. Med Oral Patol Oral Cir Bucal, 2011, [Epub ahead of print]
    [18]Wang A, Liu X, Sheng S, et al. Dysregulation of heat shock protein 27 expression in oral tongue squamous cell carcinoma. BMC Cancer, 2009, 4:167-174
    [19]Muzio L, Leonardi R, Mariggio MA, et al. Hsp27 as possible prognostic factor in patients with oral squamous cell carcinoma. Histol Histopathol, 2004, 19:119-128
    [20]Yonekura N, Yokota S, Yonekura K, et al. Interferon-gamma downregulates Hsp27 expression and suppresses the negative regulation of cell death in oral squamous cell carcinoma lines. Cell Death Differ, 2003, 10:313-322
    [21]Cheng L, Liu L, Zhang M, et al. Expression of main heat stress proteins and p53 in nasopharyngeal carcinoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi, 2003,17:456-460
    [22]Liu L, Xiao C, Tao Y, et al. Detection and its implication of heat stress protein27 and p21 in nasopharyngeal carcinoma. Tongji Univ, 2000,20:336-337
    [23]Sun Y, Yi H, Zhang PF, et al. Identification of differential proteins in nasopharyngeal carcinoma cells with p53 silence by proteome analysis. FEBS Lett, 2007, 581: 131-139
    [24]Qi L, Zhang X, Qiu Y, et al. Inhibitin ERp29 expression enhances radiosensitivily in human nasopharyngeal carcinoma cell lines. Med Oncol,2011, [Epub ahead of print]
    [25]Li GP, Wang H, Lai YK, et al. Proteomic profiling between CNE-2 and its strongly metastatic subclone s-18 and function characterization of Hsp27 in metastasis of nasopharyngeal carcinoma. Proteomics,2011,11:2911-20
    [26]于立明,郭晓峰,孙亚男,等.喉癌组织中热休克蛋白家族的表达及意义.耳鼻咽喉-头颈外科杂志,2002,9:171-174
    [27]Jakubowicz-Gil J, Paduch R, Gawron A, et al. The effect of heat shock, cisplatin, etoposide and quercetin on Hsp27 expression in human normal and tumour cells. Folia Histochem Cytobiol,2002,40:31-35
    [28]Mazurov VV, Solovieva ME, Leshchenko VV, et al. Small heat shock protein hsp27 as a possible mediator of intercellular adhesion-induced drug resistance in human larynx carcinoma HEp-2 cells. Biocsi Rep, 2003,23:187-197
    [29]Lee JH, Sun D, Cho KJ, et al. Overexpression of human 27 KDa heat shock protein in laryngeal cancer cells confers chemoresistance associated with cell growth delay. J Cancer Res Clin Oncol,2007,133:37-46
    [30]Zhu Z, Xu X, Yu Y, et al. Silencing heat shock protein27 decrease metastatic behavior of human head and neck squamous cell carcinoma lines in vitro. Mol Pharm, 2010, 7: 1283-1290
    [31]Aloy MT, Hadchity E, Diaz-Latoud C, et al. Protective of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells.Int J Radiat Oncol Biol Phys, 2008,70:543-553
    [32]Hadchity E, Aloy MT, Paulin C, et al. Heat shock protein27 as a new therapeutic target for radiation sencitization of head and neck squamous cell carcinoma. Mol Ther, 2009,17: 1387-1394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700