新型调制格式全光波长转换技术和全光逻辑门的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信速率和传输容量的不断发展,新型光调制格式被研究并逐步应用到了高速光纤传输系统中以改善传输性能。另一方面,为了克服光网络节点的电子处理速度瓶颈,全光信号处理技术成为未来的发展方向。本论文结合新型调制格式以及全光信号处理技术的研究热点和发展趋势,针对适于不同新型调制格式的全光波长转换及全光逻辑门展开研究,取得以下主要成果:
     论文基于半导体光放大器(SOA)中交叉偏振调制效应,提出了一种全光或非门和或门方案,两种逻辑功能可在同一结构实现并简单切换。在理论分析和实验验证基础上有效简化了系统中的偏振控制,并进行了10Gb/s两路和三路信号光实验,逻辑输出消光比大于11.0dB。在此基础上,进一步提出一种无需探测光的全光与门方案,节省光源并简化了结构,成功进行了仿真及实验验证。
     归零差分相移键控(RZ-DPSK)和归零差分四相相移键控(RZ-DQPSK)是近年来最受关注,并极有可能在下一代40Gb/s或更高速WDM系统中应用的新型调制格式。针对DPSK和DQPSK信号的全光波长转换技术是一个前沿和热点研究方向。论文利用SOA中四波混频效应,进行了高速40Gb/s RZ-DPSK波长转换,并首次利用SOA展开了RZ-DQPSK信号波长转换的实验研究,DQPSK速率达到107Gb/s,转换功率代价小于3dB。对输入光功率、SOA电流、信号光脉冲宽度等因素对转换光信噪比以及转换效率的影响进行了详细研究。
     除相位信息外,偏振信息也越来越多被应用在新型调制格式中,但是目前针对偏振调制格式的全光波长转换技术还没有开展起来。论文提出一种适于新型偏振调制格式信号的全光波长转换原理,该原理利用四波混频效应中产生光与输入光偏振态的相关性。首次实现了10Gb/s偏振移位键控信号(PolSK)全光波长转换实验,转换功率代价1.6dB。此外,提出将该原理应用在全光PolSK/DPSK标签加载的系统方案。
     已有的全光逻辑门方案基本基于SOA或光纤中的非线性效应实现,论文提出了一种基于半导体激光器中注入锁定效应的全光或非门的方案,基于注入锁定半导体激光器的理论模型对其进行了数值模拟,证明方案可行并可达到10Gb/s以上的速率,通过仿真为各个参数的设置提供了参考。
With the rapid development of optical fiber communication on signal bit rate and transmission capacity, various advanced optical modulation formats have been extensively investigated and gradually applied to enhance the transmission system performance. On the other hand, all-optical signal processing is another attractive and necessary technique in future high-speed optical network in order to overcome speed limitations faced by conventional electronics processing at network nodes. This dissertation undertakes a detailed study of all-optical wavelength conversion for different advanced modulation formats and all-optical logic gates. The main points are as follows:
     A scheme for all optical logic NOR and OR gates is proposed utilizing cross polarization modulation effect in a semiconductor optical amplifier (SOA) in this dissertation. The two logic functions are achieved in the same setup and the selection is simple. The polarization control is simplified for this scheme based on theoretical analysis. The NOR and OR gates are successfully experimentally demonstrated at 10 Gbit/s with two and three input signals. The experiment results show good dynamic extinction ratio of more than 11.0dB for logic outputs. Furthermore, an all-optical AND gate is proposed requiring only input signals without an additional continuous-wave beam, which saves optical sources and simplifies the configuration. The AND scheme is numerically simulated and experimentally demonstrated at a bit rate of 10Gb/s.
