基于光子晶体理论的取样光栅反射谱及光栅传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
取样光纤光栅具有多通道滤波、微细结构、灵活方便、与光纤兼容性好、插入损耗低、波长选择性好等特点,因而受到广泛的重视,目前已成为实现光学调制的一种新型无源器件。由于取样光栅具备上述特点,使得它在许多方面有着重要的应用和潜在的优势,如取样光栅多波长激光器,取样光栅波分复用/解复用器,取样光栅重构型光分插复用器,光纤传感器,多信道色散补偿器,编/解码器等。本文主要对光子晶体技术应用取样光栅及取样光栅应变和温度同时测量传感特性进行研究,具体包括以下内容。
     介绍了光纤布拉格光栅的基本理论以及光纤光栅的传感特性,推导了光栅的应变和温度传感模型。对取样光栅的反射谱进行了对比分析和数值模拟,建立取样光栅的反射谱方程。分析取样光栅长度、取样周期、采样率、折射率调制量、变迹系数和啁啾系数等参量对取样光栅反射谱的影响规律。讨论了取样光栅的几何及物理参数与反射率的高低,带宽的大小,通道的数目的关系。为设计取样光栅提供了一定依据。
     对光子晶体理论分析方法时域有限差分法,传输矩阵法,平面波展开法等做了较为详细介绍。将取样光栅近似为带大尺寸缺陷的一维二元光子晶体。利用光子晶体的传输矩阵方法对取样光栅进行研究。从光子晶体理论角度分析取样光栅各参量对取样光栅反射谱的影响。仿真实验结果表明,取样光栅反射谱有多个反射峰、反射峰间隔和带宽等参数随光栅长度、高介电常量材料占空比、调制深度及取样周期等而变化。结果与传统的耦合模理论相符。
     设计了光纤布拉格光栅应变和温度同时测量系统。光源为时钟脉冲宽带光源,结合时分、波分和空分复用技术,采用不同包层直径光纤相熔接的应变补偿法传感头设计方案,解决温度和应变交叉敏感问题实现应变和温度同时测量。采用阵列波导光栅技术对传感信号进行解调,通过理论分析证实了系统方案的可行性。
     依据取样光栅各参量对取样光栅反射谱的影响规律,采用回归分析的方法对取样光栅应变和温度同时测量传感技术进行了模型研究。设计了取样光栅传感特性实验系统。对取样光栅进行应变和温度传感测量并对实验数据进行分析处理,确定了实验各部分的选用标准。实验数据标定传感矩阵与仿真实验得到的结论基本一致。最后对系统误差产生原因进行了分析,分析了影响系统测量的各项因素以及改善方法。
As sampled fiber Bragg grating has multichannel filtering, fine structure, flexibility, good compatibility, low insertion loss and extremely good wavelength selectivity, it was attended currently. Now it has become novel passive device for to realize optical modulation. Due to above-mentioned characteristics, sampled fiber Bragg grating has much important application and potential in multi-wavelength laser, wavelength-division multiplexer and demultiplexer, re-configurable optical add-drop multiplexer, fiber sensor, multi-channel dispersion compensator, encoder and decoder etc. Sampled grating reflective spectrum based photonic crystal theory and sampled fiber Bragg grating simultaneously measuring strain and temperature sensing characteristic were mainly researched in the paper. Details include the followings.
     In the paper basically theory of fiber Bragg grating and its sensing characteristics were introduced. Strain and temperature sensing model was deduced. The reflective spectrum of sampled fiber Bragg grating was analyzed and simulated.The effect of sampled fiber grating’s parameters on reflective spectrum was analyzed. Parameters include length, period, sampled rate, the refractive index modulation depth, apodization coefficient and chirp coefficient.The relationship of sampled fiber Bragg grating’s geometric and physical parameters and reflectivity, bandwidth and channel numbers was discussed. This can provide foundation to design sampled fiber Bragg grating.
