铁催化构建C-N和C-O键的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
很多天然产物、药物和染料都大量的C-N、C-O键,因而采用金属催化有机反应来构建C-N、C-O键是一种有效的策略。铁盐和铜盐具有价格便宜、低毒等优点,因而能够用于有机反应催化中。本论文将铁催化剂和铁/铜共催化剂,用于Ullmann N-和O-芳基化、烯烃氨卤化和C-H键酰胺化三类反应中,取得了如下重要研究成果:
     建立了一种高效、廉价的双金属催化剂FeCl_3/CuO/消旋化的BINOL,可以极大的催化脂肪胺、芳基胺和酚的N、O-芳基化,而且在交联偶合反应中可以容忍多种官能团存在,因而这种通用和高效的铁/铜共催化剂可以广泛用于含有(芳基)C-N或(芳基)C-O(芳基)键的化合物合成中。实验结果表明,卤代芳烃的活性顺序依次为:碘代物>溴代物>氯代物,脂肪胺的活性要高于芳香胺。含有吸电子基团卤代芳烃活性高于给电子基团卤代芳烃,位阻效应的存在会使反应活性稍有所降低。
     建立了一种铁催化的烯烃氨溴化的方法。该方法使用FeCl_2作为催化剂,NBS作为溴源,乙酸乙酯作为溶剂,烯烃的氨溴化能在非常温和的条件下高效地进行。这种廉价、高效的催化剂/溴源(FeCl_2/NBS)系统使烯烃的1,2-功能化具有实用价值。实验结果表明,烯烃结构对反应的活性起决定性作用,取代基数量越少、取代基基团越小,反应的活性越高。
     建立了一种廉价和空气稳定的FeCl_2/NBS催化体系,高效地催化苄基sp~3杂化的C-H键酰胺化方法。该方法使用FeCl_2作为催化剂, NBS作为氧化剂,乙酸乙酯作为溶剂,在温和条件下酰胺化产率较高。该反应对空气中的湿气和氧气不敏感,也无需干燥的溶剂或惰性环境保护。这种廉价易得的催化/氧化剂(FeCl_2/NBS)体系使未活化的C-H键的酰胺化具有实用价值。
Many natural products, drugs and dyes contain C-N, C-O bonds, so the transition metal-catalyzed construction of C-N, C-O bonds is an effective strategy. The iron and copper salts are applied to catalyze organic reactions for their low price and toxicity. In this dissertation, some iron catalysts and iron/copper co-catalysts were used in Ullmann N- and O-arylations, aminohalogenation of alkenes and amidation of C-H bonds, and some important results were obtained as follows:
     We have developed an efficient and inexpensive bimetallic catalyst FeCl_3/CuO/rac-BINOL that could greatly promote N, O-arylation of aliphatic, aryl amines and phenols, and the cross-coupling reactions were of tolerance of various functional groups, so the versatile and efficient iron/copper-co-catalyst can widely be used in the synthesis of the compounds containing the (aryl)C-N or (aryl)C-O(aryl) bond.
     We have developed an iron-catalyzed method for aminobromination of alkenes, the protocol uses FeCl_2 as the catalyst, NBS as the halogen source, ethyl acetate as the solvent, and the aminobrominations were efficiently performed under very mild conditions. The direct 1,2-functionalization of alkenes by inexpensive and convenient catalyst-bromine source (FeCl_2/NBS) system is of practical applications.
     We have developed an efficient, inexpensive and air-stable FeCl_2/NBS-mediated amidation of benzylic sp~3 C-H bonds; the protocol uses FeCl_2 as the catalyst, non-explosive NBS (compared with the usual oxidants) as the oxidant, ethyl acetate as the solvent, and the amidation provided the reasonable yields under mild conditions. The reactions are insensitive to atmospheric moisture and oxygen, and neither dried solvent nor an inert atmosphere is required. The inexpensive and readily available catalyst-oxidant (FeCl_2/NBS) system is of practical applications for amidation of the unactivated C-H bonds.
引文
[1]陈茂涛,佛明义.催化作用原理.西安:西北大学出版社,1992. 7.
    [2]黄开辉,万慧霖.催化原理.北京:科学出版社,1983. 2.
    [3] Zeise W C, Besondere platinverbindung. Ann Phys, (Leipzig), 1827, 9: 632.
    [4]郭建权,张生勇.有机过渡金属化学.北京:高等教育出版社,1992:1-5.
    [5] Coolen H K A C, Meeuwis J A M, Vanleeuwen P W M N, et al. Substrate selective catalysis by rhodium metallohosts. J Am Chem Soc, 1995, 117:11906-11913.
    [6] Kuroboshi M, Waki Y, Tanaka H. Palladium-catalyzed tetrakis (dimethylamino) ethylene-promoted reductive coupling of aryl halides. J Org Chem, 2003, 68:3938-3942.
    [7] Rose D, Gilbert J D, Richardson R P, et al. Preparation and properties of hydridocarboxylatotris (triphenylphosphine) ruthenium (II) complexes, including homogeneous catalytic hydrogenation of alk-1-enes. J Chem Soc A, 1969:2610-2615.
    [8] Zou Y, Lobera M, Snider B B, Synthesis of 2, 3-Dihydro-3-hydroxy-2- hydroxylalkylbenzofurans from epoxy aldehydes. one-step syntheses of brosimacutin G, vaginidiol, vaginol, smyrindiol, xanthoarnol, and avicenol A. biomimetic syntheses of angelicin and psoralen. J Org Chem, 2005, 70:1761-1770.
    [9] Ullmann F, Bielecki J. Synthesis in the biphenyl series. Ber Dtsch Chem Ges, 1901, 34:2174-2185.
    [10] Ullmann F. A new path for preparing diphenylamine derivatives. Ber Dtsch Chem Ges, 1903, 36:2382-2384.