     Differential phase shift keying (DPSK) and differential quaternary phase shift keying (DQPSK) have attracted significant attention and are now considered as the most promising candidates for the next generation high-speed long-haul transmission systems. All-optical wavelength conversion for DPSK and DQPSK signal becomes a hot academic topic. In this dissertation, wavelength conversion of a 40Gb/s RZ-DPSK signal is demonstrated based on four-wave mixing effect in an SOA. Furthermore, the first experiments on RZ-DQPSK wavelength conversion in an SOA are demonstrated at a very high speed of 107Gb/s. Error-free conversion operation is obtained at 107Gb/s with a power penalty of less than 3dB. The influence of input optical power, SOA current and signal pulse width on the conversion performance is analyzed in detail.
     Besides phase information, optical polarization information is also utilized extensively in advanced modulation formats, however, up to now few study on all-optical wavelength conversion for polarization modulated signal has been carried out. In this dissertation, a simple and effective method of wavelength conversion for polarization modulated signal is proposed, which makes use of polarization property of four-wave mixing effect. Using this method, wavelength conversion experiment for polarization shift keying (PolSK) signal is demonstrated for the first time at 10Gb/s with 1.6dB power penalty. Based on this principle, another application is proposed for all-optical PolSK/DPSK orthogonal label encoding in all-optical label swapping.
     For the implementation of all-optical logic gates, reported schemes are mostly based on nonlinearities of SOAs or optical fiber. In this dissertation, a scheme based on injection-locking effect in a semiconductor laser is proposed for all-optical NOR logic gate. Theoretical analysis for this scheme is carried out by using a model to describe the dynamics of the injection-locked laser. According to detailed numerical simulation, the logic gate can be operated at 10Gb/s or higher. The influence of key parameters on the NOR performance is also analyzed via numerical simulation.
引文
[1] Fukuchi K. Wideband and ultra-dense WDM transmission technologies toward over 10-Tb/s capacity. Proc. OFC 2002, Paper ThX5, 2002, 558-559.
    [2] Chen D Z, Xia T J, Wellbrock G, et al. New field trial distance record of 3040 km on wide reach WDM with 10 and 40 Gb/s transmission including OC-768 traffic without regeneration. J. Lightwave Technol., 2007, 25(1):28-37.
    [3] Charlet G, Jeremie R, Mardoyan H, et al. 12.8 Tb/s transmission of 160 PDM-QPSK (160×2×40Gbit/s) channels with coherent detection over 2,550km. ECOC 2007, Paper PD 1.6, 2007.
    [4] Gnauck A H, Charlet G, Tran P, et al. 25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals. Proc. OFC 2007, Paper PDP19, 2007.
    [5] Fürst C, Wernz H, Camera M, et al. 43Gb/s RZ-DQPSK Field Upgrade Trial in a 10Gb/s DWDM Ultra-Long-Haul Live Traffic System in Australia. Proc. OFC 2008, Paper NTuB2, 2008.
    [6] Weber H G, Ferber S, Kroh M, et al. Single channel 1.28 Tb/s and 2.56 Tb/s DQPSK transmission. Electron. Lett., 2006, 42(3):178-179.
    [7] Ooi H, Akiyama Y, Ishikawa G. Automatic polarization-mode dispersion compensation in 40-Gbit/stransmission. Proc. OFC 1999, Paper WE5-1, 1999.
    [8] Bulow H, Baumert W, Schmuck H, et al. Measurement of the maximum speed of PMD fluctuation in installed field fiber. Proc. OFC 1999, Paper WE4, 1999.
    [9] Sano A, Miyamoto Y, Kuwahara S, et al. A 40-Gb/s/ch WDM transmission with SPM/XPM suppression through prechirping and dispersion management. J Lightwave Technol, 2000, 18(11):1519-1527.
    [10] Essiambre R J, Mikkelsen B, Raybon G. Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems. Electron. Lett., 1999, 35(18): 1576-1577.
    [11] Mecozzi A, Clausen C B, Shtaif M. Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photon. Technol. Lett., 2000, 12(4): 392-394.