     Theoretical analysis of the photonic crystal method was introduced. Methods include FDTD, transfer matrix method and plane wave expansion method. sampled fiber bragg grating was assumed as one-dimensional dual photonic crystal with a large size defect. Sampled fiber Bragg grating was researched by means of transfer matrix method of photonic crystal theory.The effect of sampled fiber grating’s parameters on reflective spectrum was analyzed from photonic crystal theory. Result showed that sampled fiber Bragg grating had many reflective peaks. Its reflectivity, center wavelength, reflective peak intervals and band width change with the grating parameters. Parameters include grating length, duty ratio of the material with high dielectric constant, and index modulation depth and period.Results follow the conventiona1 couple mode theory.
     The distributed fiber Bragg grating simultaneously measuring strain and temperature system is presented in this paper. Light source adopted clock pulse wide band source. The system integrates time division multiplexing and wavelength division multiplexing. Different cladding diameter fiber works as sensing probe. It can realize measurement of strain and temperature simultaneously. It can solve strain and temperature cross sensitivity problem.Demodulation system adopts arrayed-waveguide grating. The feasibility of the system is confirmed from theoretically.
     According to effect law of sampled fiber Bragg grating parameters on its reflective spectrum, sampled fiber Bragg grating simultaneously measuring strain and temperature sensing model was researched using regression analysis method. Sampled fiber Bragg grating sensing characteristic experimental system was designed. Sensing experiment was made. Experimental data were analyzed and disposed. Each several part of experimental system was regulated. Results were same as those from simulation experiment.At last experimental system error were analyzed, each factor of influence system measurement and improvement method were analyzed.
引文
1 L.a. Ferreira,J.L. smtos, F. Farahi. Pseudo heterodyne demodulation technique for fiber Bragg grating sensors using two marched gratings. IEEE Photo Techn Lett, 1997,9(4):487~489
    2 Maifild T T. Sheble Genetic-Based Unit Commitment Algorithm. IEEE Trans on Power Systems, 1996,11(3):1359~1370
    3 Hang-Yin Ling, Kin-Tak Lau, Wei Jin and Kok-Cheung Chan. Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating. Optics Communications, 2007, 270(1): 25~30
    4 ERDOGAN T. Fiber grating spectra.J Lightwave Technol, 1997,15(8):1277~1294
    5 C.H.Wang,L.R.Chen,P.W.E.Smith.Analysis of chirped-sampled and sampled-chirped fiber Bragg gratings.Applied Optics,2002,41(9):1654~1660
    6 R.M.Atkins, V.Mizrahl,T.Erodogan.248nm induced vacuum UV spectral changes in optical fiber perform cores:support for a color center model of photosensitivity Electron.Lett., 1993, 29 (4):385~387
    7 M.Douay,W.X.Xie,T.Taunay,et al.Densification involved in the UV-Based photosensitivity of silica glasses and optical fiber.J.of Lightwave Technol.,1997,15(8):1329~1342
    8 M.Ibsen, B.J.Eggleton, M.G.Sceats, et al. Broadly tunable DBR fibre laser using sampled fibre Bragg gratings. Electron. Lett., 1995, 31(1):37~38
    9 S.Lelievre, E.Pelletier, A.W.Farr, et al. Grating based solutions for chromatic dispersion management in DWDM systems. TeraXion,20-360 Franquet St.,l~11.