    [11] Ullmann F. A new path for preparing phenyl ether salicylic acid. Ber Dtsch Chem Ges, 1904, 37:853-854.
    [12] Goldberg I. Ueber phenylirungen bei gegenwart von kupfer als katalysator. Ber Dtsch Chem Ges, 1906, 39:1691-1692.
    [13] Negwer M. Organic-chemical Drugs and Their Synonyms: (An International Survey), 7th ed., Berlin: Akademie Verlag, 1994.
    [14] Evans D A, DeVries K M. Approaches to the synthesis of the Vancomycin aglycones. In: Nagarajan R, eds. Glycopeptide Antibiotics, Drugs and the Pharmaceutical Sciences. New York: Marcel Decker, 1994:63-103.
    [15] Theil F, Synthesis of diaryl ethers: a long-standing problem has been solved. Angew Chem Int Ed, 1999, 38:2345-2347.
    [16] Janetka J W, Raman P, Satyshur K, et al. Novel cyclic biphenyl ether peptideβ-strand mimetics and HIV-protease inhibitors. J Am Chem Soc, 1997, 119:441-442.
    [17] Nicolaou K C, Boddy C N C, Natarajan S, et al. New synthetic technology for the synthesis of aryl ethers: construction of C-O-D and D-O-E ring model systems of Vancomycin. J Am Chem Soc, 1997, 119:3421-3422.
    [18] Boger D L, Patane M A, Zhou J. Total synthesis of Bouvardin, O-methylbouvardin, and O-methyl-N9-desmethylbouvardin. J Am Chem Soc, 1994, 116:8544-8556.
    [19] Kondo K, Mitsudo T. Metal-catalyzed carbon-sulfur bond formation. Chem Rev, 2000, 100:3205-3220.
    [20] Bates C G, Gujadhur R K, Venkataraman D A. General method for the formation of aryl-sulfur bonds using copper(I) catalysts. Org Lett, 2002, 4:2803-2806.
    [21] Kwong F Y, Buchwald S L. A general, efficient, and inexpensive catalyst system for the coupling of aryl iodides and thiols. Org Lett, 2002, 4:3517-3520.
    [22] Ley S V, Thomas A W. Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation. Angew Chem Int Ed, 2003, 42:5400-5449.
    [23] Chan D M T, Monaco K L, Wang R-P et al. New N- and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett, 1998, 39:2933-2936.
    [24] Evans D A, Katz J L, West T R. Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett, 1998, 39:2937-2940.
    [25] Lam P Y S, Clark C G, Saubern S, et al. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett, 1998, 39:2941-2944.
    [26] Hanoun J-P, Galy J-P, Tenaglia A. A convenient synthesis of N-arylanthranilic acids using ultrasonics in the Ullmann-Goldberg condensation. Synth Commun, 1995, 25:2443-2448.
    [27] Palomo C, Oiarbide M, López R, et al. Phosphazene P4-Butbase for the Ullmann biaryl ether synthesis. Chem Commun, 1998:2091-2092.
    [28] Greene L W. The production of atebrin in Germany. Am J Pharm, 1948, 120:39-45.
    [29] Hassan J, Sévignon M, Gozzi C, et al. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem Rev, 2002, 102:1359-1469.
    [30]邓纬,刘磊,郭庆祥.铜催化交叉偶联反应研究的新进展.有机化学,2004,24:150-165.
    [31] Buckingham J. Dictionary of Natural Products. Cambrige: University Press, 1994.
    [32] Boger D L, Yuji Nomoto Y, Teegarden B R. Vancomycin and ristocetin models: synthesis via the Ullmann macrocyclization reaction. J Org Chem, 1993, 58: 1425-1433.
    [33] Singh S B, Jayasuriya H, Salituro G M, et al. The complestatins as HIV-1 integrase inhibitors. Efficient isolation, structure elucidation, and inhibitory activities of isocomplestatin, chloropeptin I, new complestatins, A and B, and acid-hydrolysis products of chloropeptin I. J Nat Prod, 2001, 64:874-882.
    [34] Czarnik A W. Guest editorial. Acc Chem Res, 1996, 29:112-113.
    [35] Itokawa H, Takeya K, Mihara K, et al. Studies on the antitumor cyclic hexapeptides obtained from Rubiae radix. Chem Pharma Bull, 1983, 31:1424-1427.
    [36] Nishiyama S, Suzuki Y, Yamamura S. Total synthesis of OF4949-III, a novel inhibitor of aminopeptidase B. Tehtrahedron Lett, 1988, 29:559-562.
    [37] Schmidt U, Weller D, Holder A, et al. Total synthesis of 4949-III, a natural inhibitor of aminopeptidase B from ehrlich ascites carcinoma cells. Tehtrahedron Lett, 1988, 29:3227-3230.
    [38] Jung M E, Rohloff J C. Organic chemistry of L-tyrosine. 1. General synthesis of chiral piperazines from amino acids. J Org Chem, 1985, 50:4909-4913.
    [39] Boger D L, Yohannes D. Total synthesis of K-13. J Org Chem, 1989, 54:2498-2502.
    [40] Gujadhur R K. Formation of aryl-carbon and aryl-heteroatom: [Doctoral Dissertation]. MA: Department of Chemistry, University of Massachusetts, 2003.
    [41] Melissaris A P, Litt M H. New high-Tg, heat-resistant, cross-linked polymers. 2. Synthesis and characterization of polymers from di-p-ethynyl-substituted benzyl phenyl ether monomers. Macromolecules, 1994, 27:888-892.
    [42] Irvin J A, Neef C J, Kane K M, et al. Polyethers derived from bisphenols and highly fluorinated aromatics. J Polym Sci Part A: Polym Chem, 1992, 30:1675-1679.
    [43] Semmelhack M F. Comprehansive organic synthesis. Oxford: Pergamon Press, 1991.
    [44] Pearson A J. Iron compounds in organic sythesis. London: Academic Press, 1994.