    [12] Breuer D, and Petermann K. Comparison of NRZ- and RZ-modulation format for 40Gb/s TDM standard-fiber systems. IEEE Photon. Technol. Lett., 1997, 9(3):398-400.
    [13] Hayee M I, and Willner A E. NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems. IEEE Photon. Technol. Lett., 1999, 11(8):991-993.
    [14] Zhang Q, Maloney J, Menyuk C, et al. Performance comparison of dispersion managed40 Gbps transmission: CSRZ vs. RZ. Proc. CLEO 2002, pp530, 2002.
    [15] Bakhshi B, Vaa M, Golovchenko E A, et al. Comparison of CRZ, RZ and NRZ modulation formats in a 64×12.3 Gb/s WDM transmission experiment over 9000 km. Proc. OFC 2001, Paper WF4/1-WF4/3, 2001.
    [16] Djordjevic I B, Rorison J, Yu S, et al. Novel duobinary RZ modulation format for high-speed transmission. Proc. CLEO 2002, pp 1672-1673, 2003.
    [17] Takano K, Sakamoto N and Nakagawa K. SPM effect on carrier-suppressed optical SSB transmission with NRZ and RZ formats. Electron. Lett., 2004, 40(18): 1150-1151.
    [18] Xu C, Liu X, Mollenauer L F, et al. Comparison of return-to-zero differential phase-shift keying and ON-OFF keying in long-haul dispersion managed transmission. IEEE Photon. Technol. Lett., 2003, 15(4): 617-619.
    [19] Mizuochi T, Ishida K, Kobayashi T, et al. A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations Due to nonlinear phase noise. J Lightwave Technol, 2003, 21(9): 1933-1943.
    [20] Wree C, Leibrich J, Eick J, et al. Experimental investigation of receiver sensitivity of RZ-DQPSK modulation format using balanced detection. Proc. OFC 2003, pp 456-457, 2003.
    [21] Zhu B, Nelson L E, Stulz S, et al. High Spectral Density Long-Haul 40-Gb/s Transmission Using CSRZ-DPSK Format. J Lightwave Technol, 2004, 22(1): 208-214.
    [22] Benedetto S, Gaudino R, and Poggiolin P. Direct detection of optical digital transmission based on polarization shift keying modulation. IEEE J. Select. Areas Commun., 1995, 13(3):531-542.
    [23] Benedetto S and Poggiolin P. Theory of polarization shift keying modulation. IEEE Trans. Commun., 1992, 40(4):708-721.
    [24] T. Durhuus, B. Mikkelsen, C. Joergensen, et al. All-optical wavelength conversion by semiconductor optical amplifiers. J Lightwave Technol, 1996, 14(6): 942-954.
    [25] M. Asghari, I. H. White, and R. V. Penty. Wavelength conversion using semiconductor optical amplifier. J Lightwave Technol, 1997, 15(7): 1181-1190.
    [26] Ellis A D, Kelly A E, Nesset D, et al. Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier . Electron. Lett., 1998, 34 (20):1958 -1959.
    [27] Yu Hsiao-Yun and Mahgerefteh D. Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter. J Lightwave Technol.,1999, 17(5): 898-903.
    [28] Sugawara M. Quantum-dot semiconductor optical amplifiers. Proc. OFC 2003, Paper ThO3, 2003.
    [29] Akiyama T, Hatori N, Nakata Y, et al. Wavelength conversion based on ultrafast (<3 ps) cross-gain modulation in quantum-dot optical amplifiers. Proc. ECOC 2002, Paper 4.3.7. 2002.
    [30] Akiyama T, Hatori N, Nakata Y, et al. Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers. Physics Status Solidi (b). 2003, 238(2): 301-304.
    [31] Nielsen M L, Nord M, Petersen M N, et al. 40 Gbit/s standard-mode wavelength conversion in all-active MZI with very fast response. Electron. Lett., 2003, 39(4): 385-386.