    10 R.Kashyap, P.F.Mckee, R.J.Campbell, et al. Novel method of producing all fibre photoinduced chirped gratings. Electron.Lett., 1994, 30(12):996~997
    11 A.D.Kersey, et al. Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry-Perot wavelength filter. Opt lett, 1993, 18(16):1370~1372
    12 B.Malo, S.Theriault, D.C.Johnson. Apodised in fiber Bragg grating reflectors photo imprinted using a phase mask. Electron.Lett., 1995, 31(3):223~225
    13赵玉成,李唐军,简水生,等.啁啾光栅色散及时延特性研究.光学学报,1997,17(9):1270~1273
    14 R. W. Fallon, L Zhang, L. A. Everall, J A R Williams and I Bennion, All-Fibre Optical SensingSystem: Bragg Grating Sensor Interrogated by a Long-Period grating. Meas. Sci. Techno., 1998, l9(12):1969~1973
    15 G.P.Agrawal, S.Radic. Phase-shifted fiber Bragg gratings and their application for wavelength dumultiplexing. IEEE Photo.Technol.Lett., 1994, 6(8):995~997
    16 S.Bette ,C.Caucheteur ,M.Wuilpart et al.. Theoretical and experimental study of differential group delay and polarization dependent loss of study of Bragg gratings written in birefringent fiber.Opt.Commun.,2007,269:331~337
    17贾宏志,李育林.线性啁啾光纤光栅的耦合模理论分析.光子学报,2000,29(2):147~150
    18瞿荣辉,丁浩,赵浩等.取样光纤布拉格光栅.光学学报,1999,19(2):226~229
    19 B.J.Eggleton, P.A.Kmg, L.Poladian and F.Ouellette. Long periodic superstructure Bragg gratings in optical fibers. Electron.Lett 1994,30(19):1620~1622
    20 L. R. Chen. Designs of flat-top band pass filters based on symmetric multiple phase-shifted long -period fiber gratings. Optics Communications, 2002,205(4):271~276
    21 Florence Y. M. Chan, Kiyotoshi Yasumoto. Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibers[J]. Opt. Lett., 2007,32(23):3376~3378
    22 A.D.Kersey and T.A.Berkoff. Dual wavelength fiber interferometer with wavelength selection via fiber Bragg grating elements. Electron Lett. 1992, 28, (13):1215~1216
    23 M.GXu, H.Geiger, J.P.Dakin. Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electron. Lett., 1996,32(2):128~129
    24 Hiroshi Yasaka, Hiroaki Ishii, Kiyoto Takahata,et al. Broad-range tunable wavelength conversion of high-bit-rate signals using super structure grating distributed reflector laser. IEEE Journal of Quantum Blectonics, 1996,32(3):463~470
    25谢滨,潘炜,罗斌,等.多相移取样光纤光栅消光比改进方法.中国光学快报,2008 6 (5): 9-11
    26马乐,殷洪玺,朱立新.相移超结构光纤布拉格光栅相位编/解码器的分析与设计.光学学报, 2009, 29(3): 617~622
    27彭晖,苏洋,李玉权.基于光纤光栅差分群时延的磁感应强度测量新方法.中国激光, 2009, 36(2): 398~402
    28张新亮,张颖,孙军强,等.基于SOA和级联取样光纤光栅的多波长激光器.物理学报, 2003, 52(9): 2159~2164
    29鲁韶华,许鸥,冯素春等.基于啁啾相移光纤光栅的滤波器设计及应用.光学学报, 2008,28(9): 1675~1680
    30董小伟,裴丽,许鸥,等.环形谐振器辅助马赫-曾德尔干涉仪型波长交错滤波器的研究.光学学报,2008,28(4):638~642
    31 G.Breglio,A.Cusano,A.Irace et al. Fiber optic sensor arrays: a new method to improve multiplexing capability with a low complexity approach. Sensor and Actuators B-Chenmical, 2004, 100 (1-2):147-150
    32李卫彬,孙军强.马赫-曾德尔干涉仪辅助的光纤环特性.中国激光, 2009, 36(3): 695~698
    33李卫彬,孙军强.一种基于双耦合器谐振环的梳状滤波器特性分析.中国激光, 2008,35(8):1191~1194
    34 Hang-yin Ling, Kin-tak Lau, Li Cheng, et al. Viability of using an embedded FBG sensor in a composite structure for dynamic strain measurement .Measurement, 2006,39(4): 328-334
    35 O.Frazao, R.Romero, G.Rego, et al. Sampled Fiber Bragg Grating Sensors for Simultaneous Strain and Temperature Measurement. Electronics Letters,2002,38: 693~695
    36 B.A.L.Gwandu, X.W.Shu, Y.Liu, et al. Simultaneous measurement of strain and curvature using superstructure fiber Bragg gratings. Sensors and Actuators, 2002,96(8):133~139