    [45] Diederich F, Stang P J. Metal-catalyzed cross-coupling reactions. New York: Wiley-VCH, 1998.
    [46] Diederich F, Rubin, Y. Synthetic approaches toward molecular and polymeric carbon allotropes. Angew Chem Int Ed, 1992, 31:1101-1123
    [47] Muci A R and Buchwald S L. Practical palladium catalysts for C-N and C-O bond formation. Top Curr Chem, 2002, 219:131-209.
    [48] Wolfe J P, Wagaw S, Marcoux J F et al. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Acc Chem Res, 1998, 31:805-818.
    [49] Yang B H, Buchwald S L. Palladium-catalyzed amination of aryl halides and sulfonates. J Organomet Chem, 1999, 576:125-146.
    [50] Anderson K W, Buchwald S L. General catalysts for the Suzuki-Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water. Angew Chem Int Ed, 2005, 44:6173-6177.
    [51] Charles M D, Schultz P, Buchwald S L. Efficient Pd-catalyzed amination of heteroaryl halides. Org Lett, 2005, 7:3965-3968.
    [52] Hennessy E J, Buchwald S L. Synthesis of 4,5-dianilinophthalimide and related analogs for potential treatment of Alzheimer's disease via Palladium-Catalyzed amination. J Org Chem, 2005, 70:7371-7375.
    [53] Hartwig J F. Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew Chem Int Ed, 1998, 37:2046-2067.
    [54] Hartwig J F. Carbon-heteroatom bond-forming reductive eliminations of amines, ethers, and sulfides. Accounts Chem Res, 1998, 31:852-860.
    [55] Hartwig J F. Approaches to catalyst discovery. New carbon-heteroatom and carbon-carbon bond formation. Pure Appl Chem, 1999, 71:1417-1423.
    [56] Hartwig J F. Palladium-catalyzed amination of aryl halides: Mechanism and rational catalyst design. Synlett, 1997, 17:329-340.
    [57] Baranano D, Mann G, Hartwig J F. Nickel and palladium-catalyzed cross-couplings that form carbon-heteroatom and carbon-element bonds. Curr Org Chem, 1997, 1:287-305.
    [58] Fernandez-Rodriguez M A, Shen Q, Hartwig J F. A General and long-lived catalyst for the palladium-catalyzed coupling of aryl halides with thiols. J Am Chem Soc, 2006, 128:2180-2181.
    [59] Johns A M, Utsunomiya M, Incarvito C D, et al. A highly active palladium catalyst for intermolecular hydroamination. Factors that control reactivity and additions of functionalized anilines to dienes and vinylarenes. J Am Chem Soc, 2006, 128:1828-1839.
    [60] Wu L, Hartwig J F. Mild palladium-catalyzed selective monoarylation of nitriles. J Am Chem Soc, 2005, 127:15824-15832.
    [61] Hartwig J F. Palladium-catalyzed amination of aryl halides and related reactions. In : Negishi E and Meijere A de, eds. Handbook of Organopalladium Chemistry for Organic Synthesis. New York: John Wily & Sons, 2002:1051-1096.
    [62] Louie J, Hartwig J F. Palladium-catalyzed synthesis of arylamines from aryl halides-Mechanistic studies lead to coupling in the absence of tin reagents. Tetrahedron Lett, 1995, 36:3609-3612.
    [63] Wolfe J P, Buchwald S L. Scope and limitations of the Pd/BINAP-catalyzed amination of aryl bromides. J Org Chem, 2000, 65:1144-1157.
    [64] Wolfe J P, Wagaw S, Buchwald S L. An improved catalyst system for aromatic carbon-nitrogen bond formation: the possible involvement of bis(phosphine) palladium complexes as key intermediates. J Am Chem Soc, 1996, 118:7215-7216.
    [65] Aranyos A, Old D W, Kiyomor A, et al. Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers. J Am Chem Soc, 1999, 121:4369-4378.
    [66] Prashad M, Hu B, Lu Y, et al.β-Hydrogen-containing sodium alkoxides as suitable bases in palladium-catalyzed aminations of aryl halides. J Org Chem, 2000, 65:2612-2614.
    [67] Parrish C A, Buchwald S L. Palladium-catalyzed formation of aryl tert-butyl ethers from unactivated aryl halides. J Org Chem, 2001, 66:2498-2500.
    [68] Sadighi J P, Harris M C, Buchwald S L. A highly active palladium catalyst system for the arylation of anilines. Tetrahedron Lett., 1998, 39:5327-5330.
    [69] Old D W, Harris M C, Buchwald S L. Efficient palladium-catalyzed N-arylation of indoles. Org Lett, 2000, 2:1403-1406.
    [70] Charles M D, Schultz P, Buchwald S L. Efficient Pd-catalyzed amination of heteroaryl halides. Org Lett, 2005, 7:3965-3968.
    [71] Hirao T, Masunaga T, Yamada N, et al. Palladium-catalyzed new carbon-phosphorus bond formation. Bull Chem Soc Jpn, 1982, 55:909-913.
    [72]武汉大学,吉林大学.无机化学.北京:高等教育出版社,1983:477.
    [73]武汉大学,吉林大学.无机化学.北京:高等教育出版社,1983:283.
    [74] Nicolaou K C, Boddy C N C, Natarajan S, et al. New synthetic technology for the synthesis of aryl ethers: construction of C-O-D and D-O-E ring model systems of Vancomycin. J Am Chem Soc, 1997, 119:3421-3422.
    [75] Marcoux J F, Doye S, Buchwald S L. A general copper-catalyzed synthesis of diaryl ethers. J Am Chem Soc, 1997, 119:10539-10540.
    [76] Ma D, Zhang Y, Yao J, et al. Accelerating effect induced by the structure ofα-amino acid in the copper-catalyzed coupling reaction of aryl halides withα-amino acids. Synthesis of benzolactam-V8. J Am Chem Soc, 1998, 120:12459-12467.