    [32] Joergensen C, Danielsen S L, Hansen P B, et al. All-optical 40-Gbit/s compact integrated interferometric wavelength converter. Proc. OFC 1997, PaperTuO1, 1997.
    [33] Clarke A M, Girault G, Anandarajah P, et al. FROG characterisation of SOA-based wavelength conversion using XPM in conjunction with shifted filtering up to line rates of 80 GHz. Proc. IEEE LEOS 2006, 152-153.
    [34] Sakamoto T, Futami F, Kikuchi K, et al. All-optical wavelength conversion of 500-fs pulse trains by using a nonlinear-optical loop mirror composed of a highly nonlinear DSF. IEEE Photon. Technol. Lett., 2001, 13(5): 502-504.
    [35] Yu J, Jeppesen P and Knudsen N S. 80 Gbit/s pulsewidth-maintained wavelength conversion based on HNL DSF-NOLM including transmission over 80 km of conventional SMF. Electron. Lett., 2001, 37(9):577-579.
    [36] Soto H, Erasme D and Guekos G. Cross-polarization modulation in semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 1999, 11:970–972.
    [37] Zhou Y, Zhang J, Wu J, et al.. Simultaneous Inverted and Non-inverted Wavelength Conversion Based on Cross Polarization Modulation in Semiconductor Optical Amplifier. Acta Photonica Sinica, 2006, 35(7):1035~1037.
    [38] Turkiewicz J P, Khoe G D and De Waardt H. All-optical 1310 to 1550 nm wavelength conversion by utilising nonlinear polarisation rotation in semiconductor optical amplifier. Electron. Lett., 2005, 41(1):29-30.
    [39] Contestabile G, Calabretta N and Presi M. Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA. IEEE Photon. Technol. Lett., 2005, 17(12):2652-2654.
    [40] Liu Y, Tangdiongga E, Li Z, et al. 80 Gbit/s wavelength conversion using semiconductor optical amplifier and optical bandpass filter. Electron. Lett., 2005, 41(8): 487-489.
    [41] Fu S, Dong J, Shum P, et al. Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA. Opt . Express , 2006, 14 (17) :7587-7593.
    [42] Nielsen M L, Lavigne B and Dagens B. Polarity-preserving SOA-based wavelength conversion at 40 Gbit/ s using bandpass filtering. Electron. Lett., 2003, 39 (18) :1334-1335.
    [43] Liu Y, Tangdiongga E, Li Z, et al. Error-free 320-Gb/s SOA-based wavelength. conversion using optical filtering. Proc. OFC 2006, Paper PDP28, 2006.
    [44] Leuthold J, Joyner C H, Mikkelsen B, et al. 100Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration. Electron. Lett., 2000, 36(13): 1129-1130.
    [45] Nakamura S, Ueno Y and Tajima K. 168-Gb/s All-Optical Wavelength Conversion with a Symmetric-Mach-Zehnder-Type Switch. IEEE Photon. Technol. Lett., 2001, 13(10): 1091-1093.
    [46] Leuthold J, Moller L, Jaques J, et al. 160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electron. Lett., 2004, 40(9): 554-555.
    [47]费浩生.非线性光学.北京:高等教育出版社, 1990.
    [48] Geraghty D F, Lee R B, Verdiell M, et al. Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(5):1146-1155.
    [49] Gosset C and Duan G H. Extinction ratio improvement and wavelength conversion based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett., 2001, 13(2): 139-141.
    [50] Kelly A E, Marcenac D D and Nesset D. 40Gbit/s wavelength conversion over 24.6nm using FWM in a semiconductor optical amplifier with an optimised MQW active region. Electron. Lett., 1997, 33(25): 2123-2124.
    [51] Tanemura T, Goh C S, Kikuchi K, et al. Highly Efficient Arbitrary Wavelength Conversion within Entire C-Band Based on Nondegenerate Fiber Four-Wave Mixing. IEEE Photon. Technol. Lett., 2004, 16(2): 551-553.