    37 L. Wei, J. W. Y. Lit. Design optimization of flattop interleaver and its dispersion compensation. Opt. Express, 2007, 15(10): 6439~6457
    38 Sebastien R. Blais, Jianping Yao. Tunable photonic microwave filter using a superstructured FBG with two reflection bands having complementary chirps. IEEE Photon. Technol. Lett., 2008, 20(3): 199~201
    39卢麟,吴伟磊,方涛等.基于等效相移超结构光纤光栅编解码器的2.5 Gbit/s 60 km光码分多址传输实验.中国激光, 2008, 35(3): 418~421
    40王国东,陈维友,刘彩霞等.取样啁啾光纤光栅传输特性的研究.自然科学进展,2004,14(11): 1310~1317
    41张邺,戴一堂,孙杰等.基于重构等效啁啾制作光纤光栅编解码器的光码分多址系统实现.物理学报,2007, 56(12): 7034~7038
    42朱英勋,王荣,蒲涛.具有多个波长通道的光纤光栅相位编/解码器.中国激光, 2007, 34(11): 1522~1526
    43 Ping Lu, Dan Grobnic, Stephen J. Mihailov.Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser . J. Lightwave. Technol.,2007,25 (3):779~786
    44刘长军,张伟刚,姜萌,等.光纤布拉格光栅自致啁啾效应的研究.光学学报, 2008, 28(9): 1671~1674
    45 D. Robertson, P. Niewczas, J. R. McDonald. Interrogation of a dual fiber Bragg grating sensorusing an arrayed waveguide grating. Proc. SPIE, 2005, 5855:844~847
    46 Waleed S. Mohammed, Peter W. E. Smith. All-fiber multimode interference bandpass filter. Opt. Lett., 2006,31(17):2547~2549
    47 H.Kogelinik. Filter response of nonuniform almost periodic structures. The Bell System Technol. J.,1976,55(1):109~126
    48贾宝华,盛秋琴,冯丹琴,等.超结构光纤布拉格光栅的理论研究.中国激光,2003, 30(12): 247~251
    49赵晓云,顾铮.三包层级联长周期光栅的传输谱特性.中国激光, 2008, 35(10): 1532~1537
    50 Kashyap, R.R.Wyatt, P.F.Mckee. Wavelength Flattened Saturated Erbium Amplifier Using Multiple Side-Tap Bragg Gratings. Electronics Letters,1993,29:1025~1026
    51 S.Bette,C.Caucheteur,M. Wuilpart et al..Spectral Characterization of Differential Group Delay in Fiber Bragg Grating Written into Hi-Bi Optical Fiber.ECCO,2005,3:763~764
    52蔡海文,瞿荣辉,陈高庭,等.光纤光栅带内色散特性的离散时域分析.光学学报,2002,22 (12) :1165~1169
    53 Kara Peters, Philip Pattis, John Botsis and Philippe Giaccari. Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields. Optics and Lasers in Engineering, 2000,33(2): 107-119
    54陈小刚,黄德修,元秀华等.基于超连续谱和取样光栅的波分复用/光码分复用系统.中国激光, 2008, 35(1):77~81
    55郑吉林,王荣,李玉权,等.基于重构等效啁啾取样光栅的可调谐微波光子滤波器的仿真研究.中国激光, 2008, 35(s2): 250~253
    56陈小刚,黄德修.基于取样光栅的全光编解码性能分析.光学学报, 2008, 28(s2): 1~6
    57王燕,叶志清.取样光纤布拉格光栅的特性分析.江西师范大学学报,2002,26(2): 174~177
    58娄淑琴,王智,王目光,等.一维光子晶体传输特性及其在光传感器中的应用.光电子?激光,2003,14(11):1152
    59匡萃方,张志峰.传输矩阵法分析一维光子晶体的传光特性.光电子?激光,2003,24(4):38~39
    60王智,任国斌,裴丽.光子晶体理论应用于光纤布拉格光栅的研究.光学学报, 2003, 23 (11):1291~1295
    61宁学峰,王旭东,闫珂柱.光子晶体的带隙破缺随插入介质层变化规律的研究.量子光学学报,2005,11(1):43~46
    62武延荣,郭林,张宁等.单偏振光子晶体光纤.光学学报,2007,04(05):593-597
    63 Jianhua Yuan,Ya Yan Lu.Computing photonic band structures by Dirichlet-to-Neumann maps. Optics Communications,2007,273: 114-120
    64 Peichen Yu, Juraj Topol’ancik, Pallab Bhattacharya. Characteristics of a Photonic Crystal Defect Waveguide-Coupled Quantum-Dot Photodiode. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2004,40(10):1417-1422
    65王维江,肖万能,周金运.非线性光子晶体的单向透射性.光子学报,2007,36(03):439-445
    66王卓远,王一刚,张德荣等.含左手介质双缺陷态的一维光子晶体窄带双频滤波器.复旦学报(自然科学版),2009,48(01):34-45
    67余建立,沈虹君.二维正方晶格各向异性光子晶体缺陷模.发光学报,2009,30(01):25-30
    68 YuanFong Chau. Efficient mode coupling technique between photonic crystal hetero-structure waveguide and silica waveguides. Optics Communications,2005,253:308–314
    69徐永钊,张霞,黄永清等.基于光子晶体光纤的全光再生理论和实验研究.激光与红外,2009,39(01):55-58
    70何理,杨伯君,张晓光等.光子晶体光纤特性及光通信中的应用.量子光学报,2006,12(04):225-230
    71汪徐德,罗爱平,邓丽琼等.变孔径色散补偿光子晶体光纤的数值研究.激光与红外,2007,37(04):0355-0358.