    [77] Ma D, Xia C. CuI-catalyzed coupling reaction ofβ-amino acids or esters with aryl halides at temperature lower than that employed in the normal Ullmann reaction. Facile synthesis of SB-214857. Org Lett, 2001, 3:2583-2586.
    [78] Kiyomori A, Marcoux J F, Buchwald S L. An efficient copper-catalyzed coupling of aryl halides with imidazoles. Tetrahedron Lett, 1999, 40:2657-2660.
    [79] Gujadhur R, Venkataraman D, Kintigh J T. Formation of aryl-nitrogen bonds using a soluble copper (I) catalyst. Tetrahedron Lett, 2001, 42:4791-4793.
    [80] Van Allen D, Venkataraman D. Copper-catalyzed synthesis of unsymmetrical triarylphosphines. J Org Chem, 2003, 68:4590-4593.
    [81] Gelman D, Jiang L, Buchwald S L. Copper-catalyzed C-P bond construction via direct coupling of secondary phosphines and phosphites with aryl and vinyl halides. Org Lett, 2003, 5:2315-2318.
    [82] Huang C, Tang X, Fu H, et al. Proline/pipecolinic acid-promoted copper-catalyzed P-arylation. J Org Chem, 2006, 71:5020-5022.
    [83] Zanon J, Klapars A, Buchwald S L. Copper-catalyzed domino halide exchange-cyanation of aryl bromides. J Am Chem Soc, 2003, 125:2890-2891.
    [84] Bates C G, Gujadhur R K, Venkataraman D. Synthesis of 2-arylbenzo furans via copper(I)-catalyzed coupling of o-iodophenols and aryl acetylenes. Org Lett, 2002, 4:4727-4729.
    [85] Goodbrand H B, Hu N X. Ligand-accelerated catalysis of the Ullmann condensation: application to hole conducting triarylamines. J Org Chem, 1999, 64:670-674.
    [86] Kalinin A V, Bower J F, Riebel P, et al. The directed ortho metalation-Ullmann connection. A new Cu (I)-catalyzed variant for the synthesis of substituted diaryl ethers. J Org Chem, 1999, 64:2986-2987.
    [87] Gujadhur R, Venkataraman D. Synthesis of diaryl ethers using an easy-to-prepare, air-stable, soluble copper(I) catalyst. Synth Commun, 2001, 31:2865-2879.
    [88] Yamada K, Kubo T, Tokuyama H, et al. A mild copper-mediated intramolecular amination of aryl halides. Synlett, 2002, 22:231-234.
    [89] Beletskaya I P, Cheprakov A V. Copper in cross-coupling reactions: The post-Ullmann chemistry. 2004, 248:2337-2364.
    [90] Kwong F Y, Klapars A, Buchwald S L. Copper-catalyzed coupling of alkylamines and aryl iodides: An efficient system even in an air atmosphere. Org Lett, 2002, 4:581-584.
    [91] Klapars A, Antilla J C, Huang X, et al. A general and efficient copper catalyst for the amidation of aryl halides and the N-arylation of nitrogen heterocycles. J Am Chem Soc, 2001, 123:7727-7729.
    [92] Klapars A, Huang X, Buchwald S L. A general and efficient copper catalyst for the amidation of aryl halides. J Am Chem Soc, 2002, 124:7421-7428.
    [93] Altman R A, Buchwald S L, Cu-Catalyzed N- and O-Arylation of 2-, 3-, and 4-Hydroxypyridines and Hydroxyquinolines. Org Lett, 2007, 9:643-646.
    [94] Shafir A, Buchwald S L, Highly Selective Room-Temperature Copper-Catalyzed C-N Coupling Reactions. J Am Chem Soc, 2006, 128:8742-8743.
    [95] Enguehard G C, Thery I, Gueiffier A, et al. A general and efficient method for the copper-catalyzed cross-coupling of amides and thiophenols with 6-halogenoimidazo[1,2-alpha]pyridines. Tetrahedron, 2006, 62:6042-6049.
    [96] Ma D, Cai Q. N,N-dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides. Org Lett, 2003, 5:3799-3802.
    [97] Pan X, Cai Q, Ma D. CuI/N,N-dimethylglycine-catalyzed coupling of vinyl halides with amides or carbamates. Org Lett, 2004, 6:1809-1812.
    [98] Zhang H, Ma D W, Cao W G. N,N-dimethylglycine-promoted Ullmann-type coupling reactions of aryl iodides with aliphatic alcohols. Synlett, 2007, 27:243-246.
    [99] Zou B L, Yuan Q L, Ma D W. Synthesis of 1,2-disubstituted benzimidazoles by a Cu-catalyzed cascade aryl amination/condensation process. Angew Chem Int Ed, 2007, 46:598-2601.
    [100] Cai Q, He G, Ma D W. Mild and Nonracemizing Conditions for Ullmann-type Diaryl Ether Formation between Aryl Iodides and Tyrosine Derivatives. J Org Chem, 2006, 71:5268-5273.
    [101] Cai Q, Zou B L, Ma D W. Mild Ullmann-type biaryl ether formation reaction by combination of ortho-substituent and ligand effects. Angew Chem Int Ed, 2006, 45:1276-1279.
    [102] Rao H H, Fu H, Jiang Y Y, et al. Copper-catalyzed arylation of amines using diphenyl pyrrolidine-2-phosphonate as the new ligand. J Org Chem, 2005, 70:8107-8109.
    [103] Rao H H, Jin Y, Fu H, et al. A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester. Chem Eur J, 2006, 12:3636-3646.
    [104] Guo X, Rao H H, Fu H, et al. An inexpensive and efficient copper catalyst for N-arylation of amines, Amides and nitrogen-containing heterocycles. Adv Syn Cat, 2006, 348:2197-2202.