    [52] Yamashita S and Tani M. Cancellation of spectral spread in SBS-suppressed fiber wavelength converters using a single phase modulator. IEEE Photon. Technol. Lett., 2004, 16(9): 2096-2098.
    [53] Sotobayashi H, Chujo W and T. Ozeki. Inter-wavelength-band conversions and demultiplexings of 640 Gbit/s OTDM signals. Proc. OFC 2002, Paper WM2: 261-262.
    [54] Contestabile G, Presi M and Ciaramella E. Multiple wavelength conversion for WDM multicasting by FWM in an SOA. IEEE Photon. Technol. Lett., 2004, 16(7): 1775-1777.
    [55] Chou M H, Brener I and Fejer M M. 1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photon. Technol. Lett., 1999, 11(6): 653-655.
    [56] Chou M H, Brener I, Parameswaran K R, et al. Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning. Electron. Lett., 1999, 35(12): 978-980.
    [57] Liu W, Sun J and Kurz J. Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation. Optics Communications, 2003, 216(1): 239-246.
    [58] Tokle T, Andersen P A, Geng Y, et al. Generation, Transmission and wavelength conversion of an 80 Gbit/s RZ-DBPSK-ASK signal. Proc. CLEO 2005, 1:294-296.
    [59] Geng Y, Andersen P A, Tokle T, et al. Wavelength conversion of a 6×40 Gb/s DPSK WDM signal using FWM in a highly non-linear photonic crystal fiber. Proc. ECOC 2005, 2:205-206.
    [60] Tokle T, Geng Y, Peucheret C, et al. Wavelength conversion of 80 Gbit/s optical DQPSK using FWM in a highly non-linear fibre. Proc. QELS 2005, 3:1708-1710.
    [61] Galili M, Huettl B, Schmidt-Langhorst C, et al. 320 Gbit/s DQPSK All-Optical Wavelength Conversion using Four Wave Mixing. Proc. OFC 2007, paper OTuI3, 2007.
    [62] Huettl B, Gual i Coca A, Suche H, et al. 320 Gbit/s DQPSK all-optical wavelength conversion using periodically poled LiNbO3. Proc. CLEO 2007, paper OThF1, 2007.
    [63] Dong Y, Li Z, Mo J, et al. Cascade of all-optical wavelength conversion for RZ-DPSK format using four wave mixing in SOA. Proc. OFC 2004, 95A:154-156.
    [64] Singh S and Kaler R S. 20-Gb/s and higher bit rate optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier. Fiber and Integrated Optics, 2007, 26(5): 295-308.
    [65] Han L, Hu H, Ludwig R, et al. All-optical wavelength conversion of 80 Gb/s RZ-DQPSK using four-wave mixing in a semiconductor optical amplifier. IEEE LEOS Annual Meeting 2008, Paper MP 4, Newport Beach, CA, USA, 2008.
    [66] Han L, Wen H, Zhang H, et al. All-optical wavelength conversion for polarization shift keying signal based on four-wave mixing in a semiconductor optical amplifier. Optical Engineering, 2007, 46(9):1-3.
    [67] Hamie A, Sharaiha A, Guegan M, et al. All-optical logic or gate using two cascaded semiconductor optical amplifiers. Microwave and Optical Technology Letters, 2007, 49(7): 1568-1570.
    [68] Dong H, Wang Q, Zhu G, et al. Demonstration of all-optical logic or gate using semiconductor optical amplifier-delayed interferometer. Optics Communications, 2004, 242(4-6): 479-485.
    [69] Xu J, Zhang X, Liu D, et al. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer. Optics Express, 2006, 14(22):10708-10714.
    [70] Guo L Q and Connelly M J. All-optical and gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier. Optics Express, 2006, 14(7): 2938-2943.
    [71] Dong H, Sun H, Wang Q, et al. 80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme. Optics Communications, 2006, 265(1): 79-83.