    72胡颉,王健.低折射率芯色散补偿光子晶体光纤的设计.激光与红外,2008,38(04):367-370
    73 Olga N. Kozina, Leonid A. Melnikov.Laser action and gain and attenuation properties of the 1D photonic crystal structure with active and passive layers. Journal of Non-Crystalline Solids, 2007,353:968-970
    74黄侃,李海林,龙清.光子晶体与光子晶体光纤.舰船电子工程,2008(01);37-41.
    75王向宇.光子晶体和光子晶体光纤在传感器中的应用.科学信息,2008(31);90-91.
    76 S.Fan. High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals. Phys.Rev.lett.,1997,78(17):3294-3297
    77 M.M.Voronova.Photoluminescence spectroscopy of one-dimensional resonant photonic crystals Journal of Luminescence,2007,125:112-117
    78张岚,杨伯君,王秋国,何理.基于光子晶体光纤的全光波长变换研究.光子学报,2008,37(11):2203-2205.
    79薛华,孔繁敏,韩春艳.全内反射型大模式面积光子晶体光纤设计.量子光学学报,2008,14(04):438-442.
    80 Toshihiko Baba. Light Localizations in Photonic Crystal Line Defect Waveguides. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2004,10(3):484-491
    81 V.A.Tolmachev.1D photonic crystal fabricated by wet etching of silicon. Optical Materials, 2005,27:831-835
    82 V.N.Belyi,N.S.Kazak,N.A.khilo.Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal.Optics Communications,2009,(15):1998-2008.
    83 M.Mulot,A.S yn tjoki,S.Arpiainen,et al. Slow light propagation in photonic crystal waveguides with ring-shaped holes.Journal ofOptics A:Pure and Applied Optics, 2007, (9): 415-418 .