    [105] Jin Y, Liu J Y, Yin Y W, et al. Dimethylaminomethylphosphonic acid derivatives-promoted CuI-catalyzed synthesis of aryl ethers. Synlett, 2006, 26:1564-1568.
    [106] Jiang Q, Jiang D S, Jiang Y Y, et al. A mild and efficient method for copper-catalyzed ullmann-type N-arylation of aliphatic amines and amino acids. Synlett, 2007, 27:1836-1842.
    [107] Buck E, Song Z J, Tschaen D, et al. Ullmann diaryl ether synthesis: rate acceleration by 2,2,6,6-tetramethylheptane-3,5-dione. Org Lett, 2002, 4:1623-1626.
    [108] Antilla J C, Klapars A, Buchwald S L. The copper-catalyzed N-arylation of indoles. J Am Chem Soc, 2002, 124:11684-11688.
    [109] Job G E, Buchwald S L. Copper-catalyzed arylation ofβ-amino alcohols. Org Lett, 2002, 4:3703-3706.
    [110] Collman J P, Zhong M, Zeng L, et al. The [Cu(OH)·TMEDA]2Cl2-catalyzed coupling of arylboronic acids with imidazoles in Water. J Org Chem, 2001, 66:1528-1531.
    [111] Kwong F Y, Buchwald S L. Mild and efficient copper-catalyzed amination of aryl bromides with primary alkylamines. Org Lett, 2003, 5,793-796.
    [112] Wolter M, Klapars A, Buchwald S L. Synthesis of N-aryl hydrazides by copper-catalyzed coupling of hydrazides with aryl iodides. Org Lett, 2001, 3:3803-3805.
    [113] Kim K Y, Shin J T, Lee K S, et al. Cu(I) mediated one-pot synthesis of azobenzenes from bis-Boc aryl hydrazines and aryl halides. Tetrhedron Lett, 2004, 45:117-120.
    [114] Kang S K, Kim D H, Park J N. Copper-catalyzed N-arylation of aryl iodides with benzamides or nitrogen heterocycles in the presence of ethylenediamine. Synlett, 2002, 22:427-430.
    [115] Kelkar A A, Patil N M, Chaudhari V. Copper-catalyzed amination of aryl halides: single-step synthesis of triarylamines. Tetrahedron Lett, 2002, 43:7143-7146.
    [116] Gujadhur R K, Bates C G, Venkataraman D. Formation of aryl-nitrogen, aryl-oxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts. Org Lett, 2001, 3:4315-4317.
    [117] Bacon R G R, Hill H A O. Metal ions and complexes in organic reactions. I. Substitution reactions between aryl halides and cuprous salts in organic solvents. J Chem Soc, 1964:1097-1107
    [118] Lindley J. Copper assisted nucleophilic substitution of aryl halogen. Tetrahedron, 1984, 40:1433-1456.
    [119] Ma D, Cai Q, Zhang H. Mild method for Ullmann coupling reaction of amines and aryl halides. Org Lett, 2003, 5:2453-2455.
    [120] Zhang H, Cai Q, Ma D. Amino acid promoted CuI-catalyzed C-N bond formation between aryl halides and amines or N-containing heterocycles. J Org Chem, 2005, 70:5164-5173.
    [121] Fagan P J, Hauptman E, Shapiro R, et al. Using intelligent/random library screening to design focused libraries for the optimization of homogeneous catalysts: Ullmann ether formation. J Am Chem Soc, 2000, 122:5043-5051.
    [122] Wolter M, Nordmann G, Job G E, et al. Copper-catalyzed coupling of aryl iodides with aliphatic alcohols. Org Lett, 2002, 4:973-976.
    [123] Altman R A, Koval E D, Buchwald S L. Copper-Catalyzed N-Arylation of Imidazoles and Benzimidazoles. J Org Chem, 2007, 72:6190-6199.
    [124] Litvak V V, Shein S M. Nucleophilic substitution in an aromatic series. LI. Kinetics of the reaction of bromobenzene with phenols, catalyzed by copper salts, in the presence of alkali metal carbonates. Zh Org Khim, 1975, 11:92-96.
    [125] Paine A J. Mechanisms and models for copper mediated nucleophilic aromatic substitution. 2. Single catalytic species from three different oxidation states of copper in an Ullmann synthesis of triarylamines. J Am Chem Soc,1987, 109:1496-1502.
    [126] Alois F, Andreas L, Maria M, et al. Iron-catalyzed cross-coupling reactions. J Am Chem Soc, 2002, 124:13856-13863.
    [127] Rubn M, Alois F. Cross-coupling of alkyl halides with aryl grignard reagents catalyzed by a low-valent iron complex. Angew Chem Int Ed, 2004, 43:3955-3957.
    [128] Alois F, Helga K, Christian W L. Unusual structure and reactivity of a homoleptic Super-Ate complex of iron: implications for grignard additions, cross-coupling reactions, and the kharasch deconjugation. Angew Chem Int Ed, 2006, 45:440-444.
    [129] Alois F, Andreas L. Iron-catalyzed cross-coupling reactions of alkyl-grignard reagents with aryl chlorides, tosylates, and triflates. Angew Chem Int Ed, 2002, 41:609-612.
    [130] Robin B B, Duncan W B, Robert M F, et al. Iron(III) salen-type catalysts for the cross-coupling of aryl grignards with alkyl halides bearingβ-hydrogens. Chem Commun, 2004, 41:2822-2823.
    [131] Masaharu N, Keiko M, Shingo I, et al. Iron-catalyzed cross-coupling of primary and secondary alkyl halides with aryl Grignard reagents. J Am Chem Soc, 2004, 126:3686-3687.
    [132] Bogdanovic B, Schwickardi M. Transition metal catalyzed preparation of Grignard compounds. Angew Chem Int Ed, 2000, 39:4610-4612.
    [133] Marc T, Ning X, Armelle O. Efficient iron/copper co-catalyzed arylation of nitrogen nucleophiles. Angew Chem Int Ed. 2007, 46:934-936.