    [72] Kim S H, Kim J H, Yu B G, et al. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electron. Lett., 2005, 41(18): 1027-1028.
    [73] Deng N, Chan K, Chan C, et al. An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier. IEEE Journal on Selected Topics in Quantum Electronics, 2006, 12(4): 702-707.
    [74] Zhang M, Wang L and Ye P. All-optical XOR logic gates: Technologies and experiment demonstrations. IEEE Communications Magazine, 2005,43(5): S19-S24.
    [75] Kumar S and Willner A E. Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA. Optics Express, 2006, 14(12): 5092-5097.
    [76] Kim J, Byun Y, Jhon Y, et al. All-optical half adder using semiconductor optical amplifier based devices. Optics Communications, 218(4-6): 345-349.
    [77] Wang J, Sun J and Sun Q. Single-PPLN-based simultaneous half-adder, half-subtracter, and or logic gate: Proposal and simulation. Optics Express, 2007, 15(4): 1690-1699.
    [78] Kim J, Kim S, Son C, et al. Realization of all-optical full adder using cross-gain modulation. Proceedings of SPIE - The International Society for Optical Engineering, 2005, 5628: 333-340.
    [79] Wang Y, Zhang X, Dong J, et al. Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers. Optics Express, 2007, 15(23): 15080-15085.
    [80] Kim J Y, Kang J M, Kim T Y, et al. 10 Gbit/s all-optical composite logic gates with XOR, NOR, or and NAND functions using SOA-MZI structures. Electron. Lett., 2006, 42(5):303-304.
    [81] Li Z, Liu Y, Zhang S, et al. All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electron. Lett., 2005, 41(25):51-52.
    [82] Han L, Zhang H, Jiang H, et al. All-optical NOR and OR logic gates based on cross-polarization modulation in a semiconductor optical amplifier. Opt. Eng., 2008, 47(1):015001-1-9.
    [83] Guo L and Connelly M J. Signal-induced birefringence and dichroism in atensile-strained bulk semiconductor optical amplifier and its application to wavelength conversion. J. Lightwave Technol., 2005, 23(12): 4037-4045.
    [84] Sun H, Wang Q, Dong H, et al. All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. IEEE J. Quantum Electron., 2006, 42(8):747-751.
    [85] Soto H, Topomondzo J D, Erasme D, et al. All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier. Opt. Commun., 2003, 218(4):243-247.
    [86] Soto H, Alvarez E, Diaz C A, et al. Design of an all-optical NOT XOR gate based on cross-polarization modulation in a semiconductor optical amplifier. Opt. Commun., 2004, 237(1-3): 121-131.
    [87] Zhang J, Wu J, Feng C, et al. 40Gbit/s all-optical logic NOR gate based on nonlinear polarization rotation in SOA and blue-shifted sideband filtering. Electron. Lett., 2006, 42(21):1243-1244.
    [88] Liu Y, Hill M T, Tangdiongga E, et al. Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier. IEEE Photon. Technol. Lett., 2003, 15(1): 90-92.
    [89] Zhang X, Wang Y, Sun J, et al. All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Optics Express, 2004, 12(3): 361-366.
    [90] Huo L, Lin C, Chan CK, et al. A reconfigurable all-optical AND/OR logic gate using multilevel modulation and self-phase modulation. Proc. OFC 2007, Paper OThI4, 2007.
    [91] Guo L and Connelly M J. A Mueller-matrix formalism for modeling polarization azimuth and ellipticity angle in semiconductor optical amplifiers in a pump-probe scheme. J. Lightwave Technol., 2007, 25(1): 410-420.
    [92] Gnauck H, Winzer P J. Optical phase-shift-keyed transmission. J. Lightwave Technol., 2005, 23(1):115-130.
    [93] Ohm M and Frechmann T. Comparison of different DQPSK transmitters with NRZ and RZ impulse shaping. Advanced Modulation Formats, 2004 IEEE/LEOS Workshop on. 2004, 1-2:7-8.