    84 A.Sa¨ynat¨joki,M.Mulot,K.Vynck,et al. Properties,applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator .Physics.Optics, 2008, (1) :42-46
    85 Aaron F. Matthews.Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies Optics Communications,2009(1):1584-1588
    86 Ming Chen, Qing Yang, Tiansong Li, Mingsong Chen, Ning He.New high negative dispersion photonic crystal fiber. Optik - International Journal for Light and Electron Optics,2009
    87 A.M. Kapitonov.One-dimensional opal photonic crystals. Photonics and Nanostructures - Fundamentals and Applications,2008:194-199
    88 A. Ghaffari, F. Monifi, M. Djavid, M.S. Abrishamian.photonic crystal bends and power splitters based on ring resonators. Optics Communications,2008(1):5929-5934
    89张文富,方强,程益华等.正负折射率交替一维光子晶体窄带梳状滤波器.光学学报, 2007, 27(9):1695~1699
    90许鸥,鲁韶华,冯素春等.一种用于应力传感的基于光纤Bragg光栅及高双折射Sagnac环镜的新型光纤激光器.中国光学快报, 2008, 6(11): 818~820
    91刘长军,张伟刚,姜萌等.光纤布拉格光栅自致啁啾效应的研究.光学学报, 2008, 28(9): 1671~1674
    92方涛,卢麟,李玉权,王红传.啁啾脉冲光源用于光码分多址系统的研究.光学学报, 2009, 29(3): 623~628
    93刘卓琳,张伟刚,姜萌等.光纤滤波器的原理、结构设计及其进展.中国激光, 2009, 36(3): 540~546
    94 Chun Yang, Yong Wang, and Chang-Qing Xu. A Novel Method to Measure Modal Power Distribution in Multimode Fibers Using Tilted Fiber Bragg Gratings. IEEE PHOTONICS TECHNOLOGY LETTERS, 2005,17(10):2146-2148
    95黄景堂,黄旭光,赵华伟.阵列波导光栅解调的准分布式光纤光栅传感器.光学学报, 2008, 28(11): 2067~2071
    96 H.J. Patrick, C.C.Chang, S.T. Vohhra. Long period fiber gratings for structural bend sensing. Electron. Lett., 1998,34(18):1773-1775
    97乔学光,王瑜,傅海威,等.可调谐法布里-珀罗滤波器的高精度大范围实时定标.光学学报, 2008,28(5):852~855
    98张伟刚.微结构光纤传感器设计的新进展.物理学进展, 2007,27(4):449~466
    99 J. Azana, et al. Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings. Electron. Lett., 1999,35(25):2223-2224
    100 Yu Y,Zhu W,Zhou C,et al.Acomparative study of using comet assay and gH2AX foci for mation in the detection of N_methyl_N_nitro_N_nitrosoguanidine induced DNA damage.Toxicol In Vitro; 2006
    101 Jung Y., Choi S., Jeong Y. S. et al. Hollow optical fiber core mode blocker for acousto-optic tunable bandpass filter. Conference on Lasers and Electro-Optics (CLEO), 2004 paper: CThMM6
    102 Myoung Jin Kim, Yong Min Jung, Bok Hyeon Kim et al.. Ultra-broadband optical filterr based on long-period fiber gratings using higher-order cladding modes. Conference on Lasers and Electro-optics/Pacific Rim, 2007
    103 Bowen Liu, Minglie Hu, Xiaohui Fang et al.. Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber. IEEE Photon. Technol. Lett., 2008,20(8):581~583
    104 Florence Y. M. Chan, Kiyotoshi Yasumoto. Design of wavelength tunable long-period grating couplers based on asymmetric nonlinear dual-core fibers. Opt. Lett., 2007,32(23):3376~3378
    105 Sakata Hajime, Suzuki Shunpei, Hisashi Ito et al.. Long-period fiber-grating-based bandpass filter using self-aligned absorptive core mode blocker. Optical Fiber Techmology, 2008,14(2):93~96
    106 Jung Y., Han S. R., Kim Soan et al.. Tunable bandpass filter by concatenated microstructured fiber-hollow optical fiber based on bend-loss edge shift. Conference on Lasers andElectro-Optics (CLEO), 2006, Paper: JWB60
    107 Noordegraaf D., Scolari L., gsgaard J. et al.. Avoided-crossing-based liquid-crystal photonic- bandgap notch filter. Opt. Lett., 2008,33(9):986~988
    108 Ha W., Jung Y., Kim J. et al.. Fabrication of broad bandwidth rejection filter using hollow optical fiber with femtosecond laser pulses. In Conference on Lasers and Electro-Optics/ Pacific Rim, 2007,Paper MD1~4
    109 T. Fujisawa,M. Koshiba.An analysis of photonic crystal waveguide gratings using coupled-mode theory and finite-element method. Appl.Opt.2006(45):4114-4121
    110 N. Yokoi, T. Fujisawa, K.Saitoh etc. Apodized photonic crystal waveguide gratings. Opt. Express. 2006(14):4459-4468
    111 C. Chen,X. Li H.Li. Photonic crysta1waveguide sampled gratilgs. OPt. Communications. 2007(276):237-241
    112 C. Chen,X. Li H.Li. Phase-Shifted photonic crysta1waveguide gratilgs and their application for wavelength demultiplexing. OPt. Express. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700