    [134] Olivia B, Arkaitz C, Carsten B. Iron-catalyzed C-O cross-couplings of phenols with aryl iodides. Angew Chem Int Ed. 2008, 47:586-588.
    [135] Kemp J E G. In Comprehensive Organic Synthesis (Eds.: Trost, B. M.; Fleming, I.), Pergamon, Oxford, 1991, 3:471-513.
    [136] Griffith D A, Danishefsky S J. Total synthesis of allosamidin: an application of the sulfonamidoglycosylation of glycols. J Am Chem Soc, 1991, 113:5863-5870.
    [137] Lessard J, Driguez H, Vermes J P. Chromous chloride promoted addition of N-chlorocarbamates to enol ethers. Synthesis of N-alkoxycarbonyl derivatives of 2-amino sugars and of amino ketones and aldehydes. Tetrahedron Lett, 1970, 11:4887-4891.
    [138] Daniher F A, Butler P E. Addition of N,N-dichlorosulfonamides to unsaturates. J Org Chem, 1968, 33:4336-4340.
    [139] Daniher F A, Butler P E. Addition of N,N-dichlorocarbamtes to conjugated dienes. J Org Chem, 1968, 33:2637-2642.
    [140] Daniher F A, Melchior M T, Butler P E. Evidence for nucleophilicity of N,N-dihalosulfonamide oxygen atoms in addition of N,N-dichlorobenzenesulfonamide to cis- and trans-but-2-ene. Chem Commun, 1968:931-932.
    [141] Qui J, Silverman R B. A new class of conformationally rigid analogues of 4-Amino-5-halopentanoic acids, potent inactivators ofγ-Aminobutyric Acid Aminotransferase. J Med Chem, 2000, 43:706-720.
    [142] Kharasch M S, Priestley H M. The addition of N-haloamides to olefins. J Am Chem Soc, 1939, 61:3425-3432.
    [143] Ueno Y, Takemura S, Ando Y, et al. Reaction of N,N-dihalobenzenesulfonamide with cyclohexene. Chem Pharm Bull, 1967, 15:1193-1197.
    [144] Ueno Y, Yamasaki A, Terauchi H, et al. Reaction of N-haloamide. XX. Bromo-formyloxylation of alpha, beta-unsaturated esters with N,N-dibromobenzenesulfonamide and formic acid. Chem Pharm Bull, 1974, 22:1646-1651.
    [145] Takemura S, Terauchi H, Ando Y, et al. Reaction of N-halosulfonamide. 3. reaction of N,N-dibromo-benzenesulfonamide with cyclopentene. Chem Pharm Bull, 1967, 15:1328-1330.
    [146] Zawadzki S, Zwierzak A. N, N-dihalophosphoramides. two-step aminobromination of phenylethylenes and olefins with diethyl N,N-dibromophosphoroamidate (DBPA). Tetrahedron, 1981, 37:2675-2681.
    [147] Klepacz A, Zwierzak A. t-Butyl N,N-dibromocarbamate (BBC)-new reagent for aminobromination of terminal alkenes. Tetrahedron Lett, 2001, 42:4539-4540.
    [148] Tsuritani T, Shinokubo H, Oshima K. Et3B-induced radical addition of N,N-dichlorosulfonamide to alkenes and pyrrolidine formation via radical annulation. J Org Chem, 2003, 68:3246-3250.
    [149] Wang Y N, Ni B, Headley A D, et al. Ionic liquid, 1-n-Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, resulted in the first catalyst-free aminohalogenation of electron-deficient alkenes. Adv Synth Catal, 2007, 349:319-322.
    [150] Minakata S, Yoneda Y, Oderaotoshi Y, et al. Unprecedented CO2-promoted aminochlorination of olefins with chloramine-T. Org Lett, 2006, 8:967-969.
    [151] Han J L, Li Y F, Zhi S J, et al. Palladium-catalyzed aziridination of alkenes using N,N-dichloro-p-toluenesulfonamide as nitrogen source. Tetrahedron Lett, 2006, 47: 7225-7228.
    [152] Yeung Y Y, Gao X, Corey E J. A general process for the haloamidation of olefins. J Am Chem Soc, 2006, 128:9644-9645.
    [153] Li G G, Wei H X, Kim S H, et al. Transition metal-catalyzed regioselective and stereoselective aminochlorination of cinnamic esters. Org Lett, 1999, 1:395-397.
    [154] Li G G, Wei H X, Kim S H, et al. A novel electrophilic diamination reaction of alkenes. Angew Chem Int Ed, 2001, 40:4277-4280.
    [155] Thakur V V, Talluri S K, Sudalai A, Transition metal-catalyzed regio- and stereoselective aminobromination of olefins with TsNH2 and NBS as nitrogen and bromine sources. Org Lett, 2003, 5:861-864.
    [156] Han J L, Zhi S J, Wang L Y, et al. CuCl-catalyzed regio- and stereoselective aminohalogenation ofα,β-unsaturated nitriles. Euro J Org Chem, 2007:1332-1337.
    [157] Chen D J, Timmons C, Chao S, et al. Regio- and stereoselective copper-catalyzed synthesis of vicinal haloamino ketones fromα,β-unsaturated ketones. Euro J Org Chem, 2004 :3097-3101.
    [158] Liu J Y, Wang Y N, Li G G. Regio- and stereoselective synthesis of anti-1,3-diaryl-3-chloro-2-(o-nitrophenylsulfonylamino)-3-propan-1-ones through catalytic aminohalogenation reaction ofα,β-unsaturated ketones. Euro J Org Chem, 2006: 3112-3115.
    [159] Li G G, Wei H X, Kim S H. Copper-catalyzed aminohalogenation using the 2-NsNCl2/2-NsNHNa combination as the nitrogen and halogen sources for the synthesis of anti-alkyl 3-chloro-2-(o-nitrobenzenesulfonamido)-3-arylpropionates. Org Lett, 2000, 2: 2249-2252.