    [94] Griffin R A and Carter A C. Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission. Proc. OFC 2002, 2002, 17-22:367-368.
    [95] Doi M, Hashimoto N, Hasegawa T, et al. 40 Gb/s low-drive-voltage LiNbO3 optical modulator for DQPSK modulation format. Proc. OFC 2007, Paper OWh4, 2007.
    [96] Xia T J, Wellbrock G, Lee W, et al. Transmission of 107-Gb/s DQPSK over Verizon 504-km Commercial LambdaXtreme?? Transport System. Proc. OFC 2008, Paper NMC2, 2008.
    [97] Hu E, Hsueh Y, Shimizu K, et al. 4-level direct-detection polarisation shift-keying(DD-PolSK) system with phase modulators. Proc. OFC 2003, Paper FD2, 2003.
    [98] Chi N, Yu S, Xu L, et al. Generation and transmission performance of 40 Gbit/s polarisation shift keying signal. Electron. Lett., 2005, 41(9):547-549.
    [99] Tsao S, Lee H and Chiu J. Polarization compensation in a WDM/PolSK fiber communication system with a dynamic polarization compensator. Proc. CLEO 2005, Paper CThC3-P32, 2005.
    [100] Benedetto S, Gaudino R and Poggiolini P. Polarization recovery in optical polarization shift-keying systems. IEEE Transactions on Communications, 1997, 45(10): 1269-1279.
    [101] Xu L, Chi N, Oxenl?we L K, et al. A new orthogonal labeling scheme based on a 40-Gb/s DPSK payload and a 2.5-Gb/s PolSK label. IEEE Photon. Technol. Lett., 2005, 17(12): 2772-2774.
    [102] Chow C W, Wong C S and Tsang H K. Optical packet labeling based on simultaneous polarization shift keying and amplitude shift keying. Optics Letters, 2004, 29(16):1861-1863.
    [103] Hodzic A, Konrad B and Petermann K. Improvement of system performance in N×40-Gb/s WDM transmission using alternate polarizations. IEEE Photon. Technol. Lett., 2003, 15(1):153-155.
    [104] Xie C, Kang I, Gnauck A H, et al. Suppression of intra-channel nonlinear penalties in high-speed transmissions with alternate polarization formats. Proc. OFC 2004, Paper ThT5, 2004.
    [105] Paiella R, Hunziker G, Koren U, et al. Polarization-dependent optical nonlinearities of multiquantum-well laser amplifiers studied by four-wave mixing. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(2):529-540.
    [106] Guido H, Roberto P, David F G, et al. Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier. IEEE Photon. Technol. Lett., 1996, 8(12):1633-1635.
    [107] Lin L Y, Wiesenfeld J M and Perino J S. Polarization-insensitive wavelength conversion up to 10 Gb/s using four-wave mixing in a semiconductor optical amplifier. Proc. IEEE LEOS 1997, 1:96-97.
    [108] Lacey J P R, Madden S J and Summerfield M A. Four-channel polarization-insensitive optically transparent wavelength converter. IEEE Photon. Technol. Lett., 1997, 9(10):1355–1357.
    [109] Yang T, Shu C and Lin C. Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber. Opt. Express, 2005, 13(14):5409-5415.
    [110] Jonathan P R L, Mark A S and Madden S J. Tunability of polarization-insensitivewavelength converters based on four-wave mixing in semiconductor optical amplifiers. Journal of Lightwave Technology, 1998, 16(12):2419-2427.
    [111]周炳琨,高以智,陈倜嵘,等.激光原理.北京:国防工业出版社, 2000:230-235.
    [112] Horer J and Patzak E. Large-Signal Analysis of All-Optical Wavelength Conversion Using Two-Mode Injection-Locking in Semiconductor Lasers. IEEE Journal of Quantum Electroics, 1997, 33(4):596-608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700