    [160] Xu X, Kotti S R, Saibabu S, et al. Ionic Liquid Media Resulted in the First Asymmetric Aminohalogenation Reaction of Alkenes. Org Lett, 2004, 6:4881-4884.
    [161] Kotti S R, Saibabu S, Xu X, et al. Ionic liquid media resulted in more efficient regio- and stereoselective aminohalogenation of cinnamic esters. Tetrahedron Lett, 2004, 45: 7209-7212.
    [162] Wang Y N, Ni B, Headley A D, et al. Ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, resulted in the first catalyst-free aminohalogenation of electron-deficient alkenes. Adv Synth Catal, 2007, 349: 319-322.
    [163] Wei H X, Kim S H, Li G G. Electrophilic diamination of alkenes by using FeCl3-PPh3 complex as the catalyst. J Org Chem, 2002, 67:4777-4781.
    [164] Li Q J, Shi M, Timmons C, et al. FeCl3-Catalyzed aminohalogenation of arylmethylenecyclopropanes and arylvinylidenecyclopropanes and corresponding mechanistic Studies. Org Lett, 2006, 8:625-628.
    [165] Chen D J, Timmons C, Wei H X, et al. Direct electrophilic diamination of functionalized alkenes without the use of any metal catalysts. J Org Chem, 2003, 68:5742-5745.
    [166] Pei W, Wei H X, Chen D J, et al. N,N-dichloro-2-nitrobenzenesulfonamide as the electrophilic nitrogen source for direct diamination of enones. J Org Chem, 2003, 68: 8404-8408.
    [167] Minakata S, Yoneda Y, Oderaotoshi Y, et al. Unprecedented CO2-Promoted Aminochlorination of Olefins with Chloramine. Org Lett, 2006, 8:967-969.
    [168] Timmons C, Chen D J, Xu X, et al. The combination of TsNH2 and NCS as nitrogen and chlorine sources for direct diamination of enones. Euro J Org Chem, 2003: 3850-3854.
    [169] Godula K, Sames D. C-H Bond Functionalization in Complex Organic Synthesis. Science, 2006, 312:67-72.
    [170] Bergman R G. Organometallic chemistry: C–H activation. Nature, 2007, 446:391-393.
    [171] Cho J Y, Tse M K, Holmes D, et al. Remarkably selective iridium catalysts for the elaboration of aromatic C-H bonds. Science, 2002, 295:305-308.
    [172] Chen H, Schlecht S, Semple T C, et al. Thermal, catalytic, regiospecific functionalization of alkanes. Science, 2000, 287:1995-1997.
    [173] Labinger J A, Bercaw J E. Understanding and exploiting C–H bond activation. Nature, 2002, 417:507-514.
    [174] Li Z, Li C J. Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom. Org Lett, 2004, 6:4997-4999.
    [175] Li Z, Li C J. CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom. J Am Chem Soc, 2004, 126:11810-11811.
    [176] Li Z, Li C J. Highly efficient copper-catalyzed nitro-mannich type reaction: cross-dehydrogenative-coupling between sp3 C-H bond and sp3 C-H bond. J Am Chem Soc, 2005, 127:3672-3673.
    [177] Racci A. Modern Amination Methods. Wiley-VCH: Weinheim, 2000.
    [178] Johannsen M, Jorgensen A. Allylic amination. Chem Rev, 1998, 98:1689-1708.
    [179] Muller T E, Beller M. Metal-initiated amination of alkenes and alkynes. Chem Rev, 1998, 98:675-704.
    [180] Muller P, Fruit V. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into C-H bonds. Chem Rev, 2003, 103:2905-2920.
    [181] Halfen J A. Recent advances in metal-mediated carbon-nitrogen bond formation reactions: aziridination and amidation. Curr Org Chem, 2005, 9:657-669.
    [182] Yang J, Weinberg R, Breslow R. The hydroxylation and amidation of equilenin acetate catalyzed by chloro[5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato]manganese(iii), Chem Commun, 2000:531-532.
    [183] Liang J L, Huang J S, Yu X Q, et al. Metalloporphyrin-mediated asymmetric nitrogen-atom transfer to hydrocarbons: aziridination of alkenes and amidation of saturated C-H bonds catalyzed by chiral ruthenium and manganese porphyrins. Chem Eur J, 2002, 8:1563-1572.
    [184] Cui Y, He C. Efficient aziridination of olefins catalyzed by a unique disilver(I) compound. J Am Chem Soc, 2003, 125:16202-16203.
    [185] Mahy J P, Bedi G, Battioni P, et al. Amination of alkanes catalyzed by iron- and manganese-porphyrins: particular selectivity for oxidations of linear alkanes. J Chem, 1989, 13:651-657.
    [186] Au S M, Huang J S, Che C M, et al. Amidation of unfunctionalized hydrocarbons catalyzed by ruthenium cyclic amine or bipyridine complexes. J Org Chem, 2000, 65:7858-7864.
    [187] Li Z G, Capretto D A, Rahaman R,et al. Silver-catalyzed intermolecular amination of C-H groups. Angew Chem Int Ed, 2007, 46:5184-5186.
    [188] Yamawaki M, Tsutsui H, Kitagaki S, et al. Dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of C-H bonds. Tetrahedron Lett, 2002, 43:9561-9564.
    [189] Liang C, Robert P F, Fruit C, et al. Efficient diastereoselective intermolecular rhodium-catalyzed C-H amination. Angew Chem Int Ed, 2006, 45:4641-4644.
    [190] Reddy R P, Davies H M. Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C-H aminations. Org Lett, 2006, 8:5013-5016.
    [191] Liang J L, Yuan S X, Huang J S, et al. Highly diastereo- and enantioselective intramolecular amidation of saturated C-H bonds catalyzed by ruthenium porphyrins. Angew Chem Int Ed, 2002, 41:3465-3468.
    [192] Davies H M. Recent advances in catalytic enantioselective intermolecular C-H functionalization. Angew Chem Int Ed, 2006, 45:6422-6425.
    [193] Davies H M, Long M S. Recent advances in catalytic intramolecular C-H aminations. Angew Chem Int Ed, 2005, 44:3518-3520.
    [194] Espino C G, Du B J. In modern rhodium-catalyzed organic reactions. P A Evans. Wiley-VCH: Weinheim, 2005:379-416.
    [195] Fiori K W, Du B J, Catalytic intermolecular amination of C-H bonds: method development and mechanistic insights. J Am Chem Soc, 2007, 129:562-568.
    [196] Espino C G, Du B J. A Rh-catalyzed C-H insertion reaction for the oxidative conversion of carbamates to oxazolidinones. Angew Chem Int Ed, 2001, 40:598-600.
    [197] Cui Y, He C. A silver-catalyzed intramolecular amidation of saturated C-H bonds. Angew Chem Int Ed, 2004, 43:4210-4212.
    [198] Yu X Q, Huang J S, Zhou X G, et al. Amidation of saturated C-H bonds catalyzed by electron-deficient ruthenium and manganese porphyrins. a highly catalytic nitrogen atom transfer process. Org Lett, 2000, 2:2233-2236.
    [199] Dauban P, Saniere L, Tarrade A, et al. Copper-catalyzed nitrogen transfer mediated by iodosylbenzene PhI=O. J Am Chem Soc, 2001, 123:7707-7708.
    [200] Li Z, Ding X, He C. Nitrene transfer reactions catalyzed by gold complexes. J Org Chem, 2006, 71:5876-5880.
    [201] Bhuyan R, Nicholas K M. Efficient copper-catalyzed benzylic amidation with anhydrous chloramine-T. Org Lett, 2007, 9:3957-3959.
    [202] Fructos M R, Trofimenko S, Diaz-Requejo M M, et al, Facile amine formation by intermolecular catalytic amidation of carbon-hydrogen bonds. J Am Chem Soc, 2006, 128:11784-11791.
    [203] Albone D P, Challenger S, Derrick A M, et al. Amination of ethers using chloramine-T hydrate and a copper(i) catalyst. Org Biomol Chem, 2005, 3:107-111.
    [204] Simkhovich L, Gross Z. Iron(IV) corroles are potent catalysts for aziridination of olefins by chloramine-T. Tetrahedron Lett, 2001, 42:8089-8092.
    [205] Albone D P, Aujla P S, Taylor P C, et al. A simple copper catalyst for both aziridination of alkenes and amination of activated hydrocarbons with chloramine-T trihydrate. J Org Chem, 1998, 63:9569-9571.
    [206] Harden J D, Ruppel J V, Gao G Y, et al. Cobalt-catalyzed intermolecular C–H amination with bromamine-T as nitrene source. Chem Commun, 2007:4644-4646.
    [207] Gao G Y, Harden J D, Zhang X P. Cobalt-catalyzed efficient aziridination of alkenes. Org Lett, 2005, 7:3191-3193.
    [208] Chanda B M, Vyas R, Bedekar A V. Investigations in the transition metal catalyzed aziridination of olefins, amination, and other insertion reactions with bromamine-T as the source of nitrene. J Org Chem, 2001, 66:30-34.
    [209] Vyas R, Gao G Y, Harden J D, et al. Iron(III) porphyrin catalyzed aziridination of alkenes with bromamine-T as nitrene source. Org Lett, 2004, 6:1907-1910.
    [210] Lebel H, Huard K, Lectard S. N-tosyloxycarbamates as a source of metal nitrenes: rhodium-catalyzed C-H insertion and aziridination reactions. J Am Chem Soc, 2005, 127:14198-14199.
    [211] Lebel H, Huard K. Synthesis of troc-protected amines: intermolecular rhodium-catalyzed C-H amination with N-tosyloxycarbamates. Org Lett, 2007, 9:639-642.
    [212] Lebel H, Leogane K, Huard K, et al. Catalytic activation of nitrogen derivatives with transition-metal complexes. Pure Appl Chem, 2006, 78:363-366.
    [213] Pelletier G, Powell D A. Copper-catalyzed amidation of allylic and benzylic C-H bonds. Org Lett, 2006, 8:6031-6034.
    [214] Zhang Y, Fu H, Jiang Y Y, et al. Copper-catalyzed amidation of sp3 C-H bonds adjacent to a nitrogen atom. Org Lett, 2007, 9:3813-3816.
    [215] Lu Z, Twieg R J, Huang S D. Copper-catalyzed amination of aromatic halides with N,N’-dimethylaminoethanol as solvent. Tetrahedron Lett, 2003, 44:6289-6290.
    [216] Zhang Z, Mao J, Zhu D, et al. Highly efficient and practical phosphoramidite–copper catalysts for amination of aryl iodides and heteroaryl bromides with alkylamines and N(H)-heterocycles. Tetrahedron, 2006, 62:4435-4443.
    [217] Xu L, Zhu D, Wu F, et al. Mild and efficient copper-catalyzed N-arylation of alkylamines and N–H heterocycles using an oxime-phosphine oxide ligand. Tetrahedron, 2005, 61:6553-6560.
    [218] Jiang D S, Fu H, Jiang Y Y, et al. CuBr/rac-BINOL-catalyzed N-arylations of aliphatic amines at room temperature. J Org Chem, 2007, 72:672-674.
    [219] Thakur V V, Talluri S K, Sudalai A. Transition metal-catalyzed regio- and stereoselective aminobromination of olefins with TsNH2 and NBS as nitrogen and bromine sources. Org Lett, 2003, 5:861-864.
    [220] Talluri S K, Sudalai A. NBS-Catalyzed hydroamination and hydroalkoxylation of activated styrenes. Org Lett, 2005, 7:855-857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700